Morphological and molecular identifications of sea turtles Lepidochelys olivacea> and <Eretmochelys imbricata from the Turtle Bay of Cilacap, Indonesia

Authors

  • Chukwudi Michael Ikegwu Faculty of Biology, Jenderal Soedirman University, 63 Soeparno Street, Purwokerto 53122, Central Java, Indonesia; & Department of Biology, Howard University, 415 College Street Northwest, Washington DC, United States of America.
  • Agus Nuryanto Faculty of Biology, Jenderal Soedirman University, 63 Soeparno Street, Purwokerto 53122, Central Java, Indonesia.
  • M.H. Sastranegara Faculty of Biology, Jenderal Soedirman University, 63 Soeparno Street, Purwokerto 53122, Central Java, Indonesia.

DOI:

https://doi.org/10.11609/jott.9040.17.5.26963-26972

Keywords:

Biodiversity, DNA barcoding, dead specimen, % divergence, extraction, genetics, phylogenetic, scutes, taxonomy, threatened

Abstract

DNA barcoding is a powerful tool for accurately identifying marine turtle species, especially when morphological identification is challenging, owing to insufficient clues in the samples available. This study focused on two sea turtle samples of dead adults washed ashore and babies hatching out from nests, which pose a challenge for morphological identification. They represented two species, the Olive Ridley Turtle Lepidochelys olivacea and Hawksbill Turtle Eretmochelys imbricata, from Turtle Bay, Cilacap, Indonesia. For one sample, morphological identification initially suggested it as a Green Sea Turtle Chelonia mydas, based on traits like a pair of prefrontal scales, brown carapace colouration, and the absence of serrations on the posterior carapace. The degraded condition of the specimen and shared juvenile traits between C. mydas and E. imbricata made conclusive identification challenging. Using mtDNA barcoding with the CO1 gene provided more accurate species identification, revealing the sample to be E. imbricata with a perfect genetic match in the BLAST search (0% divergence). This result highlights the advantages of molecular approaches when traditional methods fall short. Phylogenetic analysis of L. olivacea and E. imbricata sequences revealed close clustering of sampled sequences with published sequences from Ghana, Australia, and China. High bootstrap values of 92% for L. olivacea and 98% for E. imbricata confirmed the molecular identifications of these samples. The study underscores the value of combining DNA barcoding and phylogenetics for marine turtle identification and evolutionary insights, with implications for conservation and species management.

Author Biographies

Chukwudi Michael Ikegwu, Faculty of Biology, Jenderal Soedirman University, 63 Soeparno Street, Purwokerto 53122, Central Java, Indonesia; & Department of Biology, Howard University, 415 College Street Northwest, Washington DC, United States of America.

.

Agus Nuryanto, Faculty of Biology, Jenderal Soedirman University, 63 Soeparno Street, Purwokerto 53122, Central Java, Indonesia.

.

M.H. Sastranegara, Faculty of Biology, Jenderal Soedirman University, 63 Soeparno Street, Purwokerto 53122, Central Java, Indonesia.

.

References

Abreu-Grobois, F.A., J. Horrocks & A. Formia (2006). New mtDNA D-loop primers, which work for various marine turtle species, may increase the resolution capacity of mixed stock analysis. Proceedings of the 26th Annual Symposium on Sea Turtle Biology and Conservation hel in Crete, Greece 2–8 April 2006.

Amatya, B. (2019). DNA barcoding of cyprinid fish Chagunius chagunio Hamilton, 1822 from Phewa Lake, Nepal. International Journal of Biology 11(4): 88–100. https://doi.org/10.5539/ijb.v11n4p88

Ario, R., E. Wibowo, I. Pratikto & S. Fajar (2016). Pelestarian habitat penyu dari ancama kepunahan di Turtle Conservation and Education Center (TCEC), Bali. Jurnal Kelautan Tropis 19(1): 60–66.

