Biological validation of fecal glucocorticoid and triiodothyronine measures in free-ranging Golden-headed Lion Tamarins (Kühl, 1820), (Mammalia: Primates: Callitrichidae: Leontopithecus chrysomelas): effects of the stress of capture and body condition
DOI:
https://doi.org/10.11609/jott.9725.18.1.28151-28166Keywords:
Cortisol, hormones, Lion Tamarins, metabolites, non-invasive, thyroid hormones, wildAbstract
Glucocorticoids (GCs) and thyroid hormones (THs), along with other physiological mediators, modulate the responses that allow lifelong adaptation to predictable and unpredictable environmental challenges. This has sparked the interest of primatologists who, with the advent of non-invasive sampling techniques, have been able to investigate changes in GCs and, more recently, THs under field conditions. These techniques need a validation process to ensure that the measurements are biologically meaningful for the species and the matrix being studied. Here, we aimed to validate the measurement of GC and triiodothyronine (T3) metabolites (fGCs and fT3, respectively) in the feces of wild Golden-headed Lion Tamarins (GHLTs; Leontopithecus chrysomelas), inhabiting highly disturbed forest patches in southern Bahia, Brazil. We assessed the effects of capture, body condition (weight and score), sex, dominance status, and group identity on the levels of fGCs and fT3 in samples collected during capture events and regular group-monitoring days. We found that capture and handling had a significant impact on both fGCs and fT3, whereas body condition score was relevant only to the variation in fT3 levels. These findings confirm the notion that the procedure of capture is a suitable acute stressor to validate non-invasive hormone measures and that fT3 is a promising marker for studying the fluctuations in energetic condition. Overall, our results demonstrate that a simple biological approach is sufficient to verify the applicability of non-invasive GC and TH determinations in fecal samples of wild GHLTs.
References
Abbott, D.H., E.B. Keverne, F.B., Bercovitch, C.A. Shively, S.P. Mendoza, W. Saltzman & R.M. Sapolsky (2003). Are subordinates always stressed? A comparative analysis of rank differences in cortisol levels among primates. Hormones and Behavior 43(1): 67–82. https://doi.org/10.1016/S0018-506X(02)00037-5
Baker, A.J., K.L. Bales & J.M. Dietz (2002). Mating system and group dynamics in lion tamarins pp. 188–212. In: Kleiman, D.G. & A.B. Rylands (eds.). Lion Tamarins: Biology and Conservation. Smithsonian Institution Press, Washington D.C.
Baker, A.J., J.M. Dietz & D.G. Kleiman (1993). Behavioural evidence for monopolization of paternity in multi-male groups of golden lion tamarins. Animal Behaviour 46(6): 1091–1103. https://doi.org/10.1006/anbe.1993.1299
Bales, K., J.A. French & J.M. Dietz (2002). Explaining variation in maternal care in a cooperatively breeding mammal. Animal Behaviour 453–461. https://doi.org/10.1006/anbe.2001.1954
Bales, K.L., J.A. French, C.M. Hostetler & J.M. Dietz (2005). Social and reproductive factors affecting cortisol levels in wild female Golden Lion Tamarins Leontopithecus rosalia. American Journal of Primatology 67(1): 25–35. https://doi.org/10.1002/ajp.20167
