

Open Access

Publisher

Wildlife Information Liaison Development Societywww.wild.zooreach.org

Host

Zoo Outreach Organizationwww.zooreach.org

Srivari Illam, No. 61, Karthik Nagar, 10th Street, Saravanampatti, Coimbatore, Tamil Nadu 641035, India
Registered Office: 3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore, Tamil Nadu 641006, India
Ph: +91 9385339863 | www.threatenedtaxa.org
Email: sanjay@threatenedtaxa.org

EDITORS

Founder & Chief Editor

Dr. Sanjay Molur

Wildlife Information Liaison Development (WILD) Society & Zoo Outreach Organization (ZOO), Coimbatore, Tamil Nadu 641006, India

Assistant Editor

Dr. Chaithra Shree J., WILD/ZOO, Coimbatore, Tamil Nadu 641006, India

Managing Editor

Mr. B. Ravichandran, WILD/ZOO, Coimbatore, Tamil Nadu 641006, India

Associate Editors

Dr. Mandar Paingankar, Government Science College Gadchiroli, Maharashtra 442605, India**Dr. Ulrike Streicher**, Wildlife Veterinarian, Eugene, Oregon, USA**Ms. Priyanka Iyer**, ZOO/WILD, Coimbatore, Tamil Nadu 641006, India

Board of Editors

Dr. Russel Mittermeier

Executive Vice Chair, Conservation International, Arlington, Virginia 22202, USA

Prof. Mewa Singh Ph.D., FASc, FNA, FNAsc, FNAPsy

Ramanna Fellow and Life-Long Distinguished Professor, Biopsychology Laboratory, and Institute of Excellence, University of Mysore, Mysuru, Karnataka 570006, India; Honorary Professor, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore; and Adjunct Professor, National Institute of Advanced Studies, Bangalore

Stephen D. Nash

Scientific Illustrator, Conservation International, Dept. of Anatomical Sciences, Health Sciences Center, T-8, Room 045, Stony Brook University, Stony Brook, NY 11794-8081, USA

Dr. Fred Pluthero

Toronto, Canada

Dr. Priya Davidar

Sigur Nature Trust, Chadapatti, Mavinhalla PO, Nilgiris, Tamil Nadu 643223, India

Dr. John Fellowes

Honorary Assistant Professor, The Kadoorie Institute, 8/F, T.T. Tsui Building, The University of Hong Kong, Pokfulam Road, Hong Kong

Prof. Dr. Mirco Solé

Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Vice-coordenador do Programa de Pós-Graduação em Zoologia, Rodovia Ilhéus/Itabuna, Km 16 (45662-000) Salobrinho, Ilhéus - Bahia - Brasil

Dr. Rajeev Raghavan

Professor of Taxonomy, Kerala University of Fisheries & Ocean Studies, Kochi, Kerala, India

English Editors**Mrs. Mira Bhojwani**, Pune, India**Dr. Fred Pluthero**, Toronto, Canada**Copy Editors****Ms. Usha Madgunki**, Zooreach, Coimbatore, India**Ms. Trisa Bhattacharjee**, Zooreach. Coimbatore, India**Ms. Paloma Noronha**, Daman & Diu, India**Web Development****Mrs. Latha G. Ravikumar**, ZOO/WILD, Coimbatore, India**Typesetting****Mrs. Radhika**, Zooreach, Coimbatore, India**Mrs. Geetha**, Zooreach, Coimbatore India**Fundraising/Communications****Mrs. Payal B. Molur**, Coimbatore, India**Subject Editors 2021–2023****Fungi****Dr. B. Shivaraju**, Bengaluru, Karnataka, India**Dr. R.K. Verma**, Tropical Forest Research Institute, Jabalpur, India**Dr. Vatsavaya S. Raju**, Kakatiya University, Warangal, Andhra Pradesh, India**Dr. M. Krishnappa**, Jnana Sahyadri, Kuvenpu University, Shimoga, Karnataka, India**Dr. K.R. Sridhar**, Mangalore University, Mangalagangotri, Mangalore, Karnataka, India**Dr. Gunjan Biswas**, Vidyasagar University, Midnapore, West Bengal, India**Dr. Kiran Ramchandra Ranadive**, Annaheb Magar Mahavidyalaya, Maharashtra, India**Plants****Dr. G.P. Sinha**, Botanical Survey of India, Allahabad, India**Dr. N.P. Balakrishnan**, Ret. Joint Director, BSI, Coimbatore, India**Dr. Shonil Bhagwat**, Open University and University of Oxford, UK**Prof. D.J. Bhat**, Retd. Professor, Goa University, Goa, India**Dr. Ferdinand Boero**, Università del Salento, Lecce, Italy**Dr. Dale R. Calder**, Royal Ontario Museum, Toronto, Ontario, Canada**Dr. Cleofas Cervancia**, Univ. of Philippines Los Baños College Laguna, Philippines**Dr. F.B. Vincent Florens**, University of Mauritius, Mauritius**Dr. Merlin Franco**, Curtin University, Malaysia**Dr. V. Irudayaraj**, St. Xavier's College, Palayamkottai, Tamil Nadu, India**Dr. B.S. Kholia**, Botanical Survey of India, Gangtok, Sikkim, India**Dr. Pankaj Kumar**, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, USA.**Dr. V. Sampath Kumar**, Botanical Survey of India, Howrah, West Bengal, India**Dr. A.J. Solomon Raju**, Andhra University, Visakhapatnam, India**Dr. Vijayasankar Raman**, University of Mississippi, USA**Dr. B. Ravi Prasad Rao**, Sri Krishnadevaraya University, Anantapur, India**Dr. K. Ravikumar**, FRLHT, Bengaluru, Karnataka, India**Dr. Aparna Watve**, Pune, Maharashtra, India**Dr. Qiang Liu**, Xishuangbanna Tropical Botanical Garden, Yunnan, China**Dr. Noor Azhar Mohamed Shazili**, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia**Dr. M.K. Vasudeva Rao**, Shiv Ranjan Housing Society, Pune, Maharashtra, India**Prof. A.J. Solomon Raju**, Andhra University, Visakhapatnam, India**Dr. Manda Datar**, Agharkar Research Institute, Pune, Maharashtra, India**Dr. M.K. Janarthanam**, Goa University, Goa, India**Dr. K. Karthigeyan**, Botanical Survey of India, India**Dr. Errol Vela**, University of Montpellier, Montpellier, France**Dr. P. Lakshminarasiham**, Botanical Survey of India, Howrah, India**Dr. Larry R. Noblick**, Montgomery Botanical Center, Miami, USA**Dr. K. Haridasan**, Pallavur, Palakkad District, Kerala, India**Dr. Analinda Manila-Fajard**, University of the Philippines Los Banos, Laguna, Philippines**Dr. P.A. Siru**, Central University of Kerala, Kasaragod, Kerala, India**Dr. Afroz Alam**, Banasthali Vidyapith (accredited A grade by NAAC), Rajasthan, India**Dr. K.P. Rajesh**, Zamorin's Guruvayurappan College, GA College PO, Kozhikode, Kerala, India**Dr. David E. Boufford**, Harvard University Herbaria, Cambridge, MA 02138-2020, USA**Dr. Ritesh Kumar Choudhary**, Agharkar Research Institute, Pune, Maharashtra, India**Dr. A.G. Pandurangan**, Thiruvananthapuram, Kerala, India**Dr. Navendu Page**, Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India**Dr. Kannan C.S. Warrier**, Institute of Forest Genetics and Tree Breeding, Tamil Nadu, India**Invertebrates****Dr. R.K. Avasthi**, Rohtak University, Haryana, India**Dr. D.B. Bastawade**, Maharashtra, India**Dr. Partha Pratim Bhattacharjee**, Tripura University, Suryamaninagar, India**Dr. Kailash Chandra**, Zoological Survey of India, Jabalpur, Madhya Pradesh, India**Dr. Ansie Dippenaar-Schoeman**, University of Pretoria, Queenswood, South Africa**Dr. Rory Dow**, National Museum of natural History Naturalis, The Netherlands**Dr. Brian Fisher**, California Academy of Sciences, USA**Dr. Richard Gallon**, Ilandudno, North Wales, LL30 1UP**Dr. Hemant V. Ghate**, Modern College, Pune, India**Dr. M. Monwar Hossain**, Jahangirnagar University, Dhaka, BangladeshFor Focus, Scope, Aims, and Policies, visit https://threatenedtaxa.org/index.php/JoTT/aims_scopeFor Article Submission Guidelines, visit <https://threatenedtaxa.org/index.php/JoTT/about/submissions>For Policies against Scientific Misconduct, visit https://threatenedtaxa.org/index.php/JoTT/policies_various

