Potential distribution, habitat composition, preference and threats to Spikenard Nardostachys jatamansi (D.Don) DC. in Sakteng Wildlife Sanctuary, Trashigang, Bhutan
DOI:
https://doi.org/10.11609/jott.9742.17.10.27675-27687Keywords:
AUC, climate, elevation, habitat, indicator, maxent modelling, Pangpoi, temperature, threatAbstract
Bhutan stands out as one of the native areas where Nardostachy jatamansi grows. At an international level, a rampant rate of harvesting of its rhizome for medicinal and religious purposes has resulted in the species being categorized as ‘Critically Endangered’ as per the IUCN Red List Assessment, 2025. A survey was conducted in August 2021 within Sakteng Wildlife Sanctuary to identify the growing area of N. jatamansi within the sanctuary, determine species composition in the N. jatamansi growing area, assessing the threat within the sanctuary, and the potential distribution using current, and future climate scenarios. The survey found most of the species favouring rocky outcrops and high altitudes, given the harsh climatic conditions it tolerates. The studies recorded 19 individuals per m2 of the species across Merak and Sakteng and presented Shrubs as dominant life forms and Carex spp as the indicator species in N. jatamansi growing area. We found 49.8 km2 of the sanctuary area as the potential suitable habitat for N. jatamansi, with elevation and temperature-related variables as the most contributing factors in determining its distribution. Change in area under the ssp 245 future climate scenario for year 2041–2060 and 2061–2080 showed net increase in area of 125.5 ha and 126 ha respectively from current to future.
References
Abdelaal, M., M. Fois, G. Fenu & G. Bacchetta (2019). Using MaxEnt modeling to predict the potential distribution of the endemic plant Rosa arabica Crép. in Egypt. Ecological Informatics 50: 68–75.
Amatya, G. & V. Sthapit (1994). A note on Nardostachys jatamansi. Journal of Herbs, Spices & Medicinal Plants 2(2): 39–47.
Aumeeruddy-Thomas, Y., M. Karki, K. Gurung & D. Parajuli (2005). Himalayan Medicinal and Aromatic Plants, Balancing Use and Conservation. Ministry of Forests and Soil Conservation, Government of Nepal, Kathmandu.
Airi, S., R.S. Rawal, U. Dhar & A.N. Purohit (2000). Assessment of availability and habitat preference of Jatamansi: A critical endangered medicinal plant of west Himalaya. Current Science 79(10): 1467–1470
Cardillo, M., G.M. Mace, J.L. Gittleman, K.E. Jones, J. Bielby & A. Purvis (2008). The predictability of extinction: biological and external correlates of decline in mammals. Proceedings of the Royal Society B: Biological Sciences 275(1641): 1441–1448. https://doi.org/10.1098/rspb.2008.0179
Chauhan, H.K., S. Oli, A.K. Bisht, C. Meredith & D. Leaman (2021). Review of the biology, uses and conservation of the critically endangered endemic Himalayan species Nardostachys jatamansi (Caprifoliaceae). Biodiversity and Conservation 30(12): 3315–3333. https://doi.org/10.1007/s10531-021-02269-6
Chauhan, H.K. (2021). Nardostachys jatamansi. The IUCN Red List of Threatened Species 2021: e.T50126627A88304158. https://doi.org/10.2305/IUCN.UK.20213.RLTS.T50126627A88304158.en
CITES. 2022. Harvest and trade of Jatamansi in Nepal. https://cites.org/sites/default/files/eng/prog/Livelihoods/case_studies/2022/CITES_%26_livelihoods_fact_sheet_Jatamansi%20Nepal.pdf. Accessed on 11.ii.2025
Dufrêne, M. & P. Legendre (1997). Species assemblages and indicator species: The need for a flexible asymmetrical approach. The Ecological Society of America 345–366. https://doi.org/10.1890/0012-9615(1997)067
Elith, J. (2002). Quantitative methods for modeling species habitat: comparative performance and an application to Australian plants. In: Ferson, S. & M. Burgman (eds.). Quantitative Methods for Conservation Biology. Springer, 3958 pp.
