First characterization of the bacteriological profile of the Mediterranean Pond Turtle Mauremys leprosa (Schweigger, 1812) in Reghaïa Lake, Algeria

Authors

  • Feriel Benhafid Laboratory of Eco-Biology Animals, École Normale Supérieure de Kouba Bachir El Ibrahimi, BP 92, 16050 Algiers, Algeria.
  • Badis Bakhouche Laboratory of Biological Oceanography and the Marine Environment, University of Science and Technology of Houari Boumediene, BP 32, 16111 Algiers, Algeria.
  • Abdenour Moussouni Laboratory of Algerian Forests and Climate Change, Higher National School of Forests, Route de Hammam Essalhine 40000, Khenchela, Algeria.
  • Rayane Ahcene Reda Belaidi Laboratory of Biological Oceanography and the Marine Environment, University of Science and Technology of Houari Boumediene, BP 32, 16111 Algiers, Algeria.
  • Imed Djemadi Environment Research Center, Biodiversity and Environment Division, Annaba, Algeria.
  • Amina Saadi Dynamic and Biodiversity Laboratory, University of Science and Technology of Houari Boumediene, BP 32, 16024 Algiers, Algeria.
  • Naouelle Azzag Research Laboratory for Management of Local Animal Resources, Higher National Veterinary School of Algiers, Rue Issad Abbes, El Alia, Algiers 16025, Algeria.

DOI:

https://doi.org/10.11609/jott.9449.17.5.26951-26962

Keywords:

Chelonian, cloacal microbiota, freshwater ecosystems, health risk, wildlife conservation, zoonotic pathogens

Abstract

The Mediterranean Pond Turtle Mauremys leprosa, a ‘Near Threatened’ species, is poorly studied in Algeria and no data exists on its bacteriological carriage. However, knowledge about the microbiota of wildlife species is essential to develop holistic conservation approaches that integrate microbial health, habitat preservation, and species-specific needs. Recent concerns regarding the potential transmission of zoonotic pathogens by turtles have been highlighted in several studies. In this context, the current study analyzed the aerobic cloacal/fecal bacteria associated with the Mediterranean Pond Turtles, which were collected from Reghaïa Lake. Samples collected from 24 turtles allowed the identification of 11 bacterial genera. Salmonella was the most frequent isolated genus with a percentage of 22 of the total isolates, followed by Escherichia and Enterobacter. The diversity of genera isolated from juveniles is relatively low compared with adults. Turtle-bacterial genera relationships were tested by logistic regressions and redundancy analysis (RDA). Results of RDA indicate a statistically significant association (p-value <0.01) between morphological features and bacterial genera frequency. Our results confirm the reputation of freshwater turtles as a reservoir of several zoonotic bacterial pathogens. This microbiota analysis offers a non-invasive, multi-faceted approach to conserving endangered species by linking health, habitat, reproduction, and ecological dynamics. This highlights the importance of establishing an epidemiological surveillance system and an awareness program must be carried out to reduce the health risks associated with owning pet turtles.

Author Biographies

Feriel Benhafid, Laboratory of Eco-Biology Animals, École Normale Supérieure de Kouba Bachir El Ibrahimi, BP 92, 16050 Algiers, Algeria.

.

Badis Bakhouche, Laboratory of Biological Oceanography and the Marine Environment, University of Science and Technology of Houari Boumediene, BP 32, 16111 Algiers, Algeria.

.

Abdenour Moussouni, Laboratory of Algerian Forests and Climate Change, Higher National School of Forests, Route de Hammam Essalhine 40000, Khenchela, Algeria.

.

Rayane Ahcene Reda Belaidi, Laboratory of Biological Oceanography and the Marine Environment, University of Science and Technology of Houari Boumediene, BP 32, 16111 Algiers, Algeria.

.

Imed Djemadi, Environment Research Center, Biodiversity and Environment Division, Annaba, Algeria.

.

Amina Saadi, Dynamic and Biodiversity Laboratory, University of Science and Technology of Houari Boumediene, BP 32, 16024 Algiers, Algeria.

