Cataloguing biodiversity of freshwater communities in two lakes of Gadchiroli area of central India using environmental DNA analysis
DOI:
https://doi.org/10.11609/jott.9540.17.7.27195-27206Keywords:
18S DNA barcoding, alpha diversity, beta diversity, biodiversity, environmental parameters, freshwater ecology, phytoplankton, zooplanktonAbstract
We investigated eukaryote biodiversity in two freshwater lakes in the Aashti area of Gadchiroli in central India, using next-generation sequencing-based technology. In this preliminary study, we analyzed four water samples using metabarcoding of the 18s V6 region of mitochondrial DNA, and detected >500 operational taxonomic units (OTUs). We detected algae, dinoflagellates, rotifers, ciliates, and metazoan species and our results indicate that algae and rotifers were the most abundant groups in these lakes.
References
Ahmad, U., S. Parveen, H.R.A. Mola, H.A. Kabir & A.H. Ganai (2012). Zooplankton population in relation to physico-chemical parameters of Lal Diggi pond in Aligarh, India. Journal of Environmental Biology 33(6): 1015.
Allan, J.D. (1976). Life history patterns in zooplankton. The American Naturalist 110: 165–180. https://doi.org/10.1086/283056
Amaral-Zettler, L.A., E.A. McCliment, H.W. Ducklow & S.M. Huse (2009). A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes. Plos One 4: e6372. https://doi.org/10.1371/journal.pone.0006372
APHA (2008). Standard Methods for Examination of Water and Waste Water, 21st Edition. American Public Health Association, Washington, DC, USA, 1288 pp.
Avershina, E., T. Frisli & K. Rudi (2013). De-novo semi-alignment of 16S rRNA Gene characterization of next generation sequencing data. Microbes and Environments 28(2): 211–216. https://doi.org/https://doi.org/10.1264/jsme2.me12157
Baldwin, A., H.K. Jensen & M. Schoenfeldt (2014). Warming increases plant biomass and reduces diversity across continents, latitudes, and species migration scenarios in experimental wetland communities. Global Change Biology 20: 835–850. https://doi.org/https://doi.org/10.1111/gcb.2014.20.issue-3
Banse, K. (1995). Zooplankton: pivotal role in the control of ocean production: I. Biomass and production. ICES Journal of Marine Science 52: 265–277. https://doi.org/10.1016/1054-3139(95)80043-3
Beaugrand, G., P.C. Reid, F. Ibanez, J.A. Lindley & M. Edwards (2002). Reorganization of North Atlantic marine copepod biodiversity and climate. Science 296: 1692–1694. https://doi.org/https://doi.org/10.1126/science.1071329
Berry, T.E., B.J. Saunders, M.L. Coghlan, M. Stat, S. Jarman, A.J. Richardson, C.H. Davies, O. Berry, E.S. Harvey & M. Bunce (2019). Marine environmental DNA biomonitoring reveals seasonal patterns in biodiversity and identifies ecosystem responses to anomalous climatic events. PLOS Genetics 15: e1007943. https://doi.org/10.1371/journal.pgen.1007943
Bhattacharya, B.D., J.S. Hwang, S.K. Sarkar, D. Rakhsit, K. Murugan & T. Li-Chun (2015). Community structure of mesozoo-plankton in coastal waters of Sundarban mangrove wetland, India: a multivariate approach. Journal of Marine Systems 141: 112–121. https://doi.org/10.1016/j.jmarsys.2014.08.018
Blanco-Bercial, L. & A. Bucklin (2016). New view of population genetics of zooplankton: RAD-seq analysis reveals population structure of the North Atlantic planktonic copepod Centropagestypicus. Molecular Ecology 25: 1566–1580. https://doi.org/10.1111/mec.2016.25.issue-7
Bokulich, N.A., S. Subramanian, J.J. Faith, D. Gevers, J.I. Gordan, R. Knight, D.A. Mills & J.G. Caporaso (2013). Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nature Methods 10(1): 57–59. https://doi.org/10.1038/nmeth.2276