Elith, J. & J.R. Leathwick (2009). Species distribution models: Ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics 40: 677–697.
Fick, S.E. & R.J. Hijmans (2017). WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37(12): 4302–4315.
Ghimire, S.K., D. McKey & Y. Aumeeruddy-Thomas (2005). Conservation of Himalayan medicinal plants: Harvesting patterns and ecology of two threatened species, Nardostachys grandiflora DC. and Neopicrorhiza scrophulariiflora (Pennell) Hong. Biological Conservation 124(4): 463–475.
Grierson, A.J.C. & D.G. Long (2001). Flora of Bhutan, Volume 2, Part 3. Royal Government of Bhutan & Royal Botanic Garden, Edinburgh.
Gyeltshen, N., N. Bidha, T. Dorji & S. Peldon (2022). Non-Detrimental findings report for Nardostachys grandiflora in Bhutan Himalaya, Nature Conservation Division and Social Forestry & Extension Division, Department of Forests and Park Services, Ministry of Agriculture & Forests, Thimphu, Bhutan, 40 pp.
Hijmans, R. (2024). Raster: Geographic Data Analysis and Modeling. R package version 3.6-30, https://rspatial.org/raster. https://doi.org/10.13140/RG.2.2.13303.50083
Koç, D.E., B. Ustaoğlu & D. Biltekin (2024). Effect of climate change on the habitat suitability of the relict species Zelkova carpinifolia Spach using ensembled species distribution modelling. Scientific Reports 14(1): 27967. https://doi.org/10.1038/s41598-024-78733-4
Lakey, N. & K. Dorji (2016). Ecological status of high-altitude medicinal plants and their sustainability: Lingshi, Bhutan. BMC Ecology 16(1): 1–14. https://doi.org/10.1186/s12898-016-0100-1
Larsen, H.O. & C.S. Olsen (2008). Towards Valid Non-Detrimental Findings for Nardostachys grandiflora. https://cites.org/sites/default/files/ndf_material/WG2-CS3.pdf
Lenoir, J., J.C. Gégout, P.A. Marquet, P. de Ruffray & H. Brisse (2008). A significant upward shift in plant species optimum elevation during the 20th century. Science 320(5884): 1768– 1771. https://doi.org/10.1126/science.1156831
Li, J., J. Wu, K. Peng, G. Fan, H. Yu, W. Wang & Y. He (2019). Simulating the effects of climate change across the geographical distribution of two medicinal plants in the genus Nardostachys. PeerJ 7: e6730. https://doi.org/10.7717/peerj.6730
Lozier, J.D., P. Aniello & M.J. Hickerson (2009). Predicting the distribution of Sasquatch in western North America: anything goes with ecological niche modelling. Journal of Biogeography 36(9): 1623–1627. https://doi.org/10.1111/j.1365-2699. 2009.02152.x
Montgomery, D.C., E.A. Peck & G.G. Vining (2012). Introduction to linear regression analysis, vol. 821. Wiley, Hoboken, NJ.
Mulliken, T.A. (2000). Implementing Convention on International Trade in Endangered Species of Wild Flora and Fauna (CITES) for Himalayan medicinal plants Nardostachys grandiflora and Picrorhiza kurroa. Traffic Bulletin 18: 63–72.
Naimi, B., N.A. Hamm, T.A., Groen, A.K. Skidmore & A.G. Toxopeus (2014). “Where is positional uncertainty a problem for species distribution modelling.” Ecography 37: 191–203. https://doi.org/10.1111/j.1600-0587.2013.00205.x
Novoseltseva, Y. (2024). Species distribution modelling using MaxEnt: overview and prospects. Theriologia Ukrainica 2024(28): 102–112. https://doi.org/10.53452/tu2809
O’Neill, B.C., E. Kriegler, K. Riahi, K.L. Ebi, S. Hallegatte, T.R. Carter, R. Mathur & D.P. van Vuuren (2014). A New Scenario Framework for Climate Change Research: The Concept of Shared Socioeconomic Pathways. Climate Change 122: 387–400.