continued on the back inside cover

Cover: The nine vultures of India, digital art made on Krita by Dupati Poojitha.

Diversity of snakes (Reptilia: Serpentes) in the Tezpur University Campus, Assam, India

Mahari Jiumin Basumatary¹ , Anubhav Bhuyan² & Robin Doley³

^{1,3} Molecular Toxinology Laboratory, Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Assam 784028, India.

² Department of Environmental Science, School of Sciences, Tezpur University, Assam 784028, India.

¹ mjiumin@tezu.ernet.in, ² anubhavbhuyan83@gmail.com, ³ doley@tezu.ernet.in (corresponding author)

Abstract: In this study, 15 species of snakes were found in the Tezpur University campus in Assam, northeastern India. The snakes were documented by employing visual encounter survey and rescue calls. Tezpur University campus comprises of a 1.6 km² area with a green cover of approximately 75% and water bodies that serve as the home for wildlife, including reptiles. Numerous chaotic incidents of anxiety and fear due to snake sightings occurred at the campus, highlighting the need for management of snake-human negative interactions. A total of 64 snake sightings were noted during the study period, belonging to Typhlopidae (two species), Colubridae (nine species), Elapidae (three species), and Pythonidae (one species). Among them, three species, namely *Naja kaouthia*, *Bungarus fasciatus*, and *Bungarus lividus*, were venomous. These findings may make a significant contribution to the management of snake-human interactions on campus. In addition, it may serve as a reference for studies of the impact of a gradually urbanising world on snake diversity.

Keywords: Biodiversity, distribution, Indo-Burma hotspot, northeastern India, *Oligodon melaneus*, roadkill, snakebite, squamata, venomous snakes.

Bodo: ৰেবিজিৱসংন্যায়াৰ, সা-সানজা ভাৰতনি আসাম হাদ'ৰসায়াৰ থানায তেজপুৰ মুগুগোলোসালিনি বাদায়াৰ, Visual Encounter Survey আৰো Rescue call আদৰ বাহায়নায়নি গেজেৱোঁ গাসো মোন 15 হারিসানি জিবৌকোৱখো সদাননননে মোননো হাদোমোন। তেজপুৰ মুগুগোলোসালিনি বাদায়াৰ ১.৬ বৰ্গ কিলোমিটাৰনি ওনসোলখো সাগলোৰো, জোৱা ৭৫% সোমখোৰ ওনসোল আৱো দে (ফুলি) বাহাগোকোৰ দে, জায মানবায়গা জিব (reptiles) জো লোগোৰ হাগানি জিব-জুনোকোৱখো থায়া খুলি হোয়। ৰেবিজিৱসংন্যায় মুগুগোলোসালিনি বাদায়াৰ জিবৌ নুনায়নি জাহোনাব জিগাসিনায আৱো নিনায়নি গোৱা জায়ায়কোৰ জাদোমোন। ৰেবিজিৱসংন্যায সমনি গেজেৱোঁ গাসো মা 64 জিবৌ নুনায়ো রেবগালিয খালামনায জাদোমোন, জোৱা Typhlopidae (মোন 2 হারিসা), Colubridae (মোন 9 হারিসা), Elapidae (মোন 3 হারিসা) আৰো Pythonidae (মোন 1 হারিসা) নখ রখি জিবৌকোৰ দৰ্মোন। ৰেবোৱনি গেজেৱোঁ, মণ্যাম হারিসাকোৰ - *Naja kaouthia* (জিবৌ ফেটিগম), *Bungarus fasciatus* (জিবৌ গুবাল) আৰো *Bungarus lividus* (গোসোম গালনি জায়েসে জিবৌ) ফোৱা বিস গোনামোন। ৰেবিজিৱসংন্যায়নি খারিফোৱা কেম্পাসআৱ জিবৌ আৱো মানবসি গেজেৱোঁ জানায দাড়াবাজিবৌ সামলায়নায়াৰ মছ'জাথাব বিহোমা হোনো হাগো। বেনি অনন্বায়োৰা, ৰেব খারিফোৱা জিবৌনি বায়তি রেখাম (diversity) নি সায়াৰ, লাসো-লাসো নোগো এবা বহুৱাৰ গুৰুলায়লানায় (urbanization) মুগুগনি গোহামখো ফৰায়সেন্যায়নি থখায মনসে reference মহৰ খামানি মাবো হোগো।

Editor: S.R. Ganesh, Kalinga Foundation, Agumbe, India.

Date of publication: 26 September 2025 (online & print)

Citation: Basumatary, M.J., A. Bhuyan & R. Doley (2025). Diversity of snakes (Reptilia: Serpentes) in the Tezpur University Campus, Assam, India. *Journal of Threatened Taxa* 17(9): 27444-27455. <https://doi.org/10.11609/jott.9792.17.9.27444-27455>

Copyright: © Basumatary et al. 2025. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: No funding.

Competing interests: The authors declare no competing interests.

Author details & Author contributions: See end of this article.

Acknowledgments: MJB acknowledges the University Grants Commission (UGC) for the Junior Research Fellowship. Authors gratefully acknowledge Tezpur University for providing the necessary research facilities. MJB is deeply indebted to Mrs. Manjula Basumatary and Mr. Kalendra Basumatary, Retired Head Teacher, No. 2 Kanthalguri L.P. School, Kanthalguri, Kokrajhar, for their generous support in providing an EOS 80D camera and compatible lenses, which enabled the initiation of the photographic documentation for this work. MJB expresses sincere gratitude to Mr. Abani Kalita, Security Supervisor, Tezpur University, for his kind assistance during the study. MJB is also thankful to both former and present members of the Molecular Toxinology Laboratory for their invaluable help and support throughout the study.

INTRODUCTION

The snake-human negative interactions is a frequently underestimated issue, presenting significant challenges to conservation, and public health. The conflict between humans and snakes has existed since time immemorial, and an innate fear of snakes is deeply rooted in humans and other primates (Öhman & Mineka 2003). As a result, snakes become one of the most misunderstood, and feared animals. Snakes feed on various invertebrates and vertebrates (Khormizi et al. 2021), and this diverse prey preference makes the ecological role of each snake species uniquely significant (Forgus 2018; Thacker 2020). Concerningly, the global population of herpetofauna is declining owing to habitat destruction (Gibbons et al. 2000), and urbanisation (Rubbo & Kiesecker 2005; McKinney 2006). Interestingly, some reptiles, including snakes, have adapted to urban settlement (Purkayastha et al. 2011; Parkin et al. 2021; Barhadiya et al. 2022). Moreover, a few studies also revealed that university campuses, can serve as a favourable habitat for snakes due to the conservation of natural habitats maintained for sustainable development (Ahsan et al. 2015; Shome et al. 2022; Janani & Ganesh 2024).