Bahri, S., A.S. Atmadipoera & H.H. Madduppa (2017). Genetic diversity of Olive Ridley Lepidochelys olivacea associated with current pattern in Cendrawasih Bay, Papua. Jurnal Ilmu dan Teknologi Kelautan Tropis 9: 747–760. https://doi.org/10.29244/jitkt.v9i2.19307

Belchier, M. & J. Lawson (2013). An analysis of temporal variability in abundance, diversity, and growth rates within the coastal ichthyoplankton assemblage of south Georgia (sub Antarctic). Polar Biology 36: 969–983. https://doi.org/10.1007/s00300-013-1321-9

Bowen, B.W., W.S. Nelson & J.C. Avise (1993). A molecular phylogeny for marine turtles: trait mapping, rate assessment, and conservation relevance. Proceedings of the National Academy of Sciences of the United States of America 90(12): 5574–5577. https://doi.org/10.1073/pnas.90.12.5574

Briñoccoli, Y.F., G.G. Garrido & A. Alvarez (2020). DNA barcoding identifies three species of croakers (Pisces, Sciaenidae) in the ichthyoplankton of the high Paraná River. Academia Brasileira de Ciências 92(1): e20180783. https://doi.org/10.1590/0001-3765202020180783

Čandek, K. & M. Kuntner (2015). DNA barcoding gap: reliable species identification over morphological and geographical scales. Molecular Ecology Resources 15(2): 268–277. https://doi.org/10.1111/1755-0998.12304

Carreras, C., M. Pascal, L. Cardona, A. Aguilar, D. Margaritoulis, A. Rees, O. Turkozan, Y. Levy, A. Gasith, M. Aureggi & M. Khalil (2007). The genetic structure of the Loggerhead Sea Turtle Caretta caretta in the Mediterranean as revealed by nuclear and mitochondrial DNA and its conservation implications. Conservation Genetics 8: 761–775. https://doi.org/10.1007/s10592-006-9224-8

Dutton, P.H. (1996). Methods for collection and preservation of samples for sea turtle genetic studies. pp. 17–24. In: Bowen, B.W. & W.N. Witzell (eds.). Proceedings of the International Symposium on Sea Turtle Genetics. NOAA Technical Memorandum NMFS-SEFSC-396, 173 pp.

Dutton, P.H., M.P. Jensen, K. Frutchey, A. Frey, E. LaCasella, G.H. Balazs, J. Cruce, A. Tagarino, R. Farman & M. Tatarata (2014b). Genetic stock structure of Green Turtle (Chelonia mydas) nesting populations across the Pacific islands. Pacific Science 68(4): 451–464. https://doi.org/10.2984/68.4.1

Foran, D.R. & R.L. Ray (2016). Mitochondrial DNA profiling of illegal tortoiseshell products derived from Hawksbill Sea Turtles. Journal of Forensic Science 61(4): 1062–1066. https://doi.org/10.1111/1556-4029.13062

Hernandez, Jr. F.J., L. Carassou, W.M. Graham & S.P. Powers (2013). Evaluation of the taxonomic sufficiency approach for ichthyoplankton community analysis. Marine Ecology Progress Series 491: 77–90. https://doi.org/10.3354/meps10475

Kusbiyanto, D. Bhagawati & A. Nuryanto (2020). DNA barcoding of crustacean larvae in Segara Anakan, Cilacap, central Java, Indonesia using cytochrome c oxidase gene. Biodiversitas 21(10): 4878–4887. https://doi.org/10.13057/biodiv/d211054

Liles, M.J., M.V. Jandres, W.A. López, G.I. Mariona, C.R. Hasbún & J.A. Seminoff (2011). Hawksbill turtles Eretmochelys imbricata in El Salvador: nesting distribution and mortality at the largest remaining nesting aggregation in the eastern Pacific Ocean. Endangered Species Research 14(1): 23–30. https://doi.org/10.3354/esr00338