Branco, C.W., M.I.A. Rocha, G.F. Pinto, G.A. Gomara, G. Alves & R.D. Filippo (2002). Limnological features of Funil Reservoir (RJ, Brazil) and indicator properties of rotifers and cladocerans of the zooplankton community. Lakes & Reservoirs: Research & Management 7: 87–92. https://doi.org/10.1046/j.1440-169X.2002.00177.x
Bucklin, A., H.D. Yeh, J.M. Questel, D.E. Richardson, B. Reese, N.J. Copley & P.H. Wiebe (2019). Time-series metabarcoding analysis of zooplankton diversity of the NW Atlantic continental shelf. ICES Journal of Marine Science 76: 1162–1176. https://doi.org/10.1093/icesjms/fsz021
Campos, C.C., T.M. Garcia, S. Neumann-Leitao & M.O. Soares (2017). Ecological indicators and functional groups of copepod assemblages. Ecological Indicators 83: 416–426. https://doi.org/https://doi.org/10.1016/ jecolind.2017.08.018
Caporaso, J.G., J. Kuczynski, J. Stombaugh, K. Bittinger, F.D. Bushman, E.K. Costello, N. Fierer, A.G. Peña, J.K. Goodrich, J.I. Gordon & G.A. Huttley (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods 7(5): 335–336. https://doi.org/10.1038/nmeth.f.303
Cottenie, K., E. Michels, N. Nuytten & L.D. Meester (2003). Zooplankton metacommunity structure: Regional vs. local processes in highly interconnected ponds. Ecology 84: 991–1000. https://doi.org/10.1890/0012-9658(2003)084[0991:ZMSRVL]2.0.CO;2
Djurhuus, A., K. Pitz, N.A. Sawaya, J. Rojas-Marquez, B. Michaud, E. Montes, F. Muller-Karger & M. Breitbart (2018). Evaluation of marine zooplankton community structure through environmental DNA metabarcoding. Limnology and Oceanography: Methods 16: 209–221.
Drake, B.G. (2014). Rising sea level, temperature, and precipitation impact plant and ecosystem responses to elevated CO2 on a Chesapeake Bay wetland: review of a 28-year study. Global Change Biology 20: 3329–3343. https://doi.org/10.1111/gcb.12631
Edgar, R.C. (2013). UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods 10: 996–998. https://doi.org/10.1038/nmeth.2604
Edgar, R., C.B.J. Haas, J.C. Clemente, C. Quince & R. Knight (2011). UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27: 2194–2200. https://doi.org/10.1093/bioinformatics/btr 381
Frutos, S.M., P.D. Neiff & J.J. Neiff (2009). Zooplankton abundance and species diversity in two lakes with different trophic states (Corrientes, Argentina). Acta Limnologica Brasiliensia 21(3): 367–375.
Gannon, J.E. & R.S. Stemberger (1978). Zooplankton (especially crustaceans and rotifers) as indicators of water quality. Transactions of the American Microscopical Society 1: 6–35.
Gao, Y., Q. Yang, H. Li, X. Wang & A. Zhan (2019). Anthropogenic pollutant-driven geographical distribution of mesozooplankton communities in estuarine areas of the Bohai Sea, China. Scientific Reports 9: 1–12. https://doi.org/10.1038/s41598-018-37186-2
Govender, A., J.C. Groeneveld, S.P. Singh & S. Willows-Munro (2022). Metabarcoding of zooplankton confirms southwards dispersal of decapod crustacean species in the western Indian Ocean. African Journal of Marine Science 44(3): 279–289. https://doi.org/10.2989/1814232X.2022.2108144
Grosjean, P., M. Picheral, C. Warembourg & G. Gorsky (2004). Enumeration, measurement, and identification of net zooplankton samples using the ZOOSCAN digital imaging system. Ices Journal of Marine Science 61: 518–525. https://doi.org/10.1016/j.icesjms.2004.03.012
Hadziavdic, K., K. Lekang, A. Lanzen, I. Jonassen, E.M. Thompson & C. Troedsson (2014). Characterization of the 18S rRNA gene for designing universal eukaryote specific primers. Plos One 9: e87624. https://doi.org/10.1371/journal.pone.0087624
Harney, N.V., A.A. Dhamani & R.J. Andrew (2013). Seasonal variations in the physico-chemical parameters of Pindavani pond of central India. Science Weekly 1(6): 1–8.