Parmesan, C. & G. Yohe (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature 421(6918): 37–42. https://doi.org/10.1038/natur e01286
Pearson, R.G. & T.P. Dawson (2003). Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology Biogeography 12(5): 361–371. https://doi.org/10.1046/j.1466-822X.2003.00042.x
Phillips, S.J. & M. Dudik (2008). Modeling of species distributions with MaxEnt: new extensions and a comprehensive evaluation. Ecography 31: 161–175. https://doi.org/10.1111/j.2007.0906-7590.05203.x
Phillips, S.J., M. Dudík & R.E. Schapire (2025). Maxent software for modeling species niches and distributions (Version 3.4.1). Available from url:http://biodiversityinformatics.amnh.org/open_source/maxent/. Accessed on 23.i.2025.
Peterson, A.T., M. Papeş & J. Soberón (2015). Mechanistic and correlative models of ecological niches. European Journal of Ecology 1(2): 28–38. https://doi.org/10.1515/eje-2015-0014
Polechová, J. & D. Storch (2019). Ecological Niche, pp. 72–80. In: Fath, B. (ed.). Encyclopedia of Ecology, 2nd Edition. Elsevier.
Purvis, A., J.L. Gittleman, G. Cowlishaw & G.M. Mace (2000). Predicting extinction risk in declining species. Proceedings of the Royal Society B: Biological Sciences 267(1456): 1947–1952. https://doi.org/10.1098/rspb.2000.1234
Rana, S.K., H.K. Rana, S.K. Ghimire, K.K. Shrestha & S. Ranjitkar (2017). Predicting the impact of climate change on the distribution of two threatened Himalayan medicinal plants of Liliaceae in Nepal. Journal of Mountain Science 14(3): 558–570. https://doi.org/10.1007/s11629-015-3822-1
Rana, S.K., H.K. Rana, S. Ranjitkar, S.K. Ghimire, C.M. Gurmachhan, A.R. O’Neill & H. Sun (2020). Climate-change threats to distribution, habitats, sustainability and conservation of highly traded medicinal and aromatic plants in Nepal. Ecological Indicators 115: 106435. https://doi.org/10.1016/j.ecolind.2020.106435
Ranjitkar, S., R. Kindt, N.M. Sujakhu, R. Hart, W. Guo, X. Yang, K.K. Shrestha, J. Xu & E. Luedeling (2014). Separation of the bioclimatic spaces of Himalayan tree rhododendron species predicted by ensemble suitability models. Global Ecology and Conservation 1: 2–12. https://doi.org/10.1016/j.gecco.2014.07.001
Razak, I., A.Z. Wahab, D.M. Nasir & A. Ahmad (2024). Predicting habitat suitability for tarantula in Peninsular Malaysia by using species distribution modelling (SDM). Tropical Natural History 24: 182–192. https://doi.org/10.58837/tnh.24.1.260221
R Core Team (2023). R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Accessed on 20.ii.2025. https://www.R-project.org/
Royal Government of Bhutan (RGoB) (2023). Forest and Nature Conservation Act of Bhutan, 2023. Thimphu, Bhutan: RGoB, 54 pp.
Sharma, K., S. Maharjan, G. Rijal & M.L. Pathak (2021). Field survey of Nardostachys jatamansi in Manedada, Gaurishankar Conservation Area, Ramechhap, Nepal. Journal of Plant Resources 19(1): 114–120.
Sherpa, P., B. Bhattarai & M. Rana (2023). Ecological Studies of Nardostachys grandiflora: An Endangered Medicinal Plant of Sikkim Himalaya. Environment and Ecology 41(4A): 2446–2451.