Lim, H.C., M.Z. Abidin, C.P. Pulungan, M. de Bryun, & S.A.M. Nor (2016). DNA barcoding reveals high cryptic diversity of the freshwater halfbeak Genus Hemirhamphodon from Sundaland. PLoS ONE 11(9): e0163596. https://doi.org/10.1371/journal.pone.0163596

Madduppa, H.H., S. Bahri, B. Subhan, N.P. Anggraini, H. Ohoiulun, T. Abdillah, D. Arafat, P. Santoso & I.M. Sangadji (2019). DNA barcoding of sea turtles (Dermochelyidae and Cheloniidae) and its protocol using different tissue quality: implication to conservation managers. Earth and Environmental Science 278(1): 20–41. https://doi.org/10.1088/1755-1315/278/1/012041

Mohammed-Geba, K., A. Yousif, A.M. Younis & A. Harby-Rashed (2021). DNA barcoding and molecular phylogeny confirm the presence of the cryptic Penaeus japonicas Form II (P. pulchricaudatus) in the Egyptian demersal fisheries of the Gulf of Suez and the Bitter Lakes. Egypt Journal of Aquatic Biology and Fisheries 25: 615–627. https://doi.org/10.21608/ejabf.2021.192469

Nijman, V. & K.A.I. Nekaris (2014). Trade in wildlife in Bali, Indonesia, for medicinal and decorative purposes. TRAFFIC Bull 26(1): 31–36.

Nuryanto, A., H. Pramono, M.H. Sastranegara (2017). Molecular identification of fish larvae from East Plawangan of Segara Anakan, Cilacap, central Java, Indonesia. Biosaintifika: Journal of Biology & Biology Education 9(1): 33–40. https://doi.org/10.15294/biosaintifika.v9i1.9191

Nuryanto, A., H. Pramono, Kusbiyanto, M.I. Ghifari & N. Andareswari (2018). Barcoding of fin clip samples revealed high exploitation of Plectropomus leopardus in the Spermonde Archipelago. Biosaintifika: Journal of Biology & Biology Education 10(3): 629–635. https://doi.org/10.15294/biosaintifika.v10i3.16142

Nuryanto, A., D. Bhagawati & A.A. Rofiqoh (2023). Barcoding of Sparidae collected during east monsoon season in the eastern Indian Ocean south of Java, Indonesia. AACL Bioflux 16(2): 805–817.

Nuryanto, A., D. Bhagawati, E.T. Winarni & H.H.A. Mahmoud (2023a). First Record Sparus aurata Larvae in Teluk Penyu Beach Cilacap, Indonesia, revealed by DNA Barcoding. Indonesian Journal of Marine Science 28(4): 301–312. https://doi.org/10.14710/ik.ijms.28.4.301-312

Nuryanto, A., D. Bhagawati, E.T. Winarni & A.R. Andriasari (2023b). First record of red seabream, Pagrus major existence in the eastern Indian Ocean south of Java, Indonesia revealed by DNA barcoding. Biodiversitas 24: 6023–6030. https://doi.org/10.13057/biodiv/d241123

Ollinger, N., V. Lasinger, C. Probst, J. Pitsch, M. Sulyok, R. Krska & J. Weghuber (2020). DNA barcoding for the identification of mold species in bakery plants and products. Food Chemistry 318: 126501. https://doi.org/10.1016/j.foodchem.2020.126501

Pardede, M.T. & D. Yealta (2013). Upaya World Wide Fund for Nature (WWF) dalam mengatasi perdagangan penyu ilegal di Provinsi Bali Tahun 2008–2013. Jurnal Online Mahasiswa Fakultas Perikanan Dan Ilmu Kelautan Universitas Riau 2(2): 2–5.

Pereira, L.H.G., R. Hanner, F. Foresti & C. Olivera (2013). Can DNA barcoding accurately discriminate megadiverse Neotropical freshwater fish fauna? BMC Genetics 14: 20. https://doi.org/10.1186/1471-2156-14-20

Pertamina (2019). Pertamina supports Turtle Conservation on the South Coast Cilacap Pertamina. https://www.pertamina.com/Id/news-room/csr-news/pertamina-dukungkonservasi-penyu-di-pesisir-selatan-cilacap. Accessed on 22 February 2024).

