Fine structure of sensilla on the proboscis of the Indian Honey Bee Apis cerana indica Fabricius (Insecta: Hymenoptera: Apidae)

Main Article Content

A.G. Suhas Krishna
Shamprasad Varija Raghu
Rajashekhar K. Patil
https://orcid.org/0000-0002-5362-0479

Abstract

Honey bees feed on flowers from which they collect nectar and pollen and their mouth parts are designed for fluid-feeding
from flowers. The proboscis consists of a ‘tongue’ that includes a long glossa and ends in a spoon-shaped labellum, labial palp, galea and mandibles. The sensilla on the proboscis assists in nectar feeding. A study of the chemosensory hairs on the proboscis was carried out in Apis cerana indica collected from apiaries at the foot of Western Ghats, India. Light- and scanning electron microscopy were employed. In addition, silver staining was carried out to distinguish different types of chemosensilla. The glossa has 60 sensilla chaetica that stain by silver nitrate technique. The length (110 μ), width (2 μ) and spacing of microtrichia on glossa and forked hairs on the labellum are suited for the collection of nectar due to viscosity and to reduce leakiness while feeding. The length of the glossa being short suggests that A. cerana indica feeds on small-sized flowers that are not tubular. The labial palp has sensilla chaetica A and sensilla chaetica B distinguished by their length and sensilla basiconica, all of which are silver nitrate-positive and thus chemosensory in nature. Distal galea has sensilla basiconica, sensilla chaetica A and B and sensilla coeloconica. The maxillary palp is a mechanosensory structure. The bulge on the galea near the maxillary palp has chemosensory sensilla chaetica. Mandibular hairs did not stain with silver and are hence mechanosensory. The sensilla on proboscis in A. cerana indica is comparable to mouth part sensilla in Apis mellifera and Apis florea. The position of the chemosensilla at different regions suggests their role in tasting nectar, detecting the flow of nectar, and the dimensions of the flower and pollen.

Article Details

Section
Communications

References

Babu, M.J., S.M. Ankolekar & K.P. Rajashekhar (2011). Castes of the weaver ant Oecophylla smaragdina (Fabricius) differ in the

organization of sensilla on their antennae and mouthparts. Current Science 101(6): 755–764.

Bhowmik, B., S. Lakare, A. Sen & K. Bhadra (2016). Olfactory stimulation of Apis cerana indica towards different doses of

volatile constituents: SEM and EAG approaches. Journal of Asia Pacific Entomology 19(3): 847859. https://doi.org/10.1016/j.

aspen.2016.07.014

Callahan, P.S. (1975). Insect antennae with special reference to the mechanism of scent detection and the evolution of the sensilla.

International Journal of Insect Morphology and Embryology 4(5): 381–430. https://doi.org/10.1016/0020-7322(75)90038-0

Düster, J. V., M.H. Gruber, F. Karolyi, J.D. Plant & H.W. Krenn (2018). Drinking with a very long proboscis: Functional morphology

of orchid bee mouthparts (Euglossini, Apidae, Hymenoptera). Arthropod Structure and Development 47(1): 25–35. https://doi.

org/10.1016/j.asd.2017.12.004

Esslen, J. & K.E. Kaissling (1976). Zahl and Verteilungantennalersensillien bee der Honigbeine Apis mellifera (L.). Zoomorphology 83: 227–251.

Galic, M. (1971). Die sinnesorgane an der glossa, demepipharynx und dem hypopharynx der arbeiterin von Apis mellifica (L.) (Insect,

Hymenoptera). Zeitschrift für Morphologie der Tiere 70: 201–228.

He, Z., W. Zhang, Y. Sun, C. Li, J. Wu & Z. Wu (2020). How honey bees dip nectar: Dynamic spacing of tongue hairs facilitates to collect

nectar of various viscosities. Journal of Theoretical Biology 512: 110538. https://doi.org/10.1016/j.jtbi.2020.110538

Jaffe, R., V. Dietemann, M.H. Allsopp, C. Costa, R.M. Crewe, R.D. ‘Olio & P.D.L. Rua (2010). Estimating the density of honeybee

colonies across their natural range to fill the gap in pollinator decline censuses. Conservation Biology 24(2): 583593. https://doi.

org/10.1111/j.1523-1739.2009.01331.x

Ji, K., L. Fang, H. Zhao, Q. Li, Y. Shi, C. Xu, Y. Wang, L. Du, J. Wang & Q. Liu (2017). Ginger Oleoresin Alleviated γ-Ray Irradiation-

Induced Reactive Oxygen Species via the Nrf2 Protective response in Human Mesenchymal Stem Cells. Oxidative Medicine Cellular

Longevity 2017: 1480294. https://doi.org/10.1155/2017/1480294

Karnovsky, M. (1964). A Formaldehyde-Glutaraldehyde fixative of high osmolality for use in electron microscopy. Journal of Cell Biology 27: 1A–149A.

