Functional sperm assessments of African Lion Panthera leo (Mammalia: Carnivora: Felidae) in field conditions

Main Article Content

Thiesa Butterby Soler Barbosa
https://orcid.org/0000-0001-6214-6513
Daniel de Souza Ramos Angrimani
https://orcid.org/0000-0003-4989-364X
Bruno Rogério Rui
https://orcid.org/0000-0002-0447-5121
João Diego de Agostini Losano
https://orcid.org/0000-0002-7947-4027
Luana de Cássia Bicudo
https://orcid.org/0000-0002-8430-2721
Marcel Henrique Blank
https://orcid.org/0000-0001-7524-5780
Marcilio Nichi
https://orcid.org/0000-0003-4262-0825
Cristiane Schilbach Pizzutto
https://orcid.org/0000-0002-4357-5133

Abstract

Wild African Lion Panthera leo populations are decreasing due to inbreeding and reduced genetic variability.  Thus, the use of assisted reproduction in the species could one day become essential.  Before this is possible, however, studies need to be conducted on the basic reproductive traits of  the species, especially those regarding sperm cells.  This study aimed to analyze the semen of African Lions in field conditions.  We included seven captive African Lions in our study.  The animals were chemically restrained and electro-ejaculated.  Twenty sperm samples were selected and analyzed for sperm motility and progressive motility, sperm motility index, and sperm morphology.  In addition, the samples were analyzed for membrane and acrosome integrity (hypoosmotic swelling test and fast green/rose Bengal dyes, respectively) and assessed for cytochemical activity of the mitochondria.  We found that sperm motility rate was 75.25%±2.03, progressive motility rate was 3.25%±0.10, and sperm motility index was 70.12%±1.71.  We found morphologic abnormalities roughly at the expected rate with 34.61%±7.22 of the sperm cells having an intact plasma membrane and acrosome integrity of 92.27%±2.73; high mitochondrial activity was 54.26±4.88% and absence of mitochondrial activity was 2.72±0.68% in the sperm cells.  These findings show that conventional tests for sperm motility and sperm morphology bring about the expected results for lions according scientific literature.  Though a hypoosmotic swelling test may be performed using different concentrations, it might lead to a higher number of sperm cells with membrane damage.  Fast green/rose Bengal stain and 3’3 diaminobenzidine assay, however, can be used in sperm analysis of lions in field conditions.

Article Details

Section
Communications

References

Aitken, R.J. (2006). Sperm function tests and fertility. International Journal of Andrology 29(1): 69–75; https://doi.org/10.1111/j.1365-2605.2005.00630.x

Amaral, A., B. Lourenco, M. Marques & J. Ramalho-Santos (2013). Mitochondria functionality and sperm quality. Reproduction 146(5): 163–174; https://doi.org/10.1530/REP-13-0178

Angrimani, D.S., P.M. Barros, J.D. Losano, C.N. Cortada, R.P. Bertolla, M.A. Guimaraes, S.H. Correa, V.H. Barnabe & M. Nichi (2017a). Effect of different semen extenders for the storage of chilled sperm in Tigrina (Leopardus tigrinus). Theriogenology 89: 146–154; https://doi.org/10.1016/j.theriogenology.2016.10.015

Angrimani, D.S.R., M. Nichi, J.D.A. Losano, C.F. Lucio, G.A.L. Veiga, M.V.M.J. Franco & C.I. Vannucchi (2017b). Fatty acid content in epididymal fluid and spermatozoa during sperm maturation in dogs. Journal of Animal Science and Biotechnology 8: 18; https://doi.org/10.1186/s40104-017-0148-6

Barranco, I., A. Casao, C. Perez-Patino, I. Parrilla, T. Muino-Blanco, E.A. Martinez, J.A. Cebrian-Perez & J. Roca (2017). Profile and reproductive roles of seminal plasma melatonin of boar ejaculates used in artificial insemination programs. Journal of Animal Science 95(4): 1660–1668; https://doi.org/10.2527/jas.2016.1286

Barth, A.D. & R.J. Oko (1989). Abnormal Morphology of Bovine Spermatozoa. Iowa State University Press, 285pp.