.

Naouelle Azzag, Research Laboratory for Management of Local Animal Resources, Higher National Veterinary School of Algiers, Rue Issad Abbes, El Alia, Algiers 16025, Algeria.

.

References

Al-Bahry, S.N., M.A. Al-Zadjali, I.Y. Mahmoud & A.E. Elshafie (2012). Biomonitoring marine habitats in reference to antibiotic resistant bacteria and ampicillin resistance determinants from oviductal fluid of the nesting green sea turtle, Chelonia mydas. Chemosphere 87: 1308–1315. https://doi.org/10.1016/j.chemosphere.2012.01.051

Awong-Taylor, J., K.S. Craven, L. Griffiths, C. Bass & M. Muscarella (2008). Comparison of biochemical and molecular methods for the identification of bacterial isolates associated with failed logger-head sea turtle eggs. Journal of Applied Microbiology 104: 1244–1251. https://doi.org/10.1111/j.1365-2672.2007.03650.x

Back, D.S., G.W. Shin, M. Wendt & G.J. Heo (2016). Prevalence of Salmonella spp. in pet turtles and their environment. Laboratory Animal Research 32(3): 166. https://doi.org/10.5625/lar.2016.32.3.166

Bakhouche, B., T. Ghoulam, D. Imed, D. Khalil & D. Escoriza (2019). Phenology and population structure of the Mediterranean stripe-necked terrapin Mauremys leprosa (Schweigger, 1812) in the Reghaïa Lake (northern Algeria). Basic and Applied Herpetology 33: 43–51. https://doi.org/10.11160/bah.170

Bertolero, A. & S.D. Busack (2017). Mauremys leprosa (Schoepff in Schweigger 1812) – Mediterranean Pond Turtle, Spanish Terrapin, Mediterranean Stripe-necked Terrapin, pp. 102.1–102.19. In: Rhodin A.G.J., J.B. Iverson, P.P. van Dijk, K.A. Buhlmann, P.C.H. Pritchard & R.A. Mitter-meier (eds.). Conservation Biology of Freshwater Turtles and Tortoises. Chelonian Research Foundation and Turtle Conservancy, 292 pp. https://doi.org/10.3854/crm

Budd, K., J.C. Gunn, T. Finch, K. Klymus, N. Sitati & L.S. Eggert (2020). Effects of diet, habitat, and phylogeny on the fecal microbiome of wild African savanna (Loxodonta africana) and forest elephants (L. cyclotis). Ecology and Evolution 10(12): 5637–5650. https://doi.org/10.1002/ece3.6305

Campa, M., M. Bendinelli & H. Friedman (1993). Pseudomonas aeruginosa as an Opportunistic Pathogen, 1st Edition. Springer Science & Business Media, New York, USA, xx+419 pp. https://doi.org/10.1007/978-1-4615-3036-7

CDC (2008). Multistate outbreak of human Salmonella infections associated with exposure to turtles—United States, 2007–2008. Centers for Disease Control and Prevention. Morbidity and Mortality Weekly Report 57: 69–72.

Cole, M.B., M.V. Jones & C. Holyoak (1990). The effect of pH, salt concentration and temperature on the survival and growth of Listeria monocytogenes. Journal of Applied Bacteriology 69(1): 63–72. https://doi.org/10.1111/j.1365-2672.1990.tb02912.x

Colston, T.C. (2017). The reptile gut microbiome: its role in host evolution and community assembly. Electronic Theses and Dissertations 387.

https://egrove.olemiss.edu/etd/387

Cox, N.A. & H.J. Temple (2009). European Red List of Reptiles. Luxembourg: International Union for the Conservation of Nature and the European Union, Office for Official Publications of the European Communities, 34 pp.