Harris, R., P.H. Wiebe, J. Lenz, H.R. Skjoldal & M. Huntley (2000). ICES Zooplankton Methodology Manual. Academic Press, San Diego, 684 pp.
Jha, P. & S. Barat (2003). Hydrobiological study of Lake Mirik in Darjeeling, Himalaya. Journal of Environmental Biology 24(3): 339–344.
Jyothibabu, R., L. Jagadeesan, C. Karnan, N. Arunpandi, R.S. Pandiyarajan & K.K. Balachandran (2018). Ecological indications of copepods to oxygen-deficient near-shore waters. Ecological Indicators 93: 73–90. https://doi.org/10.1016/j.ecolind.2018.04.069
Kiran, B.R., E.T. Puttaiah & D. Kamath (2007). Diversity and seasonal fluctuation of zooplankton in fish pond of Bhadra fish farm, Karnataka. Zoo’s Print Journal 22(12): 2935–2936. https://doi.org/https://doi.org/10.11609/JoTT.ZPJ.1464.2935-6
Kohout, L. & J. Fott (2006). Restoration of zooplankton in a small acidified mountain lake (Plesne Lake, Bohemian Forest) by reintroduction of key species. Biologia 61: S477–S483. https://doi.org/10.2478/s11756-007-0065-9
Kumar, C.S. & P. Perumal (2011). Hydrobiological Investigations in Ayyampattinam Coast (Southeast Coast of India) with Special Reference to Zooplankton. Asian Journal of Biological Sciences 4(1): 25–34.
Legendre, P. & L. Legendre (1998). Numerical Ecology. Second Edition. Elsevier Sciences, Amsterdam, 853 pp.
Li, C., W. Feng, H. Chen, X. Li, F. Song, W. Guo, J.P. Giesy & F. Sun (2019). Temporal variation in zooplankton and phytoplankton community species composition and the affecting factors in Lake Taihua large freshwater lake in China. Environmental Pollution 245: 1050–1057. https://doi.org/10.1016/j.envpol.2018.11.007
Lozupone, C.A., M. Hamady, S. Kelley & R. Knight (2007). Quantitative and qualitative β diversity measures lead to different insights into factors that structure microbial communities. Applied And Environmental Microbiology 73(5): 1576–1585.
Machida, R.J., Y. Hashiguchi, M. Nishida & S. Nishida (2009). Zooplankton diversity analysis through single-gene sequencing of a community sample. BMC Genomics 10: 438. https://doi.org/10.1186/1471-2164-10-438
Madhupratap, M., C.T. Achuthankutty, S.R.S. Nair & V.R. Nair (1981). Zooplankton abundance of the Andaman Sea. Indian Journal of Marine Sciences 10: 258–261. http://drs.nio.org/drs/handle/2264/6781
Magali, N.R., O.T. Burton, P. Wise, H. Oettgen, S.K. Mazmanion & T.A. Chatila (2013). A microbiota signature associated with experimental food allergy promotes allergic sensitization and anaphylaxis. The Journal of Allergy and Clinical Immunology 131(1): 201–212.
Mageed, A.A. (2007). Distribution and long-term historical changes of zooplankton assemblages in Lake Manzala (south Mediterranean Sea, Egypt). Egyptian Journal of Aquatic Research 33: 183–192.