Bales, K.L., J.A. French, J. McWilliams, R.A. Lake & J.M. Dietz (2006). Effects of social status, age, and season on androgen and cortisol levels in wild male Golden Lion Tamarins Leontopithecus rosalia. Hormones and Behavior 49(1): 88–95. https://doi.org/10.1016/j.yhbeh.2005.05.006
Bates, D., M. Mächler, B.M. Bolker & S.C. Walker (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67(1). https://doi.org/10.18637/jss.v067.i01
Beehner, J.C. & T.J. Bergman (2017). The next step for stress research in primates: To identify relationships between glucocorticoid secretion and fitness. Hormones and Behavior 91: 68–83. https://doi.org/10.1016/j.yhbeh.2017.03.003
Behringer, V., C. Deimel, G. Hohmann, J. Negrey, F.S. Schaebs & T. Deschner (2018). Applications for non-invasive thyroid hormone measurements in mammalian ecology, growth, and maintenance. Hormones and Behavior 105(August): 66–85. https://doi.org/10.1016/j.yhbeh.2018.07.011
Behringer, V. & T. Deschner (2017). Non-invasive monitoring of physiological markers in primates. Hormones and Behavior 91: 3–18. https://doi.org/10.1016/j.yhbeh.2017.02.001
Behringer, V., T. Deschner, R. Murtagh, J.M.G. Stevens & G. Hohmann (2014). Age-related changes in Thyroid hormone levels of bonobos and chimpanzees indicate heterochrony in development. Journal of Human Evolution 66(1): 83–88. https://doi.org/10.1016/j.jhevol.2013.09.008
Behringer, V., M. Heistermann, S. Malaivijitnond, O. Schülke & J. Ostner (2023). Developmental and environmental modulation of fecal thyroid hormone levels in wild Assamese Macaques (Macaca assamensis). American Journal of Primatology 85(9): 1–13. https://doi.org/10.1002/ajp.23530
Bertoli, P., L. Culot, R. Palme & O. Mendonça-Furtado (2019). Measuring fecal glucocorticoid metabolites of an endangered neotropical primate : technical details of a physiological validation. Boletim Da Sociedade de Mastozoologia 80(July): 1–6.
Brain, K.L., B.J. Allison, Y. Niu, C.M. Cross, N. Itani, A.D. Kane & D.A. Giussani (2015). Induction of controlled hypoxic pregnancy in large mammalian species. Physiological Reports 3(12): 1–13. https://doi.org/10.14814/phy2.12614
Burr, W.A., R.S. Griffiths, D.B. Ramsden, E.G. Black, R. Hoffenberg, H. Meinhold & K.W. Wenzel (1976). Effect of a Single Dose of Dexamethasone on Serum Concentrations of Thyroid Hormones. The Lancet 308(7976): 58–61. https://doi.org/10.1016/S0140-6736(76)92283-2
Busch, D.S. & L.S. Hayward (2009). Stress in a conservation context: A discussion of glucocorticoid actions and how levels change with conservation-relevant variables. Biological Conservation 142(12): 2844–2853. https://doi.org/10.1016/j.biocon.2009.08.013
Catenacci, L.S., M.S. Pessoa, S.L.G. Nogueira-Filho & K.M. de Vleeschouwer (2016). Diet and Feeding Behavior of Leontopithecus chrysomelas (Callitrichidae) in Degraded Areas of the Atlantic Forest of South-Bahia, Brazil. International Journal of Primatology 37(2): 136–157. https://doi.org/10.1007/s10764-016-9889-x
Catenacci, L.S., B.E. Raboy, L.C. Oliveira, C.E. Guidorizzi, L.G. Neves, P. Suscke & K.M. de Vleeschouwer (2022). Golden-headed Lion Tamarins, Leontopithecus chrysomelas (Kühl, 1820): 27 Years of Experience in Methods for Their Capture and the Collection of Biological Material. Primate Conservation 36(36): 1–13.