Drzewiecka, D. (2016). Significance and roles of Proteus spp. Bacteria in Natural Environments. Microbial Ecology 72: 741–758. https://doi.org/10.1007/s00248-015-0720-6

El Hassani, M.S., E.M. El Hassan, T. Slimani & X. Bonnet (2019). Morphological and physiological assessments reveal that freshwater turtle (Mauremys leprosa) can flourish under extremely degraded-polluted conditions. Chemosphere 220: 432–441. https://doi.org/10.1016/j.chemosphere.2018.12.142

Gaertner, J.P., D. Hahn, J. Jackson, M.R.J. Forstner & F.L. Rose (2008). Detection of Salmonellae in captive and free-ranging turtles using enrichment culture and polymerase chain reaction. Journal of Herpetology 42(2): 223–231. https://doi.org/10.1670/07-1731.1

Garig, D.F., J.R. Ennen & J.M. Davenport (2020). The Effects of Common Snapping Turtles on a freshwater food web. Copeia 108(1): 132. https://doi.org/10.1643/CE-19-258

Guisan, A. & N.E. Zimmermann (2000). Predictive habitat distribution models in ecology. Ecological Modelling 135: 147–186. https://doi.org/10.1016/S0304-3800(00)00354-9

Hacioglu, N., B. Dulger, T. Caprazli & M. Tosunoglu (2012). A study on microflora in oral and cloacal of freshwater turtles (Emys orbicularis Linnaeus, 1758 and Mauremys rivulata Valenciennes, 1833) from Kavak delta (Canakkale). Fresenius Environmental Bulletin 21: 3365–3369.

Hernandez, S.M., J.J. Maurer, M.J. Yabsley, V.E. Peters, A. Presotto, M.H. Murray, S. Curry, S. Sanchez, P. Gerner-Smidt, K. Hise, J. Huang, K. Johnson, T. Kwan & E.K. Lipp (2021). Free-living aquatic turtles as sentinels of Salmonella spp. for water bodies. Frontiers in Veterinary Science 8: 674973. https://doi.org/10.3389/fvets.2021.674973

Hidalgo-Vila, J., C. Diaz-Paniagua, C. de Frutos-Escobar, C. Jimenez-Martinez & N. Perez-Santigosa (2007). Salmonella in free living terrestrial and aquatic turtles. Veterinary Microbiology 31: 119–123. https://doi.org/10.1016/j.vetmic.2006.08.012

Jorgensen, J.H., K.C. Carroll, G. Funke, M.A. Pfaller, M.L. Landry, S.S. Richter & D.W. Warnock (eds.) (2015). Manual of Clinical Microbiology. ASM Press, Washington, DC, 2571 pp. https://doi.org/10.1128/9781555817381

Kautman, M., G. Tiar, A. Papa & P. Široký (2016). AP92-like Crimean-Congo Hemorrhagic fever virus in Hyalomma aegyptium ticks, Algeria. Emerging Infectious Diseases 22: 354–356. https://doi.org/10.3201/eid2202.151528

Kuroki, T., K. Ito, T. Ishihara, I. Furukawa, A. Kaneko, Y. Suzuki, J. Seto & T. Kamiyama (2015). Turtle-associated Salmonella infections in Kanagawa, Japan. Japanese Journal of Infectious Diseases 68: 333–337. https://doi.org/10.7883/yoken.JJID.2014.490

Luiselli, L. (2024). Mauremys leprosa (Europe assessment). The IUCN Red List of Threatened Species 2024: e.T158468A207995085. Accessed on 30 September 2024.

Maran, J. (1996). L’Émyde lépreuse, Mauremys leprosa (Schweigger, 1812). CITS Bulletin 7: 16–43.

Marin, C., S. Ingresa-Capaccioni, S. González-Bodi, F. Marco-Jiménez & S. Vega (2013). Free-living turtles are a reservoir for Salmonella but not for Campylobacter. PLoS ONE 8(8): e72350. https://doi.org/10.1371/journal.pone.0072350

Nowakiewicz, A., G. Ziółkowska, P. Zięba, B.M. Dziedzic, S. Gnat, M. Wójcik, R. Dziedzic & A. Kostruba (2015). Aerobic bacterial microbiota Isolated from the cloaca of the European Pond Turtle (Emys orbicularis) in Poland. Journal of Wildlife Diseases 51(1): 255–259. https://doi.org/10.7589/2013-07-157