Magoc, T. & S.L. Salzberg (2011). FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21): 2957–2963. https://doi.org/10.1093/bioinformatics/btr507
Manabe, T., M. Tanda, Y. Hori, S. Nagai & Y. Nakamura (1994). Changes in eutrophication and phytoplankton in Harima-Nada — Results of environmental monitoring for 20 years. Bulletin on Coastal Oceanography 31: 169–181.
Manickam, N., P.S. Bhavan, P. Santhanam, R. Bhuvaneswari, T. Muralisankar, V. Srinivasan, A. Asaikuttti, G. Rajkumar, R. Udayasuriyan & M. Karthik (2018). Impact of seasonal changes in zooplankton biodiversity in Ukkadam Lake, Coimbatore, Tamil Nadu, India, and potential future implications of climate change. The Journal of Basic and Applied Zoology 79: 15. https://doi.org/10.1186/s41936-018-0029-3
Mishra, S., D. Panda & R.C. Panigrahy (1993). Physico-chemical characteristics of the bahuda estuary (Orissa), East coast of India. Indian Journal of Marine Sciences 22: 75–77.
Nair, V.R., F.X. Kidangan, R.G. Prabhu, A. Bucklin & S. Nair (2015). DNA barcode of Chaetognatha from Indian Waters. Indian Journal of Geo-Marine Science 44(9): 1366–1376.
Nandy, T. & S. Mandal (2020). Unravelling the spatio-temporal variation of zooplankton community from the river Matla in the Sundarbans Estuarine System, India. Oceanologia 62: 326–346. https://doi.org/10.1016/j.oceano.2020.03.005
Neves, I., O. Rocha, K. Roche & A. Pinto (2003). Zooplankton community structure of two marginal lakes of the river Cuiabá (Mato Grosso, Brazil) with analysis of Rotifera and Cladocera diversity. Brazilian Journal of Biology 63: 329–343.
Nishikawa, T., Y. Hori, S. Nagai, K. Miyahara, Y. Nakamura, K. Harada, M. Tanda, T. Manabe & K. Tada (2010). Nutrient and phytoplankton dynamics in Harima-Nada, eastern Seto Inland Sea, Japan during a 35-year period from 1973 to 2007. Estuaries & Coasts 33: 417–427. https://doi.org/10.1007/s12237-009-9198-0
Nogueira, M.G (2001). Zooplankton composition, dominance and abundance as indicators of environmental compartmentalization in Jurumirim Reservoir (Paranapanema River), São Paulo, Brazil. Hydrobiologia 455: 1–18. https://doi.org/10.1023/A: 1011946708757
Paffenhoffer, G. (1993). On the ecology of marine cyclopoid copepods (Crustacea, Copepoda). Journal of Plankton Research 15(1): 37–55. https://doi.org/10.1093/plankt/15.1.37
Pimm, S.L., C.N. Jenkins, R. Abell, T.M. Brooks, J.L. Gittleman, L.N. Joppa, P.H. Raven, C.M. Roberts & J.O. Sexton (2014). The biodiversity of species and their rates of extinction, distribution, and protection. Science 344: 1246752. https://doi.org/10.1126/science.1246752
Putuej, E., A. Gutkowska, J. Koszałka & M. Bowszys (2017). Effect of physicochemical parameters on zooplankton in the brackish, coastal Vistula Lagoon. Oceanologia 59: 49–56. https://doi.org/10.1016/j.oceano.2016.08.001
Ricciardi, A. & J. Rasmussen (1999). Extinction rates of North American freshwater fauna. Conservation Biology 13(5): 1220–1222. https://doi.org/10.1046/j.1523-1739.1999.98380.x
Sala, O.E., F.S. Chapin, J.J. Armesto, E. Berlow, J. Bloomfield, R. Dirzo, E. Huber-Sanwald, L.F. Huenneke, R.B. Jackson, A. Kinzig, R. Leemans, D.M. Lodge, H.A. Mooney, M. Oesterheld, N.L. Poff, M.T. Sykes, B.H. Walker, M. Walker & D.H. Wall (2000). Global biodiversity scenarios for the year 2100. Science 287: 1770–1774. https://doi.org/10.1126/science.287.5459.1770
Schou, M.O., C. Risholt, T.L. Lauridsen, M. Sondergaard, P. Gronkjaer, L. Jacobsen, S. Berg, C. Skov, S. Brucet & E. Jeppesen (2009). Restoring lakes by using artificial plant beds: Habitat selection of zooplankton in a clear and a turbid shallow lake. Freshwater Biology 54: 1520–1531. https://doi.org/https://doi.org/10.1111/j.1365-2427.2009.02189.x
Smitha, S., P. Shivashankar & G.V. Venkataramana (2013). Zooplankton diversity of Chikkadevarayana Canal in relation to physico-chemical characteristics. Journal of Environmental Biology 34: 819–824.