Globally, 1.8–2.7 million people are affected by snakebite each year, resulting in an estimated 80,000–1,38,000 deaths (Ralph et al. 2022). India, home to over 365 snake species (Uetz 2025), reported an average of 58,000 snakebite deaths per year between 2000 and 2019 (Suraweera et al. 2020). Though these deaths are presumably caused by four snake species, namely, *Naja naja*, *Daboia russelii*, *Bungarus caeruleus*, and *Echis carinatus* (big four), other venomous snakes prevalent in that area are also responsible. India being a geographically varied country, has different regions with medically important snakes endemic to that region. For instance, *Naja kaouthia* is distributed across Assam, Arunachal Pradesh, Uttar Pradesh, Bihar, Sikkim, West Bengal, Odisha, Tripura, Mizoram, Nagaland, Meghalaya, and Manipur. *Trimeresurus erythhrurus* is distributed mainly across the northeastern states of Tripura, Meghalaya, Arunachal Pradesh, Sikkim, Mizoram, Manipur, Nagaland, and West Bengal, with isolated records from Odisha, and Andhra Pradesh (Deuti et al. 2021). Many other medically significant snakes, such as *Naja sagittifera*, *Naja oxiana*, *Bungarus fasciatus*, *Bungarus niger*, *Bungarus lividus*, *Ophiophagus hannah*, and *Gloydius himalayanus*, are distributed to some limited ranges within the country (Uetz 2025). They possess the potential of being the cause of snakebite-related medical emergencies in these geographic

ranges. This highlights the need for understanding the distribution of venomous snakes in the country for effective management of snakebite related medical emergencies. On the other hand, snakes play a crucial role in the ecosystem as predators, and mediators of biotic interactions. Despite their secretive nature, aquatic snakes can reach high densities, and consume significant amounts of prey, facilitating energy transfer between aquatic and, terrestrial habitats (Willson & Winnie 2016). Cobras, rat snakes, and snakes that typically feed on rodents contribute greatly to India's grain production and supply. By keeping the rodent population under control, they prevent crop damage, and reduce loss in crop production (Whitaker & Captain 2004). Although snake venom is a lethal mixture primarily composed of proteins and peptides, it holds outstanding therapeutic potential when structurally engineered, as evidenced by clinically used drugs like Captopril, and Tirofiban derived from venom components (Ferreira & de Silva 1965; Gan et al. 1988; Yeow & Kini 2012; Xiao et al. 2017; Munawar et al. 2018). This underscores the need to consider snake conservation for maintaining overall ecosystem integrity (Willson & Winnie 2016), as well as for advancing biomedical research by harnessing snake venom as a valuable bioresource for therapeutic development. Educating people about snake identification, ecology, ethology, and distribution of venomous, and non-venomous snakes may help in avoiding snakebite incidences as well as conserving these fascinating reptiles (Whitaker & Whitaker 2012; Whitaker & Martin 2015).

In the past, studies on herpetofauna were carried out in various parts of northeastern India, including Assam, namely: Barail Wildlife Sanctuary, and the Cachar District of Assam (Das et al. 2009), the urban city of Guwahati (Purkayastha et al. 2011), Jeypore Reserved Forest of Assam (Islam & Saikia 2014), Deepor Beel (Sengupta et al. 2016), Nalbari District of Assam (Baishya & Das 2018), and Guwahati University campus (Gogoi et al. 2023). No systematic study was carried out at the Tezpur University campus, which is home to various flora, and fauna.

The present study aims to understand the diversity of snakes present in the Tezpur University campus, Assam, India. Documenting the various species of snakes found in this campus may contribute to the management of herpetofauna, and mitigation of human-snake negative interactions.

MATERIALS AND METHODS

Study area

Tezpur University Campus (TUC) is located in the Sonitpur District of Assam, India (26.696° N, 92.835° E). Tezpur University Campus is on 1.06 km^2 of land, bounded by concrete walls, and stands 12 km away from Tezpur City, and about 30 km away from Nameri National Park. The campus comprises various academic buildings, staff quarters, sports playground, two water bodies, a botanical garden, and green cover area of approximately 75% of the total land (Image 1). The campus houses approximately 4,000 residents. The average high temperature in Tezpur during summer is around 31°C , while the average winter low temperature is around 13°C . It receives an average annual rainfall of about 1,749 mm and has an average relative humidity of 74% (World Weather Online 2024).

Methodology

The study was carried out from June 2021–May 2024. A visual encounter survey (Crump & Scott Jr. 1994) was employed to carry out the study. Random searches along the paths as well as active searches by flipping wood logs, tins, and leaf litter were employed to find snakes at the suitable spots. Field surveys were done in the morning at 0600–1100 h, and at 1800–2100 h in the evening to find the snakes in their natural habitat. Deceased snakes found on roads were also included in the study. Rescue calls were attended irrespective of the time, and the snakes detected were also included in the list. Coordinates of sighting points were recorded using Google Maps on a mobile phone. Specimens were photographed and identified using relevant literature, then either released into their natural habitat or handed over to forest officials for safe release into the forest.