Oros, J., A. Torrent, P. Calabuig & S. Deniz (2005). Diseases and causes of mortality among sea turtles stranded in the Canary Islands, Spain (1998–2001). Diseases of Aquatic Organisms 63(1):13–24. https://doi.org/10.3354/dao063013

Osek, J., B. Lachtara & K. Wieczorek (2022). Listeria monocytogenes – How this pathogen survives in food-production environments? Frontiers in Microbiology 13: 866462. https://doi.org/10.3389/fmicb.2022.866462

Ramedani, K., N. Ziani, M. Younsi, C. Ben Krinah, I. Bouchahdane & R. Rouag (2024). Body size and ectoparasitic infestations in the Mediterranean Pond Turtle Mauremys leprosa (Testudines, Geoemydidae) in Majen Belahriti Pond (North-Eastern Algeria). Zoodiversity 58(3): 231–240. https://doi.org/10.15407/z002024.03.231

Redford, K.H., J.A. Segre, N. Salafsky, C. Martinez del Rio & D. McAloose (2012). Conservation and the microbiome. Conservation Biology 26(2): 195. https://doi.org/10.1111/j.1523-1739.2012.01829.x

Ruzauskas, M., S. Misyte, L. Vaskeviciute, L, Z. Mikniene, R. Siugzdiniene, I. Klimiene, A. Pikuniene & J. Kucinskiene (2016). Gut microbiota isolated from the European pond turtle (Emys orbicularis) and its antimicrobial resistance. Polish Journal of Veterinary Sciences 19(4): 723–730. https://doi.org/10.1515/pjvs-2016-0091

Tiar, G., R. Boudebza, I. Souallem & M. Tiar-Saadi (2019). Enquête sur l’ampleur du ramassage illégal des tortues terrestres sauvages: pratique non suffisamment contrôlée en Algérie (cas de la Wilaya d’El Tarf, nord-est algérien). Revue Algérienne des Sciences 2: 71–75.

Umbrasko, I., N. Harlamova, M. Pupins & N. Skute (2020). Skin microbiome of free-living European Pond Turtle (Emys orbicularis (L.)) on the northern border of its range in Silene Nature Park, Latvia. Acta Biologica Universitatis Daugavpiliensis 20(2): 155–161.

Varghese, N. & P. Joy (2014). Microbiology Laboratory Manual. Pineapple Research Station, Kerala Agricultural University, 78 pp.

Warwick, C., P.C. Arena & C. Steedman (2013). Health implications associated with exposure to farmed and wild sea turtles. Journal of Royal Society of Medicine Short Reports 4(1): 1–7. https://doi.org/10.1177/2042533313475574

Wilbur, H.M. (1997). Experimental ecology of food webs: complex systems in temporary ponds. Ecology 78(8): 2279–2302. https://doi.org/10.1890/0012-9658(1997)078[2279:EEOFWC]2.0.CO;2

Wu, W., Y. Jin, F. Bai & S. Jin (2015). Chapter 41 - Pseudomonas aeruginosa, pp. 753–767. In: Tang, Y.W., M. Sussman, D. Liu, I. Poxton & J. Schwartzman (eds). Molecular Medical Microbiology (Second Edition). Academic Press. https://doi.org/10.1016/B978-0-12-397169-2.00041-X

Youngblut, N.D., G.H. Reischer, W. Walters, N. Schuster, Ch. Walzer, G. Stalder, R.E. Ley & A.H. Farnleitner (2019). Host diet and evolutionary history explain different aspects of gut microbiome diversity among vertebrate clades. Nature Communication 10: 2200. https://doi.org/10.1038/s41467-019-10191-3

Zhu, L., J. Wang & S. Bahrndorff (2021). The wildlife gut microbiome and its implication for conservation biology. Frontiers in Microbiology 12: 697499. https://doi.org/10.3389/fmicb.2021.697499

Downloads

Published

26-05-2025

Issue

Section

Articles