Association analysis of Castanopsis tungurrut and the neighboring vegetation community in Cibodas Biosphere Reserve, Indonesia

Authors

  • Dian Ridwan Nurdiana Research Center for Ecology and Ethnobiology
  • Inocencio E. Buot, Jr. Institute of Biological Sciences image/svg+xml

DOI:

https://doi.org/10.11609/jott.9143.17.3.26587-26598

Keywords:

Altitudine gradients, endangered species, Fagaceae, Gede Pangrango National Park, life stages, nested sampling method, natural habitats, plant community, tropical forests

Abstract

Castanopsis tungurrut (Blume) A.DC. (Fagaceae) is an endangered species, specifically found in the tropical forests of Java and Sumatra. There is currently a lack of specific information regarding its interactions with other species across different life stages and natural habitats, particularly in relation to altitudine gradients. This study is aimed at investigating the relationship between Castanopsis tungurrut and the adjacent vegetation during different stages of its life cycle. The study also analyses the impact of this association on vegetation dynamics and propose effective strategies for C. tungurrut conservation strategy. The study established 41 plots across four distinct sites within the Cibodas Biosphere Reserve located in Gede Pangrango National Park. Identification of trees, poles, saplings, and wildings was carried out using the nested sampling method. A comprehensive list of 153 tree, 104 pole, 135 sapling, and 111 wilding species was documented and paired with C. tungurrut for association test, and a positive association was observed with the tree species Casearia coriacea and the wilding species Symplocos costata (Jaccard indices for these pairings were 0.34 and 0.33, respectively). In addition, a negative association was found for trees of C. tungurrut with Castanopsis javanica and Macropanax dispermus; Jaccard indices for pairings were 0.17 and 0.18, respectively. It was noted that C. tungurrut exhibited lower competitive ability and selectivity in less favorable habitats, and its facilitative effect on the surrounding vegetation was limited. The prevalence of negative association with neighbouring vegetation within the natural forest of Cibodas Biosphere Reserve indicates that C. tungurrut is isolated and facing threats such as environmental stress and competition. This condition contributes to the forest’s overall diversity and promotes the sustainability of the reserve by enhancing ecosystem stability.

Author Biographies

Dian Ridwan Nurdiana, Research Center for Ecology and Ethnobiology

.

Inocencio E. Buot, Jr., Institute of Biological Sciences

.

References

Anthony, C.R. & M.J. Germino (2023). Does post-fire recovery of native grasses across abiotic-stress and invasive-grass gradients match theoretical predictions, in sagebrush steppe? Global Ecology and Conservation 42: 1–15. https://doi.org/10.1016/j.gecco.2023.e02410

Baokun, X., X. Xu, Y. Li, X. Li, S. Chen, H. Ding, X. Jiang, L. Gou & Y. Fang (2019). Interspecific association analysis of Castanopsis eyrei community in evergreen broad-leaved forests in Huangshan, Anhui Province. Journal of Nanjing Forestry University (Natural Sciences Edition) 43(4): 77–84. https://doi.org/10.3969/j.issn.1000-2006.201810038

Beckage, B., B. Kloeppel, J.A. Yeakley, S.F. Taylor & D.C. Coleman (2008). Differential effects of understory and overstory gaps on tree regeneration1. Journal of the Torrey Botanical Society 135(1): 1–11.

Callaway, R.M. (1995). Positive interactions among plants. The Botanical Review 61(4): 306–349. https://doi.org/10.1007/BF02912621

Cheng, X., H. Han, F. Kang, Y. Song & K. Liu (2014). Point pattern analysis of different life stages of Quercus liaotungensis in Lingkong Mountain, Shanxi Province, China. Journal of Plant Interactions 9(1): 233–240. https://doi.org/10.1080/17429145.2013.818167

Davis, K.T., S.Z. Dobrowski, P.E. Higuera, Z.A. Holden, T.T. Veblen, M.T. Rother, S.A. Parks, A. Sala & M.P. Maneta (2019). Wildfires and climate change push low-elevation forests across a critical climate threshold for tree regeneration. Proceedings of the National Academy of Sciences of the United States of America 116(13): 6193–6198.

Díaz-Borrego, R., M.Á. Pérez-Navarro, L. Jaime, N.J. Elvira & F. Lloret (2024). Climatic disequilibrium of recruit communities across a drought-induced die-off gradient in Mediterranean shrubland. Oikos 7: 1–11. https://doi.org/10.1111/oik.10465

Dogra, K.S., R.K. Kohli & S.K. Sood (2009). An assessment and impact of three invasive species in the Shivalik hills of Himachal Pradesh, India. International Journal of Biodiversity and Conservation 1(1): 4–10.