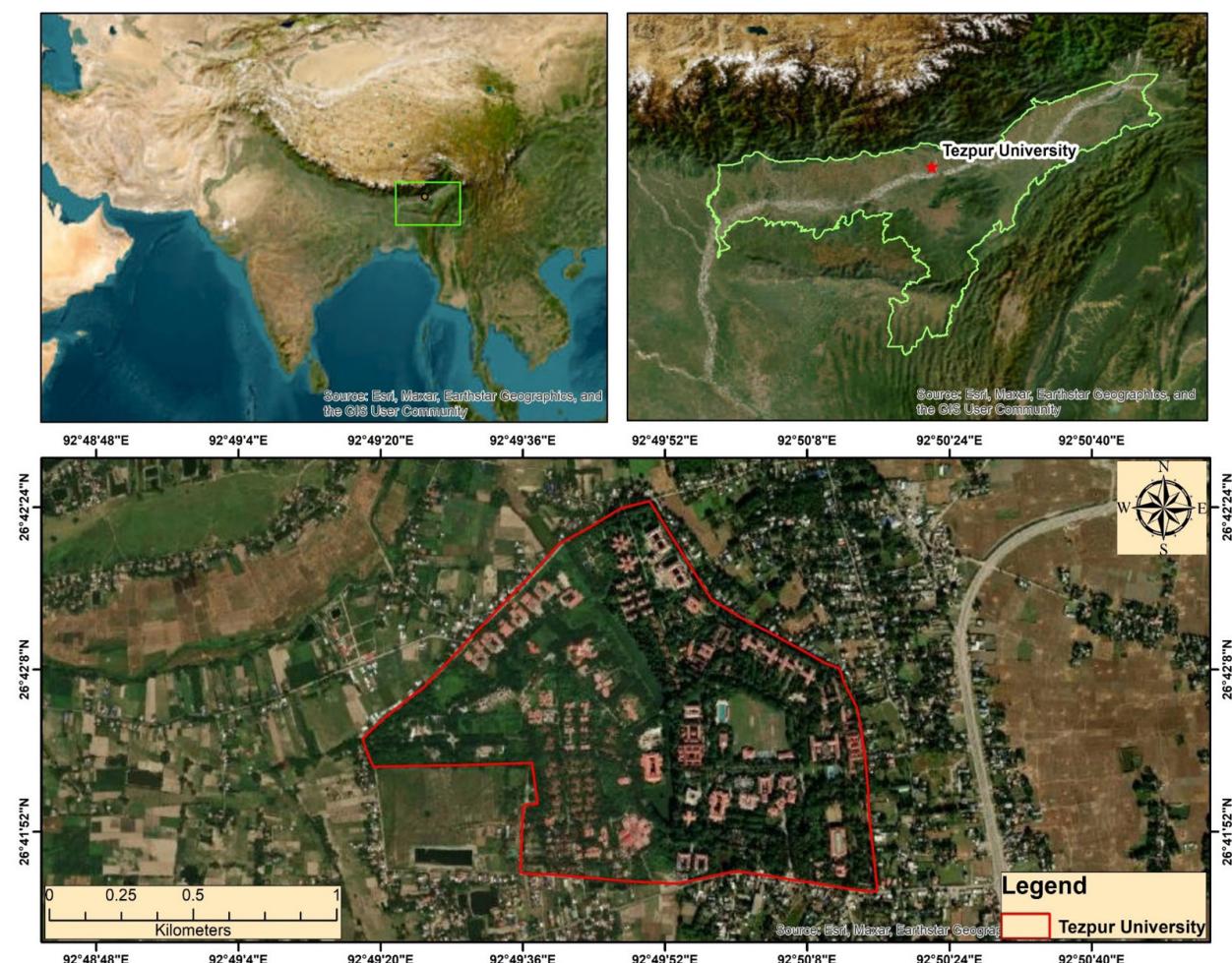


Image 1. Study area—Tezpur University campus.

GIS analysis

A map showing the location points of snake sightings, along with a spatial distribution density map, was created using ArcGIS 10.7.1. To create a spatial distribution density map, a 100 m² fishnet grid covering the study area was generated. This grid was overlaid with the recorded species presence points. Next, only those grid cells where the species were observed, were selected filtering out the rest. Within these selected grid cells, centroid points using the "Calculate Geometry" tool were calculated to represent the central location of species presence. These centroid points served as input for the inverse distance weighted (IDW) interpolation technique, which estimates density by weighting closer points more heavily. The IDW parameters that includes the number of snake sightings, search radius, and cell size, were carefully adjusted to optimise accuracy. The resulting raster map displayed species density distribution, highlighting areas of higher, and lower occurrence. Finally, the output was validated by comparing it with field observations to ensure the reliability of the generated spatial distribution map.

RESULTS

During this study, a total of 64 snake sightings were obtained inside the TUC, resulting in a record of 15 species (Table 1). Among them, two species belonged to Typhlopidae, nine species were Colubridae, three were Elapidae, and one to the Pythonidae family. Among the reported species, three species, namely, *Naja kaouthia*, *Bungarus fasciatus*, and *Bungarus lividus*, were venomous. One species, *Boiga gokool* was mildly venomous and not medically important, and 11 were non-venomous. The species belonging to the Colubridae family was recorded to be the most abundant at TUC, followed by Elapidae, then Typhlopidae and Pythonidae. At the species level, *Lycodon aulicus* (n = 12) was the most abundant, followed by *Ptyas mucosa* (n = 9). Species-wise numbers of snake encounters are shown in Figure 1a. The highest number of snakes were encountered during the months of July–September in the study period (Figure 1b). Details of date, time, and microhabitat where snakes were sighted are provided in Supplementary Table 1.

One species recorded from TUC in this study, namely *Python bivittatus*, was listed as 'Vulnerable', while 13 species were enlisted in the 'Least Concern' category, and one species, *Oligodon melaneus* was enlisted under the 'Data Deficient' category of the IUCN Red List

(Table 1). Furthermore, from the recorded snakes, one species, *Python bivittatus* was protected under Schedule I, and three species, *Naja kaouthia*, *Ptyas mucosa*, and *Fowlea piscator* were listed under Schedule II, while the remaining others were listed under Schedule IV of the Wildlife (Protection) Amendment Act 2022 (Table 1).

During the study, different snakes were detected at various places of the campus, such as gardens, administrative building premises, staff quarters, departmental areas, unnamed roads, and hostels (Figure 2a). Highest spatial density of snakes was detected on the road near Kanchenjunga Men's Hostel, followed by Pobitora Madam Curie Women's Hostel, Chandraprabha Saikiani Bhawan Bus Stop, and the Department of Molecular Biology and Biotechnology (Figure 2b). Photographs of snakes encountered in the TUC are shown in Image 2.

DISCUSSION

Closed campuses like university campuses are reported to be a safe habitat for various flora and fauna, including snakes. These campuses can serve as model ecological units for studying wildlife diversity, assessing the influence of environmental, and anthropogenic factors, and extrapolating findings to broader landscapes or communities. Despite being relatively secure habitats, factors such as infrastructure development, and the resulting shrinkage of natural vegetation can negatively impact snake diversity. Such disturbances may contribute to the observed variation in species richness and composition across different university campuses. The number of species (n = 15) recorded from Tezpur University in our study represents 18.29% and 3.56% of total species of Assam and India, respectively. This level of ophidian diversity in TUC revealed by our study is relatively lower compared to other university campuses where similar studies were carried out. For instance, in a study, a total of 19 species of snakes belonging to eight families were recorded from Guwahati University campus (Gogoi et al. 2023). A total of 23 species of snakes, including the big four were recorded in an urban college campus of Madras Christian College, Chennai (Janani & Ganesh 2024). Recently, Vanlalhrauaia et al. (2024) reported 42 snake species under 31 genera belonging to seven families from Mizoram University campus, Mizoram. A total of 36 species of snakes belonging to 22 genera and five families were reported from Chittagong University Campus, Bangladesh (Ahsan et al. 2015).

Table 1. List of snakes documented from Tezpur University Campus.