Shrestha, U.B., P. Lamsal, S.K. Ghimire, B.B. Shrestha, S. Dhakal, S. Shrestha & K. Atreya (2022). Climate change‐induced distributional change of medicinal and aromatic plants in the Nepal Himalaya. Ecology and Evolution 12(8): https://doi.org/10.1002/ece3.9204
Sinclair S.J., M.D. White & G.R. Newell (2010). How useful are species distribution models for managing biodiversity under future climates? Ecology and Society 15(1): 8.
SWS (2019). Conservation Management Plan (2017–2027), Sakteng Wildlife Sanctuary, Department of Forests & Park Services, Royal Government of Bhutan. 7–27 pp.
Tandon, V., N.K. Bhattarai & M. Karki (eds.) (2001). Conservation Assessment and Management Prioritization Report. International Development Research Centre, New Delhi.
Tashi & K. Dorji (2021). Assessment and findings of Nardostachys grandiflora under Divisional Forest Office, Bumthang, Bhutan, 7 pp. https://www.academia.edu/91057999/Assessment_and_Findings_of_Nardostachys_grandiflora_under_Divisional_Forest_Office_Bumthang_Bhutan?hb-sb-sw=97719029
Ugyen, U. & G. Dorji (2021). Nardostachys grandiflora (Pangpoe): a status on floristic composition, distribution, Stock estimation & conservation threats of an Important Endangered Alpine medicinal plant of JKSNR. Department of Forests and Park Services of Bhutan, Haa District, 27 pp.
Valavi, R., G. Guillera-Arroita, J.J. Lahoz-Monfort & J. Elith (2022). Predictive performance of presence-only species distribution models: A benchmark study with reproducible code. Ecological Monographs 92(1): 1–27. https://doi.org/10.1002/ecm.1486
Weberling, F. (1975). On the systematics of Nardostachys (Valerianaceae). Taxon 24(4): 443–452.
WHO (2023). Integrating traditional medicine in health care. World Health Organization. https://www.who.int/southeastasia/news/feature-stories/detail/integrating-traditional-medicine. Accessed on 07.viii.2024.
Xin, X.G., L. Zhang, J. Zhang, T.W. Wu & Y.J. Fang (2013). Climate change projections over East Asia with BCC–CSM1.1, climate model under RCP scenarios. Journal Meteorological Society 91(4): 413–429. https://doi.org/10.2151/jmsj.2013-401
Yoon, S. & W.H. Lee (2021). Methodological analysis of bioclimatic variable selection in species distribution modeling with application to agricultural pests (Metcalfa pruinosa and Spodoptera litura). Computers and Electronics in Agriculture 190: 106430.
Zhong, X., L. Zhang, J. Zhang, L. He & R. Sun (2023). maxent modeling for predicting the potential geographical distribution of Castanopsis carlesii under various climate change scenarios in China. Forests 14(7): 1397. https://doi.org/10.3390/f14071397
Zuur, A.F., E.N. Leno, N.J. Walker, A.A. Saveliev & G.M. Smith (2009). Mixed effects models and extensions in ecology with R. Springer, New York, xxii + 574 pp.
Published
Issue
Section
License
Copyright (c) 2025 Dorji Phuntsho, Namgay Shacha, Pema Rinzin, Tshewang Tenzin

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors own the copyright to the articles published in JoTT. This is indicated explicitly in each publication. The authors grant permission to the publisher Wildlife Information Liaison Development (WILD) Society to publish the article in the Journal of Threatened Taxa. The authors recognize WILD as the original publisher, and to sell hard copies of the Journal and article to any buyer. JoTT is registered under the Creative Commons Attribution 4.0 International License (CC BY), which allows authors to retain copyright ownership. Under this license the authors allow anyone to download, cite, use the data, modify, reprint, copy and distribute provided the authors and source of publication are credited through appropriate citations (e.g., Son et al. (2016). Bats (Mammalia: Chiroptera) of the southeastern Truong Son Mountains, Quang Ngai Province, Vietnam. Journal of Threatened Taxa 8(7): 8953–8969. https://doi.org/10.11609/jott.2785.8.7.8953-8969). Users of the data do not require specific permission from the authors or the publisher.