Krenn, H., J. Plant & N. Szucsich (2005). Mouthparts of flower-visiting insects. Arthropod Structure and Development 34(1): 1–40. https://

doi.org/10.1016/j.asd.2004.10.002

Krishna, S. & R.K. Patil (2019). Foraging preferences of honey bees Apis cerana in Dakshina Kannada, Karnataka, India. Journal of Threatened Taxa 11(6): 13756–13764. https://doi.org/10.11609/jott.4265.11.6.13756-13764

Kumar, R. & N.R. Kumar (2016). Scanning electron microscopic study on the mouthparts of Apis florea (Hymenoptera: Apidae). Apidologie 47(5): 717–727. https://doi.org/10.1007/s13592-015-0423-5

Lau, P., V. Bryant, J.D. Ellis, Z.Y. Huang, J. Sullivan, D.R. Schmehl, A.R. Cabrera & J. Rangel (2019). Seasonal variation of pollen collected

by honey bees (Apis mellifera) in developed areas across four regions in the United States. PloS One 14(6): e0217294. https://

doi.org/10.1371/journal.pone.0217294

Lim, S., J. Jung, U. Yunusbaev, R. Ilyasov & H.W. Kwon (2019). Characterization and its implication of a novel taste receptor

detecting nutrients in the honey bee, Apis mellifera. Scientific Reports 9(1): 11620. https://doi.org/10.1038/s41598-019-46738-z

Monchanin, C., M.G. Brito Sanchez, L. Lecouvreur, O. Boidard, G. Méry, J. Silvestre, G. L. Roux, D. Baqué, A. Elger, A.B. Barron,

M. Lihoreau & L. Devaud (2022). Honey bees cannot sense harmful concentrations of metal pollutants in food. Chemosphere

: 134089. https://doi.org/10.1016/j.chemosphere.2022.134089

Punchihewa, R.W.K., N. Koeniger, P.G. Kevan & R.M. Gadawski (1985). Observations on the dance communication and natural

foraging ranges of Apis cerana, Apis dorsata and Apis florea in Sri Lanka. Journal of Apicultural Research 24(3): 168–175. https://doi.

org/10.1080/00218839.1985.11100667

Sanchez, G. de Brito, J.R. Ortigão-Farias, M. Gauthier, F. Liu & M. Giurfa (2007). Taste perception in honeybees: just a taste of honey?

Arthropod-Plant Interactions 1(2): 69–76. https://doi.org/10.1007/s11829-007-9012-5

Wei, J., A. Rico-Guevara, S.W. Nicolson, F. Brau, P. Damman, Z. Huo, S.N. Gorb, Z. Wu & J. Wu (2023). Honey bees switch mechanisms

to drink deep nectar efficiently. Proceedings of National Academy of Sciences 120(30): e2305436120. https://doi.org/10.1073/

pnas.2305436120

Whitehead, A.T. & J.R. Larsen (1976a). Electrophysiological responses of galeal contact chemoreceptors of Apis mellifera to selected

sugars and electroylytes. Journal of Insect Physiology 22(12): 1609–1616. https://doi.org/10.1016/0022-1910(76)90052-4

Whitehead, A.T. & J.R. Larsen (1976b). Ultrastructure of the contact chemoreceptors of Apis mellifera L. (Hymenoptera: Apidae).

International Journal of Insect Morphology and Embryology 5(4): 301–315. https://doi.org/10.1016/0020-7322(76)90030-1

Woltedji, D., F. Song, L. Zhang, A. Gala, B. Han, M. Feng, Y. Fang & J. Li (2012). Western Honeybee drones and workers (Apis mellifera

ligustica) have different olfactory mechanisms than Eastern Honeybees (Apis cerana cerana). Journal of Proteome Research

(9): 4526–4540. https://doi.org/10.1021/pr300298w