Dolezal, J., P. Fibich, J. Altman, J. Leps, S. Uemura, K. Takahashi & T. Hara (2020). Determinants of ecosystem stability in a diverse temperate forest. Oikos 129(11): 1692–1703. https://doi.org/10.1111/oik.07379

Etten, M.L.V., J.A. Tate, S.H. Anderson, D. Kelly, J.J. Ladley, M.F. Merrett, P.G. Peterson & A.W. Robertson (2015). The compounding effects of high pollen limitation, selfing rates and inbreeding depression leave a New Zealand tree with few viable offspring. Annals of Botany 116(5): 833–843.

Fathia, A.A., I. Hilwan & C. Kusmana (2019). Species Composition and Stand Structure in sub-montane forest of Mount Galunggung, Tasikmalaya, West Java. IOP Conference Series: Earth and Environmental Science 394(1): 1–10. https://doi.org/10.1088/1755-1315/394/1/012012

Fréville, H. & J. Silvertown (2005). Analysis of interspecific competition in perennial plants using Life Table Response Experiments. Plant Ecology 176: 69–78.

Goldberg, D.E. & A.M. Barton (1992). Patterns and Consequences of Interspecific Competition in Natural Communities: A Review of Field Experiments with Plants. The American Naturalist 139(4): 771–801.

Hacker, S. D. & M.D. Bertness (1996). Trophic consequences of a positive plant interaction. American Naturalist 148(3): 559–575. https://doi.org/10.1086/285939

Helmanto, H., I. Robiansyah, R.N. Zulkarnaen & N. Fikriyya (2020). Habitat preference and spatial distribution model of threatened species Saurauia microphylla in Mt. Slamet, Central Java, Indonesia. Biodiversitas Journal of Biological Diversity 21(7): 2946–2954. https://doi.org/10.13057/biodiv/d210710

Hendrayana, Y., D. Deni & A.M.I. Habibi (2022). Association of dominant tree species in lowland forest of Mount Ciremai National Park. Jurnal Mangifera Edu 7(1): 46–56. https://doi.org/10.31943/mangiferaedu.v7i1.142

Janzen, D.H. (1970). Herbivores and the number of tree species in tropical forests. The American Naturalist 104: 501–528.

Jinfu, L., H. Wei, F. Houbao & L. Rongfu (2001). Study on the inter-specific association of species in the vegetation layer in Castanopsis kawakamii forest. Scientia Silvae Sinicae 37(4): 117–123.

Ledoux, A., C. Hamann, O. Bonnet, K. Jullien, J. Quetin-Leclercq, A. Tchinda, J. Smadja, A. Gauvin-Bialecki, E. Maquoi & M. Frédérich (2023). Bioactive Clerodane Diterpenoids from the Leaves of Casearia coriacea Vent. Molecules 28(3): 1–10. https://doi.org/10.3390/molecules28031197

Li, L., S.G. Wei, Z.L. Huang, W.H. Ye, W & H.L. Cao (2008). Spatial patterns and interspecific associations of three canopy species at different life stages in a subtropical forest, China. Journal of Integrative Plant Biology 50(9): 1140–1150. https://doi.org/10.1111/j.1744-7909.2008.00690.x

Loreau, M. & C. de Mazancourt (2013). Biodiversity and ecosystem stability: A synthesis of underlying mechanisms. Ecology Letters 16(supplement 1):106–115. https://doi.org/10.1111/ele.12073

Maihaiti, M. & W. Zhang (2014). A mini review on theories and measures of interspecific associations. Selforganizology 1(4): 206–210.

Matsuoka, S., T. Iwasaki, Y. Sugiyama, E. Kawaguchi, H. Doi & T. Osono (2019). Biogeographic patterns of ectomycorrhizal fungal communities associated with Castanopsis sieboldii across the Japanese archipelago. Frontiers in Microbiology 10(2656): 1–13. https://doi.org/10.3389/fmicb.2019.02656

Myster, R.W. & S.T.A. Pickett (1992). Dynamics of associations between plants in ten old fields during 31 years of succession. Journal of Ecology 80(2): 291–302.

Newton, P.N. (1988). The structure and phenology of a moist deciduous forest in the central Indian Highlands. Vegetatio 75(1–2): 3–16. https://doi.org/10.1007/BF00044621

Nurdiana, D.R. & I.E.J. Buot (2021). Vegetation community and species association of Castanopsis spp. at its habitat in the remnant forest of Cibodas Botanical Garden, Indonesia. Biodiversitas 22(6): 4799–4807.

Osawa, T., H. Mitsuhashi & A. Ushimaru (2014). Plant species’ coexistence relationships may shift according to life history traits and seasons. Plant Ecology 215: 597–612.

Paine, C.E.T. (2008). Weak Competition Among Tropical Tree Seedlings: Implications for Species Coexistence. Biotropica 40(4): 432–440. https://doi.org/10.1111/j.1744-7429.2007.00390.x

Pielou, E. C. (1972). 2k contingency tables in ecology. Journal of Theoretical Biology 34(2): 337–352.