Family	Scientific name	Common name	Venom type	IUCN Red List status	Wildlife (Protection) Amendment Act 2022 status	Distribution in India	No. of sightings obtained
Typhlopidae	<i>Argyrophis diardii</i>	Diard's Blind Snake	Non-venomous	Least Concern	Schedule IV	Tripura, Sikkim, Manipur, Meghalaya, Assam, Mizoram, Arunachal Pradesh, Nagaland	Roadkill: 02
	<i>Indotyphlops braminus</i>	Brahminy Blind Snake	Non-venomous	Least Concern	Schedule IV	Throughout India	Live: 04
Colubridae	<i>Lycodon aulicus</i>	Indian Wolf Snake	Non-venomous	Least Concern	Schedule IV	Throughout India, including Lakshadweep but not the Andaman & Nicobar Islands	Live: 08 Roadkill: 03
	<i>Ptyas mucosa</i>	Indian Rat Snake	Non-venomous	Least Concern	Schedule II	Throughout India, from sea level to 4,000 m	Live: 08 Roadkill: 01
	<i>Fowlea piscator</i>	Checkered Keelback	Non-venomous	Least Concern	Schedule II	Throughout India	Live: 03 Roadkill: 02
	<i>Coelognathus radiatus</i>	Copper-headed Trinket Snake	Non-venomous	Least Concern	Schedule IV	Tripura, Manipur, Meghalaya, Assam, Arunachal Pradesh, Uttarakhand, Madhya Pradesh, Chhattisgarh, Odisha, West Bengal, Sikkim, Bihar, Himachal Pradesh, Mizoram, Nagaland	Live: 03 Roadkill: 03
	<i>Coelognathus helena</i>	Common Trinket Snake	Non-venomous	Least Concern	Schedule IV	Throughout India, up to Jammu & Kashmir (Poonch) in the north, to Manipur and the Naga Hills in the Northeast.	Roadkill: 01
	<i>Dendrelaphis bilineatus</i>	Painted Bronzeback Snake	Non-venomous	Least Concern	Schedule IV	West Bengal, Assam, Arunachal Pradesh, Mizoram	Live: 02 Roadkill: 01
	<i>Oligodon melaneus</i>	Blue-bellied Kukri Snake	Non-venomous	Data Deficient	Schedule IV	West Bengal (Tindharia, Darjeeling), Assam (Barengabari, Manas National Park).	Roadkill: 01
	<i>Amphiesma stolatum</i>	Buff Striped Keelback	Non-venomous	Least Concern	Schedule IV	Tripura, Sikkim, Manipur, Meghalaya, Kerala, Tamil Nadu, Andhra Pradesh, Karnataka, Gujarat, Madhya Pradesh, Chhattisgarh, Odisha, Uttar Pradesh, Assam, Bihar, Maharashtra, Arunachal, Punjab, Himachal Pradesh, Jammu and Kashmir, Mizoram, Telangana, Nagaland	Live: 04 Roadkill: 01
	<i>Boiga gokool</i>	Arrowback Tree Snake	Venomous, not medically important	Least Concern	Schedule IV	West Bengal (Darjeeling), Assam, Manipur, Meghalaya, Nagaland, Arunachal Pradesh, Odisha, Uttar Pradesh, Tripura	Roadkill: 01
Elapidae	<i>Bungarus lividus</i>	Lesser Black Krait	Venomous	Least Concern	Schedule IV	Meghalaya, Assam, Arunachal Pradesh, Nagaland	Live: 03
	<i>Bungarus fasciatus</i>	Banded Krait	Venomous	Least Concern	Schedule IV	Meghalaya, Assam, West Bengal, Bihar, Odisha, Uttar Pradesh, Maharashtra, Haryana, Madhya Pradesh, Arunachal Pradesh, Andhra Pradesh, Tripura, Mizoram, Telangana	Live: 03
	<i>Naja kaouthia</i>	Monocled Cobra	Venomous	Least Concern	Schedule II	Manipur, Meghalaya, Assam, Arunachal Pradesh, Uttar Pradesh, Bihar, Sikkim, West Bengal, Odisha, Tripura, Mizoram, Nagaland	Live: 03 Roadkill: 01
Pythonidae	<i>Python bivittatus</i>	Burmese Python	Non-venomous	Vulnerable	Schedule I	Assam, Tripura, Sikkim, Meghalaya, Mizoram, Arunachal Pradesh, Nagaland, Uttar Pradesh	Live: 06

Note: Distribution data was adopted from Whitaker & Captain 2004; Ahmed et al. 2009; Basfore et al. 2024; and Uetz 2025.

Oligodon melaneus, a species documented in the study site was an interesting finding. This species was originally described from Darjeeling, West Bengal in 1909 (Wall 1909). Then it was rediscovered from Barengabari, a village situated on the southern border of Manas National Park, Assam, in 2022 after 112 years of its original discovery (Das et al. 2022). The report stated that the discovery was based on a fresh roadkill specimen and that was the third known specimen of that species. So far, no other report of the sighting of *Oligodon melaneus*

has been reported. The roadkill specimen documented in this study might be the fourth documented specimen of the *Oligodon melaneus*. Finding such a rarely sighted snake in the TUC highlights the biodiversity significance of the campus. Records of the numbers of snakes killed on the road revealed the risk for herpetofauna and conservation issues in the campus. Findings of this study will serve as a reference for future studies dealing with the assessment of biodiversity at the Tezpur University campus as well as other gradually urbanising localities.

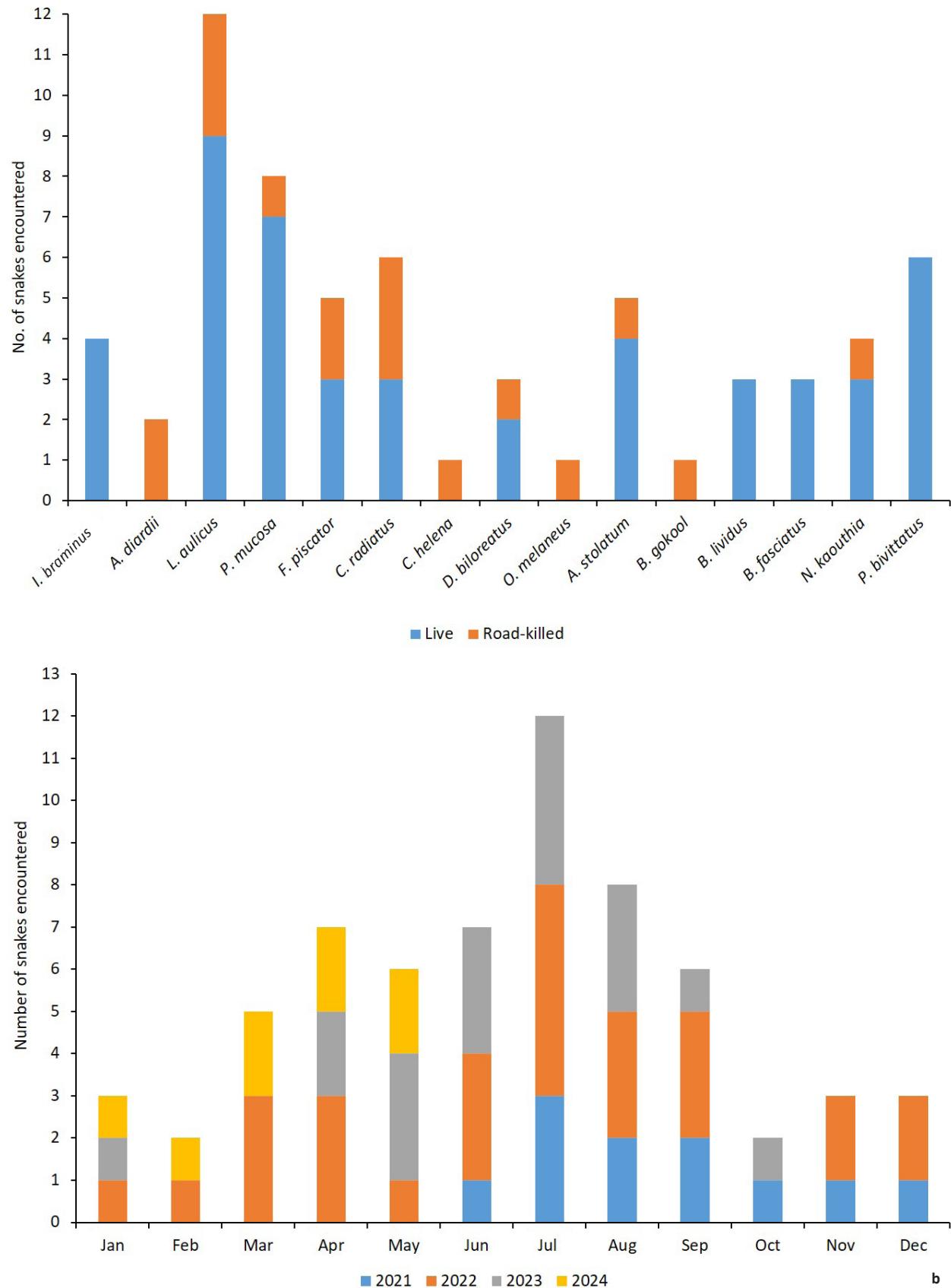


Figure 1. a—bar diagram showing the number of species-wise snakes encountered at Tezpur University campus during the study period | b—bar diagram showing number of month-wise snakes encountered at Tezpur University campus during the study period.

Figure 2. a—map showing location of snakes encountered at Tezpur University campus during the study | b—map showing density of spatial documented snakes.