Cavigelli, S.A. & M.J. Caruso (2015). Sex, social status and physiological stress in primates: The importance of social and glucocorticoid dynamics. Philosophical Transactions of the Royal Society B: Biological Sciences 370(1669). https://doi.org/10.1098/rstb.2014.0103
Cerqueira, M., S. Millot, M.F. Castanheira, A.S. Félix, T. Silva, G.A. Oliveira & R.F. Oliveira (2017). Cognitive appraisal of environmental stimuli induces emotion-like states in fish. Scientific Reports 7(1): 1–10. https://doi.org/10.1038/s41598-017-13173-x
Charmandari, E., C. Tsigos & G. Chrousos (2005). Endocrinology of the stress response. Annual Review of Physiology 67: 259–284. https://doi.org/10.1146/annurev.physiol.67.040403.120816
Chatzitomaris, A., R. Hoermann, J.E. Midgley, S. Hering, A. Urban, B. Dietrich & J.W. Dietrich (2017). Thyroid allostasis-adaptive responses of thyrotropic feedback control to conditions of strain, stress, and developmental programming. Frontiers in Endocrinology 8(July): 1–28. https://doi.org/10.3389/fendo.2017.00163
Clingerman, K.J. & L. Summers (2005). Development of a body condition scoring system for nonhuman primates using Macaca mulatta as a model. Lab Animal 34(5): 31–36. https://doi.org/10.1038/laban0505-31
Cooke, S.J., D.T. Blumstein, R. Buchholz, T. Caro, E. Fernández-Juricic, C.E. Franklin & M. Wikelski (2014). Physiology, behavior, and conservation. Physiological and Biochemical Zoology 87(1): 1–14. https://doi.org/10.1086/671165
Costa, T. da S.O., S.L.G. Nogueira-Filho, K.M. de Vleeschouwer, L.A. Coutinho & S.S. da C. Nogueira (2022). Relationships between food shortages, endoparasite loads and health status of golden-headed lion tamarins (Leontopithecus chrysomelas). Biota Neotropica 22(4). https://doi.org/10.1590/1676-0611-BN-2021-1315
Costa, T.S.O., S.L.G. Nogueira-Filho, K.M. de Vleeschouwer, L.C. Oliveira, M.B.C. de Sousa, M. Mendl & S.S.C. Nogueira (2020). Individual behavioral differences and health of Golden-headed Lion Tamarins (Leontopithecus chrysomelas). American Journal of Primatology 82(5). https://doi.org/10.1002/ajp.23118
Coutinho, L.A. (2018). Ecologia e mobilidade do mico-leão-de-cara-dourada, Leontopithecus chrysomelas (Kuhl, 1820) (Primates, Callitrichidae), dentro e entre pequenos fragmentos degradados do Sul da Bahia (Una, Brasil). Universidade Estadual de Santa Cruz, 137 pp.
Cristóbal-Azkarate, J., L. Maréchal, S. Semple, B. Majolo & A. MacLarnon (2016). Metabolic strategies in wild male Barbary macaques: Evidence from faecal measurement of thyroid hormone. Biology Letters 12(4). https://doi.org/10.1098/rsbl.2016.0168
Dantzer, B., Q.E. Fletcher, R. Boonstra & M.J. Sheriff (2014). Measures of physiological stress: A transparent or opaque window into the status, management and conservation of species? Conservation Physiology 2(1): 1–18. https://doi.org/10.1093/conphys/cou023
De Vleeschouwer, K., M. Heistermann, L. van Elsacker & R.F. Verheyen (2000). Signaling of reproductive status in captive female golden-headed lion tamarins (Leontopithecus chrysomelas). International Journal of Primatology 21(3): 445–465. https://doi.org/10.1023/A:1005439919150
De Vleeschouwer, K.M. & L.C. Oliveira (2017). Report on the presence of a group of golden-headed lion tamarins (Leontopithecus chrysomelas), an endangered primate species in a rubber plantation in southern Bahia, Brazil. Primate Biology 4(1): 61–67. https://doi.org/10.5194/pb-4-61-2017