Rejmánek, M. & J. Leps (1996). Negative associations can reveal interspecific competition and reversal of competitive hierarchies during succession. Oikos 76: 161–168.

Rozdilsky, I.D. & L. Stone (2001). Complexity can enhance stability in competitive systems. Ecology Letters 4(5): 397–400. https://doi.org/10.1046/j.1461-0248.2001.00249.x

Senthilnathan, A. & R. D’Andrea (2023). Niche theory for positive plant–soil feedbacks. Ecology Society of America 104(4): e3993. https://doi.org/10.1002/ecy.3993

Simbolon, H. (2001). The growth dynamics on tree species of Fagaceae family in a tropical montane rain forest of West Java, Indonesia. Berita Biologi 5(6): 659–666.

Soepadmo, E. & C.G.G.J. van Steenis (1972). Fagaceae, pp. 265–403. In: ‘Flora Malesiana Vol. 7’. Series 1. (Ed. CGGJ van Steenis). Wolters-Noordhoff Publications, Netherlands, 755 pp.

Song Jin, S., J. Fu Liu, Z. Sheng He, S. Qun Zheng, W. Hong & D. Wei Xu (2015). Ecological species groups and interspecific association of dominant tree species in Daiyun Mountain National Nature Reserve. Journal of Mountain Science 12(3): 637–646. https://doi.org/10.1007/s11629-013-2935-7

Stachowicz, J.J. (2001). Mutualism, facilitation, and the structure of ecological communities. BioScience 51(3): 235–246. https://doi.org/10.1641/0006-3568(2001)051[0235:MFATSO]2.0.CO;2

Tang, Y., X. Yang, M. Cao, C.C. Baskin & J.M. Baskin (2010). Buttress trees elevate soil heterogeneity and regulate seedling diversity in a tropical rainforest. Plant and Soil 338 (1): 301–309. https://doi.org/10.1007/s11104-010-0546-4

Vargas-Rodriguez, Y.L., J. A.Vázquez-García & G.B. Williamson (2005). Environmental correlates of tree and seedling-sapling distributions in a Mexican tropical dry forest. Plant Ecology 180(1): 117–134. https://doi.org/10.1007/s11258-005-3026-9

Wang, Q., Gao, C., & Guo, L. D. (2011). Ectomycorrhizae associated with Castanopsis fargesii (Fagaceae) in a subtropical forest, China. Mycological Progress 10(3): 323–332. https://doi.org/10.1007/s11557-010-0705-2

Wang, Z., J. Lian, G. Huang, W. Ye, H. Cao, Z. Wang, Z. Wang, J. Lían, G. Huang, W. Ye, H. Cao & Z. Wang (2012). Genetic groups in the common plant species Castanopsis chinensis and their associations with topographic habitats. Oikos 121(12):2044–2051.

Wihermanto (2004). Dispersion pattern interspecific association and population status of threatened plants on submontane and montane zones of Mount Gede-Pangrango National Park. Biodiversitas Journal of Biological Diversity 5(1): 17–22. https://doi.org/10.13057/biodiv/d050104

Wotton, D.M. & D. Kelly (2011). Frugivore loss limits recruitment of large-seeded trees. Proceedings of the Royal Society B: Biological Sciences 278(1723): 3345–3354. https://doi.org/10.1098/rspb.2011.0185

Wright, S.J. (2002). Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia 130(1): 1–14. https://doi.org/10.1007/s004420100809

Xue, Li, Fu & Jingdan (2012). A review on factors affecting plant competition. Journal of Central South University of Forestry & Technology 32: 6–15.

Yamada, I. (1975). Forest ecological studies of the montane forest of Mt. Pangrango, West Java. South East Asian Studies 15(2): 226–254.

Yang, D.X., L. Wu & L. Yu-Cheng (2003). Interconnection among dominant plant populations of Castanopsis community in Jinggang Mountain Nature Reserve. Chinese Journal of Plant Ecology 27(4): 531–536.

Zhao, Z., Y. Liu, H. Jia, W. Sun, A. Ming, S. Pang, N. An, J.H. Zhang, C. Tang & S. Dong (2021). Influence of Slope Direction on the Soil Seed Bank and Seedling Regeneration of Castanopsis hystrix Seed Rain. Forests 12(500): 1–13. https://doi.org/10.3390/f12040500

Zuhri, M., D. Latifah, S.R. Ariati & S. Rahdiana (2020). Seed availability assessment and seed collection of wild plants in Selabintana forest, Mount Gede Pangrango National Park, West Java. Buletin Kebun Raya 23(1): 36–45.

Downloads

Published

26-03-2025

Issue

Section

Articles