Image 2. Photographs of snakes documented at Tezpur University campus: A—*Indotyphlops braminus* (Daudin, 1803) | B—*Argyrophis diardii* (Schlegel, 1839) | C—*Lycodon aulicus* (Linnaeus, 1758) | D—*Fowlea piscator* (Müller, 1887) | E—*Ptyas mucosa* (Linnaeus, 1758) | F—*Coelognathus radiatus* (Boie, 1827) | G—*Coelognathus helena* (Daudin, 1803) | H—*Oligodon melaneus* (Wall, 1909) | I—*Amphiesma stolatum* (Linnaeus, 1758) | J—*Dendrelaphis biloreatus* (Wall, 1908) | K—*Python bivittatus* (Kuhl, 1820) | L—*Boiga gokool* (Gray, 1834) | M—*Bungarus fasciatus* (Schneider, 1801) | N—*Bungarus lividus* (Cantor, 1839) | O—*Naja kaouthia* (Lesson, 1831). Green label indicates non-venomous species, orange label indicates venomous but not medically important, and red label indicates venomous species. © Mahari J. Basumatary.

Three venomous species of snakes documented at the TUC in the present study are *Naja kaouthia*, *Bungarus fasciatus*, and *Bungarus lividus*. These venomous snakes are prevalent in many parts of northeastern India and possess the potential to cause snakebite-related medical emergencies. A recent study reported that elapid snakes, including *Naja kaouthia*, *Bungarus fasciatus*, and *Bungarus niger* were responsible for 21.5% of snakebite cases presented to the Demow Model Hospital, Sivasagar, Assam (Kakati et al. 2023).

Suggested conservation strategies

Snakes play an important role in the ecosystem as a predator as well as prey for some animals. They are biocontrol agents of pests like mice and rats. The present study revealed that 73% of encountered species of snakes in the present study were non-venomous. They were harmless, if not beneficial. Still, the presence of three venomous species of snakes (*Naja kaouthia*, *Bungarus fasciatus*, and *Bungarus lividus*) found in campus has the potential to cause medical emergencies. Therefore, to avoid unfortunate medical emergencies related to snakebite, campus dwellers are suggested to be aware of the identity, and diversity of snakes at the campus.

Translocation of animals to their own natural habitat is the best practice to conserve wildlife and to avoid negative interactions. However, in our case, almost all of the snakes rescued in the campus were released back into the forested area of the campus. In one case, a rescued *Naja kaouthia* was handed over to forest officials with the purpose of releasing it to the wild. In two cases, large individuals of *Python bivittatus* were also handed over to the forest officials for translocation.

Notably, the green coverage within the campus is shrinking gradually as a greater number of buildings are being built. This may impact the diversity of snakes and other wildlife from the campus. Additionally, many roadkill snakes detected during the study revealed that there is a challenge for the herpetofauna for coexistence in the campus. Therefore, vehicle owners, and drivers are urged to exercise greater caution while navigating the area.

REFERENCES

Ahmed, M.F., A. Das & S.K. Dutta (2009). *Amphibians and Reptiles of Northeast India: A Photographic Guide*. Aaranyak, Guwahati.

Ahsan, M.F., I.K.A. Haidar & M.M. Rahman (2015a). Status and diversity of snakes (Reptilia: Squamata: Serpentes) at the Chittagong University Campus in Chittagong, Bangladesh. *Journal of Threatened Taxa* 7(14): 8159–8166. <https://doi.org/10.11609/jott.2431.7.14.8159-8166>

Baishya, B. & A.N. Das (2018). A preliminary survey on diversity and distribution of snake fauna in Nalbari district of Assam, north eastern India. *Asian Resonance* 7: 25–31.

Barhadiya, G., J. Purkayastha, A.K. Saha & C. Ghosh (2022). Snakes in the city: Spatial and temporal assessment of snake encounters in urban Delhi, India. *Scientific Reports* 14(1): 5506. <https://doi.org/10.1038/s41598-023-50373-0>

Basfore, B., M.J. Kalita, N. Sharma & A.R. Boro (2024). An updated checklist of snakes (Reptilia: Squamata) in northeastern India derived from a review of recent literature. *Journal of Threatened Taxa* 16(11): 26131–26149. <https://doi.org/10.11609/jott.8741.16.11.26131-26149>

Bauchot, R. (2006). *Snakes: A Natural History*. Sterling Publishing Company, Inc., New York, 220 pp.

Crump, M.L. & N.J. Scott, Jr. (1994). Visual encounter surveys. Chapter 2, pp. 84–92. In: Heyer, W.R., M.A. Donnelly, R.W. McDiarmid, L.A.C. Hayek & M.S. Foster (eds.). *Measuring and Monitoring Biological Diversity: Standard Methods for Amphibians*. Smithsonian Institution Press, xix + 364pp.

Das, A., U. Saikia, B.H.C.K. Murthy, S. Dey & S.K. Dutta (2009). A herpetofaunal inventory of Barail Wildlife Sanctuary and adjacent regions, Assam, north-eastern India. *Hamadryad* 34(1): 117–134.

Deuti, K., R. Aengals, S. Raha, S. Debnath, P. Sathiyaselvam & S.R. Ganesh (2021). On further specimens of the Pit viper *Trimeresurus erythrurus* (Cantor, 1839) (Squamata: Viperidae), with description of a topotype and range extension to the Godavari Basin, peninsular India. *Journal of Animal Diversity* 3(1): 110–119.

Ferreira, S.H. & M.R. de Silva (1965). Potentiation of bradykinin and eleodoisin by BPF (bradykinin potentiating factor) from *Bothrops jararaca* venom. *Experientia* 21(6): 347–349. <https://doi.org/10.1007/BF02144709>

Forgus, J.J. (2018). *Functional Importance of Snakes in a Strandveld Ecosystem*. University of the Western Cape, 100 pp.

Gan, Z.R., R.J. Gould, J.W. Jacobs, P.A. Friedman & M.A. Polokoff (1988). Echistatin, a potent platelet aggregation inhibitor from the venom of the viper, *Echis carinatus*. *The Journal of Biological Chemistry* 263(36): 19827–19832.

Gibbons, J.W., D.E. Scott, N.A.J. Ryan, K.A. Buhlmann, T.D. Tuberville, B.S. Metts, J.L. Greene, T. Mills, Y. Leiden, S. Poppy & C.T. Winne (2000). The global decline of reptiles, déjà vu amphibians. *BioScience* 50(8): 653–666. [https://doi.org/10.1641/0006-3568\(2000\)050\[0653:TGDORD\]2.0.CO;2](https://doi.org/10.1641/0006-3568(2000)050[0653:TGDORD]2.0.CO;2)

Gogoi, T., S. Buragohain & M.J. Kalita (2023). A preliminary study on diversity of snakes rescued from Gauhati University Campus, Assam. *Biological Forum — An International Journal* 15(6): 361–366.

Islam, M. & P.K. Saikia (2014). A study on the road-kill herpetofauna of Jeypore Reserve Forest, Assam. *NeBIO* 5(1): 78–83.

Janani, S. & S.R. Ganesh (2024). Urban college campuses as safer refuge for wildlife perceived as dangerous: a case study on snakes in Madras Christian College, Chennai, India. *Journal of Fauna Biodiversity* 1(2): 86–95. <https://doi.org/10.70206/jfb.v1i2.10635>

Kakati, H., S. Giri, A. Patra, S.J. Taye, D. Agarwalla, H. Boruah & K. Mukherjee (2023). A retrospective analysis of epidemiology, clinical features of envenomation, and in-patient management of snakebites in a model secondary hospital of Assam, North-east India. *Toxicon* 230: 107175. <https://doi.org/10.1016/j.toxicon.2023.107175>

Khormizi, M.Z., B. Safaei-Mahroo, M.J. Najafabadi, A. Salemi, H.D. Dehnavi, M.N. Meybodi & H. Ghaffari (2021). Diversity and distribution of snake fauna (Squamata: Serpentes) in Yazd Province, Iran. *Herpetology Notes* 14: 1449–1462.