De Rango, E.J., D.J. Greig, C. Gálvez, T.A. Norris, L. Barbosa, F.R. Elorriaga-Verplancken & D.E. Crocker (2019). Response to capture stress involves multiple corticosteroids and is associated with serum thyroid hormone concentrations in Guadalupe fur seals (Arctocephalus philippii townsendi). Marine Mammal Science 35(1): 72–92. https://doi.org/10.1111/mms.12517
Deschner, T., G. Hohmann, S. Ortmann, F.S. Schaebs & V. Behringer (2020). Urinary total T3 levels as a method to monitor metabolic changes in relation to variation in caloric intake in captive bonobos (Pan paniscus). General and Comparative Endocrinology 285(September 2019): 113290. https://doi.org/10.1016/j.ygcen.2019.113290
Dias, P.A.D., A. Coyohua-Fuentes, D. Canales-Espinosa, R. Chavira-Ramírez & A. Rangel-Negrín (2017). Hormonal correlates of energetic condition in mantled howler monkeys. Hormones and Behavior 94: 13–20. https://doi.org/10.1016/j.yhbeh.2017.06.003
Eales, J.G. (1988). The influence of nutritional state on thyroid function in various vertebrates. Integrative and Comparative Biology 28(2): 351–362. https://doi.org/10.1093/icb/28.2.351
Emery-Thompson, M. (2017). Energetics of feeding, social behavior, and life history in non-human primates. Hormones and Behavior 91: 84–96. https://doi.org/10.1016/j.yhbeh.2016.08.009
Fedigan, L.M. (2010). Ethical issues faced by field primatologists: Asking the relevant questions. American Journal of Primatology 72(9): 754–771. https://doi.org/10.1002/ajp.20814
Fiorini-Torrico, R., K.M. de Vleeschouwer, L. Fuzessy & L. de C. Oliveira (2024). Glucocorticoids and behavior in non-human primates: A meta-analytic approach to unveil potential coping mechanisms. Hormones and Behavior 166(June). https://doi.org/10.1016/j.yhbeh.2024.105654
Foerster, S. & S.L. Monfort (2010). Fecal glucocorticoids as indicators of metabolic stress in female Sykes’ monkeys (Cercopithecus mitis albogularis). Hormones and Behavior 58(4): 685–697. https://doi.org/10.1016/j.yhbeh.2010.06.002
French, J.A., K.L. Bales, A.J. Baker & J.M. Dietz (2003). Endocrine Monitoring of Wild Dominant and Subordinate Female Leontopithecus rosalia. International Journal of Primatology 24(6): 1–30.
Gesquiere, L.R., M. Pugh, S.C. Alberts & A.C. Markham (2018). Estimation of energetic condition in wild baboons using fecal thyroid hormone determination. General and Comparative Endocrinology 260: 9–17. https://doi.org/10.1016/j.ygcen.2018.02.004
Gholib, G., M. Heistermann, M. Agil, I. Supriatna, B. Purwantara, T.P. Nugraha & A. Engelhardt (2018). Comparison of fecal preservation and extraction methods for steroid hormone metabolite analysis in wild crested macaques. Primates 59(3): 281–292. https://doi.org/10.1007/s10329-018-0653-z
Gómez-Espinosa, E., A. Rangel-Negrín, R. Chavira, D. Canales-Espinosa & P.A.D. Dias (2014). The effect of energetic and psychosocial stressors on glucocorticoids in mantled howler monkeys (Alouatta palliata). American Journal of Primatology 76(4): 362–373. https://doi.org/10.1002/ajp.22240
Gouvêa, J.B.S., L.A.M. Silva & M. Hori (1976). Fitogeografia pp. 1–7. In: Diagnóstico Socioeconômico da Região Cacaueira: Recursos Florestais. Comissão Executiva do Plano da Lavoura Cacaueira (CEPLAC), Instituto Interamericano de Ciências Agrícolas – OEA, Ilhéus, Bahia, Brazil.