Pritchard, P.C.H. & J.A. Mortimer (1999). Taxonomy, external morphology, and species identification. pp. 21–38. In: Eckert, K.L., K.A. Bjorndal, F.A. Abreu-Grobois & M. Donnelly (eds.). Research and Management Techniques for the Conservation of Sea Turtles. IUCN/SSC Marine Turtle Specialist Group Publication No. 4. Washington, DC.

Ratnasingham, S. & P.D.N. Hebert (2013). A DNA-based registry for all animal species: The Barcode Index Number (BIN) system. PLoS ONE 8(7): e66213. https://doi.org/10.1371/journal.pone.0066213

Robinson N.J. & F.V. Paladino (2013). Sea turtles, reference module in earth systems and environmental sciences. Elsevier 2013: 1–14. https://doi.org/10.1016/B978-0-12-409548-9.04352-9

Roden, S.E., P.A. Morin, A. Frey, G.H. Balazs, P. Zárate, I.-J. Cheng & P.H. Dutton (2013). Green turtle population structure in the Pacific: new insights from single nucleotide polymorphisms and microsatellites. Endangered Species Research 20: 227–234. https://doi.org/10.3354/esr00500

Rupilu, K., J. Fendjalang & D. Prayer (2019). Species identification and spawning of sea turtle at Meti Island North Halmahera Regency. IOP Conference Series Earth and Environmental Science 339(1): 012034

Santhosh, K.J.U., V. Krishna, G.S. Seethapathy, R. Ganesan, G. Ravikanth & R.U. Shaanker (2018). Assessment of adulteration in raw herbal trade of important medicinal plants of India using DNA barcoding. Biotech 8(3): 135. https://doi.org/10.1007/s13205-018-1169-3

Suraeda, R.Y., S. Sunaryo & E.W. Kushartono (2018). Laju pertumbuhan spesifik Tukik Penyu Lekang Lepidochelys olivacea dengan pemberian pakan buatan yang berbeda di Turtle Conservation and Education Center, Bali. Journal of Marine Research 7(3): 185–192.

Thahira, A.R. & W. Wirasmoyo (2022). Application of ecological architecture concept to the sea turtle sanctuary and education center in Cilacap Regency. Jurnal Arsitektur Zonasi 5(2): 431–432. https://doi.org//10.17509/jaz.v5i2.41444

van Dam, R.P. & C.E. Diez (1998). Home range of immature Hawksbill Turtles Eretmochelys imbricata (Linnaeus) at two Caribbean Islands. Journal of Experimental Marine Biology and Ecology 220: 15–24.

Winarni, E.T., S.B.I. Simanjuntak & A. Nuryanto (2023). DNA barcoding of crustacean larvae with two new records of Caridina gracilipes and Ptychognathus altimanus in the western region of Segara Anakan lagoon in Indonesia. Biodiversitas 24(1): 341–348. https://doi.org/10.13057/biodiv/d240141

Yang, Z. & B. Rannala (2010). Bayesian species delimitation using multilocus sequence data. Proceedings of the National Academy of Sciences 107(20): 8843–8848. https://doi.org/10.1073/pnas.0913022107

Zárate, P., K.A. Bjorndal, M. Parra, P.H. Dutton, J.A. Seminoff & A.B. Bolten (2013). Hatching and emergence success in Green Turtle (Chelonia mydas) nests in the Galápagos Islands. Aquatic Biology 19(3): 217–229. https://doi.org/10.3354/ab00534

ZYMO Research Instruction Manual (2021). Quick-DNA™ Tissue/Insect Miniprep Kit Catalog, No. D6016. www.zymoresearch.com

Downloads

Published

26-05-2025

Issue

Section

Articles