McKinney, M.L. (2006). Urbanization as a major cause of biotic homogenization. *Biological Conservation* 127(3): 247–260.

Munawar, A., S. Ali, A. Akrem & C. Betzel (2018). Snake venom peptides: tools of biodiscovery. *Toxins* 10(11): 474. <https://doi.org/10.3390/toxins10110474>

Öhman, A. & S. Mineka (2003). The malicious serpent: snakes as a prototypical stimulus for an evolved module of fear. *Current Directions in Psychological Science* 12(1): 5–9.

Parkin, T., C.J. Jolly, A. de Laive & B. von Takach (2021). Snakes on an

urban plain: temporal patterns of snake activity and human—snake conflict in Darwin, Australia. *Austral Ecology* 46(3): 449–462.

Purkayastha, J., M. Das & S. Sengupta (2011). Urban herpetofauna: a case study in Guwahati City of Assam, India. *Herpetology Notes* 4(2011): 195–202.

Ralph, R., M.A. Faiz, S.K. Sharma, I. Ribeiro & F. Chappuis (2022). Managing snakebite. *Thebmj*, 376: e057926. <https://doi.org/10.1136/bmj-2020-057926>

Rubbo, M.J. & J.M. Kiesecker (2005). Amphibian breeding distribution in an urbanized landscape. *Conservation Biology* 19(2): 504–511. <https://doi.org/10.1111/j.1523-1739.2005.000101.x>

Sengupta, S., J. Purkayastha, M. Das & B.K. Baruah (2016). Herpetofaunal assemblage of Deeporbeel Ramsar Site of Assam, India. *Research Journal of Contemporary Concerns* 10&11(B): 52–57.

Shome, A.R., M.M. Alam, M.F. Rabbe, M.M. Rahman & M.F. Jaman (2022). Ecology and diversity of wildlife in Dhaka University Campus, Bangladesh. *Dhaka University Journal of Biological Sciences* 30(3): 429–442. <https://doi.org/10.3329/dujbs.v30i3.59035>

Suraweera, W., D. Warrell, R. Whitaker, G. Menon, R. Rodrigues, S.H. Fu & P. Jha (2020). Trends in snakebite deaths in India from 2000 to 2019 in a nationally representative mortality study. *eLife* 9: 1–37. <https://doi.org/10.7554/eLife.54076>

Thacker, A.J. (2020). Great Lakes Snake: Estimating the Occupancy and Detection Probabilities of the Eastern Massasauga Rattlesnake *Sistrurus catenatus*. M.Sc. Thesis. Grand Valley State University.

Uetz, P. (ed.) (2025). The Reptile Database. <http://www.Reptile-Database.Org>. Accessed on 25.iv.2024.

Vanlalhruaia, P.C., Malsawmsangi, Ht. Decemson & H.T. Lalremsanga (2024). An updated checklist of snakes in the Mizoram University Campus, Mizoram. Conference: National Seminar on Recent Trends in Biodiversity Status and Conservation. Held on 27–28 March 2024 at the Department of Zoology, Assam Don Bosco University, Guwahati, Abstract PP1: 34. <https://doi.org/10.13140/RG.2.2.27741.22245>

Wall, F. (1909). Notes on snakes from the neighbourhood of Darjeeling. *The Journal of the Bombay Natural History Society* 19: 337–357.

Whitaker, R. & A. Captain (2004). *Snakes of India: The Field Guide*. Draco Books, Tamil Nadu, India, 495 pp.

Whitaker, R. & S. Whitaker (2012). Venom, antivenom production and the medically important snakes of India. *Current Science* 103(6): 635–643.

Whitaker, R. & G. Martin (2015). Diversity and distribution of medically important snakes of India pp. 115–136. In: *Toxicology: Clinical Toxicology in Asia Pacific and Africa*. Springer, Netherlands.

Willson, J.D. & C.T. Winne (2016). Evaluating the functional importance of secretive species: a case study of aquatic snake predators in isolated wetlands. *Journal of Zoology* 298(4): 266–273. <https://doi.org/10.1111/jzo.12311>

World Weather Online (2024). Tezpur, India Weather Averages — Monthly Average High and Low Temperature — Average Precipitation and Rainfall days — World Weather Online. Accessed on 13.xi.2025.

Xiao, H., H. Pan, K. Liao, M. Yang & C. Huang (2017). Snake venom PLA2, a promising target for broad-spectrum antivenom drug development. *BioMed Research International* 2017 <https://doi.org/10.1155/2017/6592820>

Yeow, C. & R.M. Kini (2012). From snake venom toxins to therapeutics—cardiovascular examples. *Toxicon* 59(4): 497–506. <https://doi.org/10.1016/j.toxicon.2011.03.017>

Author details: MAHARI JIUMIN BASUMATARY is a Ph.D. student in the Molecular Toxicology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University. His doctoral research focuses on field herpetology and snake venom proteomics, with future plans to explore venom protein-derived therapeutics. ANUBHAV BHUYAN is a Ph.D. student in the Department of Environmental Science, Tezpur University, specializing in avian ecology, species distribution modeling, and geoinformatics. His research primarily investigates bird ecology in relation to environmental change, employing advanced spatial analysis and ecological modeling techniques. ROBIN DOLEY is a professor in the Department of Molecular Biology and Biotechnology, Tezpur University, and the principal investigator of the Molecular Toxicology Laboratory. His research centers on snake venom biochemistry and the structure-function relationships of snake venom proteins.

Author contributions: MJB—designed and conducted the study, carried out photographic documentation, collected data, and prepared the manuscript. AB—performed the GIS analysis and contributed to the manuscript review. RD—conceptualized and supervised the study, provided guidance throughout all stages of the research, and reviewed the manuscript.

Supplementary Table 1. Snake sighting details: coordinates, date, time, and microhabitat.