Gust, D.A., M.E. Wilson, T. Stocker, S. Conrad, P.M. Plotsky & T.P. Gordon (2000). Activity of the hypothalamic-pituitary-adrenal axis is altered by aging and exposure to social stress in female rhesus monkeys. Journal of Clinical Endocrinology and Metabolism 85(7): 2556–2563. https://doi.org/10.1210/jc.85.7.2556
Heistermann, M., R. Palme & A. Ganswindt (2006). Comparison of Different Enzymeimmunoassays for Assessment of Adrenocortical Activity in Primates Based on Fecal Analysis. American Journal of Primatology 68: 257–273. https://doi.org/10.1002/ajp.20222
Helmreich, D.L., D.B. Parfitt, X.Y. Lu, H. Akil & S.J. Watson (2005). Relation between the Hypothalamic-Pituitary-Thyroid (HPT) axis and the Hypothalamic-Pituitary-Adrenal (HPA) axis during repeated stress. Neuroendocrinology 81(3): 183–192. https://doi.org/10.1159/000087001
Henry, M.L.D., S.J. Hankerson, J.M. Siani, J.A. French & J.M. Dietz (2013). High rates of pregnancy loss by subordinates leads to high reproductive skew in wild golden lion tamarins (Leontopithecus rosalia). Hormones and Behavior 63(5): 675–683. https://doi.org/10.1016/j.yhbeh.2013.02.009
Higham, J.P. (2016). Field endocrinology of nonhuman primates: past, present, and future. Hormones and Behavior 84: 145–155. https://doi.org/10.1016/j.yhbeh.2016.07.001
Hodges, J.K. & M. Heistermann (2011). Field endocrinology: Monitoring hormonal changes in free–ranging primates. Field and Laboratory Methods in Primatology: A Practical Guide, Second Edition 353–370. https://doi.org/10.1017/CBO9780511921643.022
Hunt, K.E. & S.K. Wasser (2003). Effect of long-term preservation methods on fecal glucocorticoid concentrations of grizzly bear and African elephant. Physiological and Biochemical Zoology 76(6): 918–928. https://doi.org/10.1086/380209
Johnstone, C.P., R.D. Reina & A. Lill (2012). Interpreting indices of physiological stress in free-living vertebrates. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology 182(7): 861–879. https://doi.org/10.1007/s00360-012-0656-9
Kaiser, S., A. Korte, J. Wistuba, M. Baldy, A. Wissmann, M. Dubičanac & N. Sachser (2023). Effects of castration and sterilization on baseline and response levels of cortisol—A case study in male guinea pigs. Frontiers in Veterinary Science 9. https://doi.org/10.3389/fvets.2022.1093157
Kaisin, O., F. Bufalo, R. Amaral, R. Palme, P. Poncin, F. Brotcorne & L. Culot (2023). Linking glucocorticoid variations to monthly and daily behavior in a wild endangered neotropical primate. American Journal of Primatology 85(7): e23503. https://doi.org/https://doi.org/10.1002/ajp.23503
Kaisin, O., L. Fuzessy, P. Poncin, F. Brotcorne & L. Culot (2021). A meta-analysis of anthropogenic impacts on physiological stress in wild primates. Conservation Biology 35(1): 101–114. https://doi.org/10.1111/cobi.13656
Kalbitzer, U. & C.A. Chapman (2018). Primate Responses to Changing Environments in the Anthropocene pp. 283–310. In: Kalbitzer, U. & K.M. Jack (Eds.). Primate life histories, sex roles, and adaptability: Essays in honour of Linda M. Fedigan. Springer US.
Khan, M.Z., J. Altmann, S.S. Isani & J. Yu (2002). A matter of time: Evaluating the storage of fecal samples for steroid analysis. General and Comparative Endocrinology 128(1): 57–64. https://doi.org/10.1016/S0016-6480(02)00063-1
Korte, S.M., J.M. Koolhaas, J.C. Wingfield & B.S. McEwen (2005). The Darwinian concept of stress: Benefits of allostasis and costs of allostatic load and the trade-offs in health and disease. Neuroscience and Biobehavioral Reviews 29(1 SPEC. ISS.): 3–38. https://doi.org/10.1016/j.neubiorev.2004.08.009
Lambert, J.E. (1998). Primate digestion: Interactions among anatomy, physiology, and feeding ecology. Evolutionary Anthropology 7(1): 8–20. https://doi.org/10.1002/(SICI)1520-6505(1998)7:1<8::AID-EVAN3>3.0.CO;2-C
López, M., C.V. Alvarez, R. Nogueiras & C. Diéguez (2013). Energy balance regulation by thyroid hormones at central level. Trends in Molecular Medicine 19(7): 418–427. https://doi.org/10.1016/j.molmed.2013.04.004
Mazzoni, T.S., G.C. Da Silva, I.L.B. Perez & I.Quagio-Grassiotto (2020). Impact of captive conditions on female germinal epithelium of the butterflyfish Chaetodon striatus (Perciformes: Chaetodontidae). Zygote (June). https://doi.org/10.1017/S0967199420000763
McEwen, B.S. & J.C. Wingfield (2003). The concept of allostasis in biology and biomedicine. Hormones and Behavior 43(1): 2–15. https://doi.org/10.1016/S0018-506X(02)00024-7
Miller, K.E., K. Laszlo & J.M. Dietz (2003). The role of scent marking in the social communication of wild golden lion tamarins, Leontopithecus rosalia. Animal Behaviour 65(4): 795–803. https://doi.org/10.1006/anbe.2003.2105
Mori, S.A., B.M. Boom, A.M. de Carvalino & T.S. dos Santos (1983). Ecological Importance of Myrtaceae in an Eastern Brazilian Wet Forest. Biotropica 15(1): 68. https://doi.org/10.2307/2388002
Nelson, R. & L.J. Kriegsfeld (2017). An Introduction to Behavioral Endocrinology, 5th Edition. Sinauer, 722 pp.