Borrego, N. & B. Dowling (2016). Lions (Panthera leo) solve, learn, and remember a novel resource acquisition problem. Animal Cognition 19(5): 1019–1025; https://doi.org/10.1007/s10071-016-1009-y

Bucci, D., E. Giaretta, B. Merlo, E. Iacono, M. Spinaci, B. Gadani, G. Mari, C. Tamanini & G. Galeati (2017). Alkaline phosphatase added to capacitating medium enhances horse sperm-zona pellucida binding. Theriogenology 87: 72–78; https://doi.org/10.1016/j.theriogenology.2016.08.003

Caso, A., C. Lopez-Gonzalez E. Payan E. Eizirik, T. de Oliveira, R. Leite-Pitman, M. Kelly & C. Valderrama (2008). Panthera onca. In: IUCN Red List of Threatened Species, Version 20141. Downloaded on 8 January 2017; https://doi.org/10.2305/IUCN.UK.2017-3.RLTS.T15953A50658693.en

Chundawat, R.S., B. Habib, U. Karanth, K. Kawanishi, J.A. Khan, T. Lynam, D. Miquelle, P. Nyhus, S. Sunarto, R. Tilson & S. Wang (2011). Panthera tigris. In: Red List of Threatened Species, Version 20141. Downloaded on 8 January 2017; https://doi.org/10.2305/IUCN.UK.2015-2.RLTS.T15955A50659951.en

Comercio, E.A., N.E. Monachesi, M.E. Loza, M. Gambarotta & M.M. Wanke (2013). Hypo-osmotic test in cat spermatozoa. Andrologia 45(5): 310–314; https://doi.org/10.1111/and.12007

Daub, L., A. Geyer, S. Reese, J. Braun & C. Otzdorff (2016). Sperm membrane integrity in fresh and frozen-thawed canine semen samples: a comparison of vital stains with the NucleoCounter SP-100. Theriogenology 86(2): 651–656; https://doi.org/10.1016/j.theriogenology.2016.02.021

de Lamirande, E. & C. Gagnon (1992a). Reactive oxygen species and human spermatozoa. I. Effects on the motility of intact spermatozoa and on sperm axonemes. Journal of Andrology 13(5): 368–378; https://doi.org/10.1002/j.1939-4640.1992.tb03327.x

de Lamirande, E. & C. Gagnon (1992b). Reactive oxygen species and human spermatozoa. II. Depletion of adenosine triphosphate plays an important role in the inhibition of sperm motility. Journal of Andrology 13(5): 379–386; https://doi.org/10.1002/j.1939-4640.1992.tb03328.x

Gilmore, J.A., L.E. McGann, E. Ashworth, J.P. Acker, J.P. Raath, M. Bush & J.K. Critser (1998). Fundamental cryobiology of selected African mammalian spermatozoa and its role in biodiversity preservation through the development of genome resource banking. Animal Reproduction Science 53(1–4): 277–297; https://doi.org/10.1016/S0378-4320(98)00118-3

Goeritz, F., J. Painer, K. Jewgenow, R. Hermes, K. Rasmussen, M. Dehnhard & T. Hildebrandt (2012). Embryo retrieval after hormonal treatment to control ovarian function and non-surgical artificial insemination in African lions (Panthera leo). Reproduction in Domestic Animals, Supplement 47(6): 156–160; https://doi.org/10.1111/rda.12026

Hermes, R., J. Saragusty, F. Goritz, P. Bartels, R. Potier, B. Baker, W.J. Streich & T.B. Hildebrandt (2013). Freezing African Elephant semen as a new population management tool. PloS one 8(3): e57616; https://doi.org/10.1371/journal.pone.0057616

Hesser, A., C. Darr, K. Gonzales, H. Power, T. Scanlan, J. Thompson, C. Love, B. Christensen & S. Meyers (2017). Semen evaluation and fertility assessment in a purebred dog breeding facility. Theriogenology 87: 115–123; https://doi.org/10.1016/j.theriogenology.2016.08.012

Howard, J. (1993). Semen collection and analysis in carnivores, pp. 390–398. In: Fowler, M.E. (3eds). Zoo and Wildlife Medicine. WB Saunders, Philadelphia, 617pp.

Howard, J., R.M. Bush & D.E. Wildt (1986). Semen collection, analysis and cryopreservation in nondomestic mammals, pp. 1047–1053. In: Morrow, D. (eds). Current Therapy in Theriogenology. WB Saunders Co., Philadelphia, 1143pp.

Hrudka, F. (1987). Cytochemical and ultracytochemical demonstration of cytochrome c oxidase in spermatozoa and dynamics of its changes accompanying ageing or induced by stress. International Journal of Andrology 10(6): 809–828; https://doi.org/10.1111/j.1365-2605.1987.tb00385.x

Jackson, R., D. Mallon, T. McCarthy, R.A. Chundaway & B. Habib (2008). Panthera uncia. In: IUCN Red List of Threatened Species Version 20141. Downloaded on 9 January 2017; https://doi.org/10.2305/IUCN.UK.2017-2.RLTS.T22732A50664030.en

Jeyendran, R.S., H.H. van der Ven, M. Perez-Pelaez, B.G. Crabo & L.J. Zaneveld (1984). Development of an assay to assess the functional integrity of the human sperm membrane and its relationship to other semen characteristics. Journal of Reproduction and Fertility 70(1): 219–228.