Steinberg, D.K., B.V. Mooy, K. Buessler & P. Boyd (2008) Bacterial vs. Zooplankton control of sinking particle flux in the ocean’s twilight zone. Limnology and Oceanography 53: 1327–1338. https://doi.org/10.4319/lo.2008.53.4.1327
Suresh, S., S. Thirumala & H.B. Ravind (2011). Zooplankton diversity and its relationship with physicochemical parameters in Kundavada Lake, of Davangere District, Karnataka, India. ProEnvironment Promediu 4(7): 56–59.
Tang, C.Q., F. Leasi, U. Obertegger, A. Kieneke, T.G. Barraclough & D. Fontaneto (2012). The widely used small subunit 18S rDNA molecule greatly underestimates true diversity in biodiversity surveys of the meiofauna. Proceedings of the National Academy of Sciences 109: 16208–16212. https://doi.org/10.1073/pnas.1209160109
Vanderploeg, H.A., S.A. Pothoven, G.L. Fahnenstiel, J.F. Cavaletto, J.R. Liebig, C.A. Stow, T.F. Nalepa, C.P. Madenjian & D.B. Bunnell (2012). Seasonal zooplankton dynamics in Lake Michigan: disentangling impacts of resource limitation, ecosystem engineering, and predation during a critical ecosystem transition. Journal of Great Lakes Research 38: 336–352. https://doi.org/10.1016/j.jglr.2012.02.005
Wangensteen, O.S., C. Palacín, M. Guardiola & X. Turon (2018). DNA metabarcoding of littoral hard-bottom communities: high diversity and database gaps revealed by two molecular markers. PeerJ 6: e4705. https://doi.org/10.7717/peerj.4705
Whitman, R.L., M.B. Nevers, M.L. Goodrich, P.C. Murphy & B.M. Davis (2004). Characterization of Lake Michigan coastal lakes using zooplankton assemblages. Ecological Indicators 4: 277–286. https://doi.org/10.1016/j.ecolind.2004.08.001
Published
Versions
- 26-07-2025 (2)
- 26-07-2025 (1)
Issue
Section
License
Copyright (c) 2025 Maheshkumar Seelamwar, Pankaj Chavan, Mandar S. Paingankar

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors own the copyright to the articles published in JoTT. This is indicated explicitly in each publication. The authors grant permission to the publisher Wildlife Information Liaison Development (WILD) Society to publish the article in the Journal of Threatened Taxa. The authors recognize WILD as the original publisher, and to sell hard copies of the Journal and article to any buyer. JoTT is registered under the Creative Commons Attribution 4.0 International License (CC BY), which allows authors to retain copyright ownership. Under this license the authors allow anyone to download, cite, use the data, modify, reprint, copy and distribute provided the authors and source of publication are credited through appropriate citations (e.g., Son et al. (2016). Bats (Mammalia: Chiroptera) of the southeastern Truong Son Mountains, Quang Ngai Province, Vietnam. Journal of Threatened Taxa 8(7): 8953–8969. https://doi.org/10.11609/jott.2785.8.7.8953-8969). Users of the data do not require specific permission from the authors or the publisher.