Nilsson, J., L.H. Stien, J.E. Fosseidengen, R.E. Olsen & T.S. Kristiansen (2012). From fright to anticipation: Reward conditioning versus habituation to a moving dip net in farmed Atlantic Cod (Gadus morhua). Applied Animal Behaviour Science 138(1–2): 118–124. https://doi.org/10.1016/j.applanim.2012.02.014
Oliveira, L.C. & J.M. Dietz (2011). Predation risk and the interspecific association of two brazilian atlantic forest primates in cabruca agroforest. American Journal of Primatology 73(9): 852–860. https://doi.org/10.1002/ajp.20952
Oliveira, L.C., L.G. Neves, B.E. Raboy & J.M. Dietz (2011). Abundance of jackfruit (Artocarpus heterophyllus) affects group characteristics and use of space by golden-headed lion tamarins (Leontopithecus chrysomelas) in Cabruca agroforest. Environmental Management 48(2): 248–262. https://doi.org/10.1007/s00267-010-9582-3
Palme, R., P. Fischer, H. Schildorfer & M.N. Ismail (1996). Excretion of infused 14C-steroid hormones via faeces and urine in domestic livestock. Animal Reproduction Science 43: 43–63.
Palme, R., S. Rettenbacher, C. Touma, S.M. El-Bahr & E. Möstl (2005). Stress hormones in mammals and birds: Comparative aspects regarding metabolism, excretion, and noninvasive measurement in fecal samples. Annals of the New York Academy of Sciences 1040: 162–171. https://doi.org/10.1196/annals.1327.021
Palme, R. (2005). Measuring fecal steroids: Guidelines for practical application. Annals of the New York Academy of Sciences 1046: 75–80. https://doi.org/10.1196/annals.1343.007
Palme, R. (2019). Non-invasive measurement of glucocorticoids: Advances and problems. Physiology and Behavior 199(July 2018): 229–243. https://doi.org/10.1016/j.physbeh.2018.11.021
Pizzutto, C.S., M.G.F.G. Sgai, C.P. Francischini, P. Viau, C.A. de Oliveira, M.A. de B.V. Guimarães (2015). Physiological validation of enzyme immunoassay of fecal glucocorticoid metabolite levels and diurnal variation measured in captive Black-tufted Marmoset Callithrix penicillata (Mammalia: Primates: Callitrichidae). Journal of Threatened Taxa 7(6): 7234–7242. https://doi.org/10.11609/jott.o4099.7234-42
Power, M.L. & O.T. Oftedal (1996). Differences among captive callitrichids in the digestive responses to dietary gum. American Journal of Primatology 40(2): 131–144. https://doi.org/10.1002/(SICI)1098-2345(1996)40:2<131::AID-AJP2>3.0.CO;2-Z
R Core Team (2023). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
Rangel-Negrín, A., J.L. Alfaro, R.A. Valdez, M.C. Romano & J.C. Serio-Silva (2009). Stress in yucatan spider monkeys: Effects of environmental conditions on fecal cortisol levels in wild and captive populations. Animal Conservation 12(5): 496–502. https://doi.org/10.1111/j.1469-1795.2009.00280.x
Rangel-Negrín, A., E. Flores-Escobar, A. Coyohua-Fuentes, D.R. Chavira-Ramírez, D. Canales-Espinosa & P.A.D. Dias (2015). Behavioural and Glucocorticoid Responses of a Captive Group of Spider Monkeys to Short-Term Variation in Food Presentation. Folia Primatologica 86(5): 433–445. https://doi.org/10.1159/000441059