Lueders, I., I. Luther, G. Scheepers & G. van der Horst (2012). Improved semen collection method for wild felids: urethral catheterization yields high sperm quality in African Lions (Panthera leo). Theriogenology 78(3): 696–701; https://doi.org/10.1016/j.theriogenology.2012.02.026

Luther, I., U. Jakop, I. Lueders, A. Tordiffe, C. Franz, J. Schiller, A. Kotze & K. Muller (2017). Semen cryopreservation and radical reduction capacity of seminal fluid in captive African Lion (Panthera leo). Theriogenology 89: 295–304; https://doi.org/10.1016/j.theriogenology.2016.10.024

McDermid, K.R., A. Snyman, F.J. Verreynne, J.P. Carroll, B.L. Penzhorn & M.J. Yabsley (2017). Surveillance for viral and parasitic pathogens in a vulnerable African Lion (Panthera Leo) population in the Northern Tuli Game Reserve, Botswana. Journal of Wildlife Diseases 53(1): 54–61; https://doi.org/10.7589/2015-09-248

Nichi, M., T. Rijsselaere, J. Losano, D. Angrimani, G. Kawai, I. Goovaerts, A. van Soom, V.H. Barnab, J. de Clercq & P. Bols (2017). Evaluation of epididymis storage temperature and cryopreservation conditions for improved mitochondrial membrane potential, membrane integrity, sperm motility and in vitro fertilization in bovine epididymal sperm. Reproduction in Domestic Animals 52(2): 257–263; https://doi.org/10.1111/rda.12888

Nosrati, R., M.M. Gong, M.C.S. Gabriel, C.E. Pedraza, A. Zini & D. Sinton (2016). Paper-based quantification of male fertility potential. Clinical Chemistry 62(3): 458–465; https://doi.org/10.1373/clinchem.2015.250282

Pope, C.E, Y.Z. Zhang & B.L. Dresser (1991). A simple staining method for evaluating acrosomal status of cat spermatozoa. Journal of Zoo and Wildlife Medicine 22(1): 87–95.

Rui, B.R., F.Y. Shibuya, A.J. Kawaoku, J.D. Losano, D.S. Angrimani, A. Dalmazzo, M. Nichi & R.J. Pereira (2017). Impact of induced levels of specific free radicals and malondialdehyde on chicken semen quality and fertility. Theriogenology 90: 11–19; https://doi.org/10.1016/j.theriogenology.2016.11.001

Shen, H. & C. Ong (2000). Detection of oxidative DNA damage in human sperm and its association with sperm function and male infertility. Free Radical Biology & Medicine 28(4): 529–536; https://doi.org/10.1016/S0891-5849(99)00234-8

Singh, R.K., A. Kumaresan, S. Chhillar, S.K. Rajak, U.K. Tripathi, S. Nayak, T.K. Datta, T.K. Mohanty & R. Malhotra (2016). Identification of suitable combinations of in vitro sperm-function test for the prediction of fertility in buffalo bull. Theriogenology 86(9): 2263–2271; https://doi.org/10.1016/j.theriogenology.2016.07.022

Tipkantha, W., P. Thuwanut, B. Siriaroonrat, P. Comizzoli & K. Chatdarong (2017). Mitigation of sperm tail abnormalities using demembranation approach in the Clouded Leopard (Neofelis nebulosa). Reproduction in Domestic Animals, Special Issue 52(S2): 214–218; https://doi.org/10.1111/rda.12861

Utt, M.D. (2016). Prediction of bull fertility. Animal Reproduction Science 169: 37–44; https://doi.org/10.1016/j.anireprosci.2015.12.011

Vicente-Carrillo, A., I. Edebert, H. Garside, I. Cotgreave, R. Rigler, V. Loitto, K.E. Magnusson & H. Rodriguez-Martinez (2015). Boar spermatozoa successfully predict mitochondrial modes of toxicity: implications for drug toxicity testing and the 3R principles. Toxicology in Vitro 29(3): 582–591; https://doi.org/10.1016/j.tiv.2015.01.004

Wildt, D., B. Pukazhenthi, J. Brown, S. Monfort, J. Howard & T. Roth (1995). Spermatology for understanding, managing and conserving rare species. Reproduction, Fertility, and Development 7(4): 811–824.

Zambelli, D., E. Iacono, R. Raccagni & B. Merlo (2010). Quality and fertilizing ability of electroejaculated cat spermatozoa frozen with or without Equex STM Paste. Theriogenology 73(7):886-892; https://doi.org/10.1016/j.theriogenology.2009.11.012

Most read articles by the same author(s)