Trace elements in Penaeus shrimp from two anthropized estuarine systems in Brazil

Main Article Content

Ana Paula Madeira Di Beneditto
https://orcid.org/0000-0002-4248-9380
Inácio Abreu Pestana
https://orcid.org/0000-0002-8263-0078
Cássia de Carvalho
https://orcid.org/0000-0003-4405-6789

Abstract

This study measured concentrations of trace elements (Al, As, Cd, Cu, Fe, Mn, Ni, and Pb) in the muscle of pink shrimps (genus Penaeus) from two anthropized estuarine systems in Brazil: Guanabara Bay (GB) and Sepetiba Bay (SB). Concentrations were highest in the less anthropized SB site, where shrimps showed higher assimilation rates that can be explained by their higher trophic position compared to shrimps from GB. These results reinforce the role of food sources as the main route of trace elements for the aquatic animals.

Article Details

Section
Communications

References

ANVISA (2021). Estabelece os limites máximos tolerados (LMT) de contaminantes em alimentos. Diário Oficial [da] República Federativa do Brasil. Agência Nacional de Vigilância Sanitária. https://www.in.gov.br/en/web/dou/-/instrucao-normativa-in-n-88-de-26-de-marco-de-2021-311655598 Accessed 23 November 2021.

Boudet, L.C., J. Mendieta, M.B. Romero, A.D. Carricavur, P. Polizzi & J.E. Marcovecchio (2019). Strategies for cadmium detoxification in the white shrimp Palaemon argentines from clean and polluted field locations. Chemosphere 236: 124–224. https://doi.org/10.1016/j.chemosphere.2019.06.194

Brown, M.T. & M.H. Depledge (1998). Determinants of trace metal concentrations in marine organisms, pp. 185–217. In: Langston, W.J. & M.J. Bebianno (eds.). Metal Metabolism in Aquatic Environments. Chapman and Hall, London, 800 pp.

Carvalho, C., L.R. Monteiro, K.A. Keunecke, H.P. Lavrado & A.P.M. Di Beneditto (2021). Trophic assessment and isotopic niches of the sympatric penaeids species Penaeus brasiliensis and P. paulensis in SW Atlantic estuarine systems. Marine Biology Research 17(7–8): 658–668. https://doi.org/10.1080/17451000.2021.2011320

Cordeiro, R.C., F.F. Monteiro, R.E. Santelli, L.S. Moreira, A.G. Figueiredo, E.D. Bidone, R.S. Pereira, L.C. Anjos & M.F.G. Meniconi (2021). Environmental and anthropic variabilities at Guanabara Bay (Brazil): A comparative perspective of metal depositions in different time scales during the last 5,500 yrs. Chemosphere 267: 128895. https://doi.org/10.1016/j.chemosphere.2020.128895

Costa, L.C., A.P. Ferreira & E.B. Neves (2011). Aplicação do sistema de projeção de poluição industrial (modelo IPPS) na bacia hidrográfica da baía de Sepetiba (Rio de Janeiro, Brasil): estudo de caso. Cadernos de Saúde Coletiva 19: 66–73.

Di Beneditto, A.P.M., V.T. Bittar, P.B. Camargo, C.E. Rezende & H.A. Kehrig (2012). Mercury and nitrogen isotope in a marine species from a tropical coastal food web. Archives of Environmental Contamination and Toxicology 62: 264–271. https://doi.org/10.1007/s00244-011-9701-z

Di Beneditto, A.P.M., I.A. Pestana, B.C.V. Oliveira, C.E. Rezende & C. Carvalho (2021). Titanium in commercial shrimp from anthropized tropical bays and estimated quantities of TiO2. Revista Ibero Americana de Ciências Ambientais 12: 144–156. https://doi.org/10.6008/CBPC2179-6858.2021.010.0013

Neto, J.D. (2011). Proposta de Plano Nacional de Gestão para o uso sustentável de camarões marinhos do Brasil. Série Plano de Gestão Recursos Pesqueiros, Brasília, Brasil, 242 pp.

FAO/WHO - Food and Agriculture Organization of the United Nations/World Health Organization (1991). Report of the Nineteenth Session of the Joint FAO/WHO Codex Alimentarius Commission. https://www.fao.org/3/t0490e/T0490E01.htm Electronic version accessed 20 October 2022.

Kehrig, H.A., R.A. Hauser-Davis, M.C. Muelbert, M.G. Almeida, A.P.M. Di Beneditto & C.E. Rezende (2022). Mercury and stable carbon and nitrogen isotopes in the natal fur of two Antarctic pinniped species. Chemosphere 288: 132500. https://doi.org/10.1016/j.chemosphere.2021.132500

Kolarova, N. & P. Napiórkowski (2021). Trace elements in aquatic environment. Origin, distribution, assessment and toxicity effect for the aquatic biota. Ecohydrology & Hydrobiology 21: 655–668. https://doi.org/10.1016/j.ecohyd.2021.02.002

Palma-Lara, I., Martínez-Castillo, M., Quintana-Pérez, J.C., Arellano-Mendoza, M.G., Tamay-Cach, F., Valenzuela-Limón, O.L., García-Montalvo, E.A. & Hernández-Zavala, A. (2020). Arsenic exposure: a public health problem leading to several cancers. Regulatory Toxicology and Pharmacology 110: 104539. https://doi.org/10. 1016/j. yrtph.2019. 104539

Post, D.M. (2002). Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83: 703–718. https://doi.org/10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2

R Core Team (2022). R: A language and environment for

statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/

Rainbow, P.S. (2002). Trace metal concentrations in aquatic invertebrates: why and so what? Environmental Pollution 120(3): 497–507. https://doi.org/10.1016/S0269-7491(02)00238-5

Venables, W.N. & B.D. Ripley (2002). Modern Applied Statistics with S. Springer, New York, 497 pp.

WHO - World Health Organization (2019). Food safety fact sheet. https://www.who.int/news-​room/fact-​sheets/detail/foodsafety. Electronic version accessed 20 October 2022.

Most read articles by the same author(s)