Rimbach, R., E.W. Heymann, A. Link & M. Heistermann (2013). Validation of an enzyme immunoassay for assessing adrenocortical activity and evaluation of factors that affect levels of fecal glucocorticoid metabolites in two New World primates. General and Comparative Endocrinology 191: 13–23. https://doi.org/10.1016/j.ygcen.2013.05.010
Romero, L.M., M.J. Dickens & N.E. Cyr (2009). The reactive scope model - A new model integrating homeostasis, allostasis, and stress. Hormones and Behavior 55(3): 375–389. https://doi.org/10.1016/j.yhbeh.2008.12.009
Sadoughi, B., C. Girard-Buttoz, A. Engelhardt, M. Heistermann & J. Ostner (2021). Non-invasive assessment of metabolic responses to food restriction using urinary triiodothyronine and cortisol measurement in macaques. General and Comparative Endocrinology 306(February). https://doi.org/10.1016/j.ygcen.2021.113736
Sapolsky, R.M. & J. Altmann (1991). Incidence of hypercortisolism and dexamethasone resistance increases with age among wild baboons. Biological Psychiatry 30(10): 1008–1016. https://doi.org/10.1016/0006-3223(91)90121-2
Sapolsky, R.M., L.M. Romero & A.U. Munck (2000). How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocrine Reviews 21(1): 55–89. https://doi.org/10.1210/er.21.1.55
Schaebs, F.S., T.E. Wolf, V. Behringer & T. Deschner (2016). Fecal thyroid hormones allow for the noninvasive monitoring of energy intake in capuchin monkeys. Journal of Endocrinology 231(1): 1–10. https://doi.org/10.1530/JOE-16-0152
Schwarzenberger, F. (2007). The many uses of non-invasive faecal steroid monitoring in zoo and wildlife species. International Zoo Yearbook 41(1): 52–74. https://doi.org/10.1111/j.1748-1090.2007.00017.x
Searle, S.R., F.M. Speed & G.A. Milliken (1980). Population marginal means in the linear model: An alternative to least squares means. American Statistician 34(4): 216–221. https://doi.org/10.1080/00031305.1980.10483031
Almoosavi, S.M.M.S, T. Ghoorchi, A.A. Naserian, H. Khanaki, J.K. Drackley & M.H. Ghaffari (2021). Effects of late-gestation heat stress independent of reduced feed intake on colostrum, metabolism at calving, and milk yield in early lactation of dairy cows. Journal of Dairy Science 104(2): 1744–1758. https://doi.org/10.3168/jds.2020-19115
Sheriff, M.J., B. Dantzer, B. Delehanty, R. Palme & R. Boonstra (2011). Measuring stress in wildlife: Techniques for quantifying glucocorticoids. Oecologia 166(4): 869–887. https://doi.org/10.1007/s00442-011-1943-y
Sousa, M.B.C. & T.E. Ziegler (1998). Diurnal variation on the excretion patterns of fecal steroids in common marmoset (Callithrix jacchus) females. American Journal of Primatology 46(2): 105–117. https://doi.org/10.1002/(sici)1098-2345(1998)46:2<105::aid-ajp1>3.0.co;2-%23
Terio, K.A., J.L. Brown, R. Moreland & L. Munson (2002). Comparison of different drying and storage methods on quantifiable concentrations of fecal steroids in the cheetah. Zoo Biology 21(3): 215–222. https://doi.org/10.1002/zoo.10036
Touitou, S., M. Heistermann, O. Schülke & J. Ostner (2021). Triiodothyronine and cortisol levels in the face of energetic challenges from reproduction, thermoregulation and food intake in female macaques. Hormones and Behavior 131(July 2020): 104968. https://doi.org/10.1016/j.yhbeh.2021.104968
Touma, C. & R. Palme (2005). Measuring Fecal Glucocorticoid Metabolites in Mammals and Birds: The Importance of Validation. Annals of the New York Academy of Sciences 1046(1): 54–74. https://doi.org/10.1196/annals.1343.006
Visser, E.W., T.J. Visser & R.P. Peeters (2017). Metabolism of thyroid hormone. New Comprehensive Biochemistry 18: 81–103. https://doi.org/10.1016/S0167-7306(08)60641-9
Wark, J.D., L. Amendolagine, K.E. Lukas, C.W. Kuhar, P.M. Dennis, C.T. Snowdon & M.W. Schook (2016). Fecal glucocorticoid metabolite responses to management stressors and social change in four species of callitrichine monkeys. Primates 57(2): 267–277. https://doi.org/10.1007/s10329-016-0514-6
Wasser, S.K., J. Cristòbal, R.K. Booth, L. Hayward, K. Hunt, K. Ayres, C. Vynne, K. Gobush, D. Canales-Espinosa, E. Rodríguez-Luna & E. Rodríguez-luna (2010). Non-invasive measurement of thyroid hormone in feces of a diverse array of avian and mammalian species. General and Comparative Endocrinology 168(1): 1–7. https://doi.org/10.1016/j.ygcen.2010.04.004
Wasser, S.K., K.E. Hunt, J.L. Brown, K. Cooper, C.M. Crockett, U. Bechert, J.J. Millspaugh, S. Larson & S.L. Monfort (2000). A generalized fecal glucocorticoid assay for use in a diverse array of nondomestic mammalian and avian species. General and Comparative Endocrinology 120(3): 260–275. https://doi.org/10.1006/gcen.2000.7557
Wikelski, M. & S.J. Cooke (2006). Conservation physiology. Trends in Ecology and Evolution 21(1): 38–46. https://doi.org/10.1016/j.tree.2005.10.018
Wingfield, J.C., D.L. Maney, C.W. Breuner, J.D. Jacobs, S. Lynn, M. Ramenofsky & R.D. Richardson (1998). Ecological bases of hormone-behavior interactions: The emergency life history stage. American Zoologist 38(1): 191–206. https://doi.org/10.1093/icb/38.1.191
Wobbrock, J.O., L. Findlater, D. Gergle & J.J. Higgins (2011). The Aligned Rank Transform for Nonparametric Factorial Analyses Using Only ANOVA Procedures. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (May): 143–146.
Published
Issue
Section
License
Copyright (c) 2026 Roberto Fiorini-Torrico, Leonardo de Carvalho Oliveira, Damián Escribano, José Joaquín Cerón, Kristel Myriam de Vleeschouwer

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors own the copyright to the articles published in JoTT. This is indicated explicitly in each publication. The authors grant permission to the publisher Wildlife Information Liaison Development (WILD) Society to publish the article in the Journal of Threatened Taxa. The authors recognize WILD as the original publisher, and to sell hard copies of the Journal and article to any buyer. JoTT is registered under the Creative Commons Attribution 4.0 International License (CC BY), which allows authors to retain copyright ownership. Under this license the authors allow anyone to download, cite, use the data, modify, reprint, copy and distribute provided the authors and source of publication are credited through appropriate citations (e.g., Son et al. (2016). Bats (Mammalia: Chiroptera) of the southeastern Truong Son Mountains, Quang Ngai Province, Vietnam. Journal of Threatened Taxa 8(7): 8953–8969. https://doi.org/10.11609/jott.2785.8.7.8953-8969). Users of the data do not require specific permission from the authors or the publisher.