Snake	Latitude (° N)	Longitude (° E)	Condition	Date	Time (h)	Place and microhabitat where snake was observed
<i>Indotyphlops brahminus</i>	26.697	92.832	Live	05.vii.2021	1903	On a tarmac road near department of Environmental science
<i>Indotyphlops brahminus</i>	26.696	92.829	Live	03.vi.2022	1803	On a tarmac road near bus stand
<i>Indotyphlops brahminus</i>	26.701	92.833	Live	21.xii.2022	1925	On a roadside patch of grass
<i>Indotyphlops brahminus</i>	26.698	92.835	Live	11.viii.2023	1905	Under a pile leaf litter near Kendriya Vidyalaya
<i>Argyrophis diardii</i>	26.697	92.832	Road-kill	03.vi.2021	1815	On tarmac road behind department of physics
<i>Argyrophis diardii</i>	26.699	92.832	Road-kill	08.vii.2022	2115	On tarmac road near department of Mass Communication and Journalism
<i>Lycodon aulicus</i>	26.699	92.832	Road-kill	24.viii.2021	1915	On tarmac road near cafeteria
<i>Lycodon aulicus</i>	26.697	92.829	Road-kill	03.i.2022	2000	Parking area in front of Scholars home
<i>Lycodon aulicus</i>	26.703	92.829	Road-kill	11.i.2022	2035	On a tarmac road near department of Business Administration
<i>Lycodon aulicus</i>	26.697	92.831	Live	03.ii.2022	Not recorded	In the garden in front of department of Molecular Biology and Biotechnology
<i>Lycodon aulicus</i>	26.699	92.831	Live	10.vi.2022	2215	Inside a room on the second floor of PMCWH
<i>Lycodon aulicus</i>	26.700	92.831	Live	19.xi.2022	2330	Inside a bathroom on the second floor of PMCWH
<i>Lycodon aulicus</i>	26.700	92.832	Live	14.xii.2022	1910	In a hallway, Kapili Women's Hostel
<i>Lycodon aulicus</i>	26.702	92.827	Live	03.i.2023	1716	In the grass covered play ground near school of engineering
<i>Lycodon aulicus</i>	26.702	92.833	Live	17.iv.2023	2115	Inside a bathroom of staff quarter near essential
<i>Lycodon aulicus</i>	26.705	92.829	Live	07.vii.2022	2025	Inside a bathroom, staff quarter
<i>Lycodon aulicus</i>	26.700	92.837	Live	16.ii.2023	2205	In a hallway on the third floor of Saraihat CV Raman Men's Hostel
<i>Ptyas mucosa</i>	26.699	92.833	Road-kill	14.viii.2021	1957	On a tarmac road near gymnasium
<i>Ptyas mucosa</i>	26.697	92.831	Live	07.iii.2022	1305	In the garden in front of department of Molecular Biology and Biotechnology
<i>Ptyas mucosa</i>	26.703	92.828	Live	24.iv.2022	1135	In a secondary forest near department of Electronics and Communication Engineering
<i>Ptyas mucosa</i>	26.699	92.834	Live	10.viii.2022	1456	In a garden near Chemical Sciences
<i>Ptyas mucosa</i>	26.698	92.828	Live	12.viii.2022	1530	Inside a room, staff quarter
<i>Ptyas mucosa</i>	26.697	92.827	Live	21.iv.2023	1930	In the garden of driver's colony
<i>Ptyas mucosa</i>	26.702	92.832	Live	23.v.2023	0930	Courtyard, Bordoichila Women's Hostel
<i>Ptyas mucosa</i>	26.701	92.833	Live	17.viii.2023	0845	Grass covered playground
<i>Ptyas mucosa</i>	26.703	92.831	Live	26.v.2024	0730	Secondary forest , near water tank, B type quarter
<i>Fowlea piscator</i>	26.699	92.833	Live	30.x.2021	1750	In a garden near the department of Chemical Science
<i>Fowlea piscator</i>	26.699	92.836	Live	07.iii.2022	1000	Secondary forest, near the Saraihat CV Raman Men's Hostel
<i>Fowlea piscator</i>	26.699	92.832	Live	24.iv.2022	1315	In a the garden along the road in front of Pobitora Madam Curie Women's Hostel
<i>Fowlea piscator</i>	26.699	92.833	Road-kill	09.xi.2022	Not recorded	On a tarmac road near Gymnasium
<i>Fowlea piscator</i>	26.701	92.831	Road-kill	17.i.2024	Not recorded	On a tarmac road near Niribili pond
<i>Coelognathus radiatus</i>	26.698	92.836	Live	11.vii.2021	1103	Secondary forest near animals welfare Club
<i>Coelognathus radiatus</i>	26.700	92.836	Live	03.iii.2022	1610	In a hallway
<i>Coelognathus radiatus</i>	26.704	92.830	Live	17.viii.2022	Not recorded	In a staircase of building
<i>Coelognathus radiatus</i>	26.700	92.830	Road-kill	27.ix.2022	Not recorded	On a tarmac road, near Vice Chancellor's residence
<i>Coelognathus radiatus</i>	26.700	92.830	Road-kill	09.v.2023	1945	On a tarmac road, near Vice Chancellor's residence

Snake	Latitude (°N)	Longitude (°E)	Condition	Date	Time (h)	Place and microhabitat where snake was observed
<i>Coelognathus radiatus</i>	26.700	92.835	Road-kill	29.iii.2024	Not recorded	On a tarmac road, bus stop, near Patkai Men's Hostel
<i>Coelognathus helena</i>	26.699	92.833	Road-kill	23.v.2022	2003	On a tarmac road, near the office of Dean, Students' Welfare
<i>Dendrelaphis biloreatus</i>	26.699	92.830	Live	16.vi.2023	1130	In a room on the ground floor, department of Assamese
<i>Dendrelaphis biloreatus</i>	26.700	92.829	Live	08.iii.2024	1530	On a branch of a Hibiscus plant, in a garden, Quarter B16
<i>Dendrelaphis biloreatus</i>	26.700	92.830	Road-kill	11.ix.2021	2006	On a tarmac road, bus stop near Chandraprabha Saikiani Bhawan
<i>Oligodon melaneus</i>	26.701	92.833	Road-kill	24.vi.2022	2104	On a tarmac road, near the originating point of the path leading to Jiri Women's Hostel
<i>Amphiesma stolatum</i>	26.697	92.833	Live	24.iv.2022	0815	Garden near shopping complex
<i>Amphiesma stolatum</i>	26.697	92.833	Live	17.viii.2022	1045	Garden near amenity centre
<i>Amphiesma stolatum</i>	26.700	92.832	Live	07.iii.2024	0844	Garden in front of Subansiri Womens Hostel
<i>Amphiesma stolatum</i>	26.697	92.836	Live	23.iv.2024	0730	Garden, Kendriya Vidyalaya
<i>Amphiesma stolatum</i>	26.697	92.832	Road-kill	18.v.2024	1345	On a tarmac road, between the amenity centre and the electric substation
<i>Boiga gokool</i>	26.696	92.832	Road-kill	16.vi.2023	1537	On a tarmac floor, near Department of Environmental Science
<i>Bungarus lividus</i>	26.701	92.833	Injured	19.viii.2022	2055	On a tarmac road, near Kanchenjunga Men's Hostel
<i>Bungarus lividus</i>	26.701	92.833	Live	18.viii.2023	1905	On a roadside grass patch near Essentials
<i>Bungarus lividus</i>	26.698	92.832	Live	21.x.2023	Not recorded	On a courtyard in front of Academic Building II
<i>Bungarus fasciatus</i>	26.701	92.831	Live	04.xii.2021	Not recorded	On a tarmac road, near Niribili pond
<i>Bungarus fasciatus</i>	26.701	92.830	Live	08.vii.2022	Not recorded	On a grass patch near Niribili pond
<i>Bungarus fasciatus</i>	26.699	92.831	Live	19.viii.2023	Not recorded	On a grass patch near Academic Building 1
<i>Naja kaouthia</i>	26.698	92.834	Live	17.ix.2021	1635	In the courtyard of the administrative building
<i>Naja kaouthia</i>	26.700	92.837	Live	23.i.2022	1826	In the courtyard of Saraihat CV Raman Men's Hostel
<i>Naja kaouthia</i>	26.701	92.836	Live	16.vi.2023	1940	In a hallway of Choraideu Men's Hostel
<i>Naja kaouthia</i>	26.699	92.835	Road-kill	11.viii.2023	Not recorded	On a tarmac road, Near Community Hall
<i>Python bivittatus</i>	26.703	92.832	Live	13.vii.2021	1630	Secondary forest near Jiri Women's Hostel
<i>Python bivittatus</i>	26.701	92.832	Live	10.vii.2022	1955	Garden near swimming pool
<i>Python bivittatus</i>	26.704	92.830	Live	15.ix.2022	1825	In a drain along the road leading to B-type quarters
<i>Python bivittatus</i>	26.699	92.829	Live	03.v.2023	1905	On a tarmac road, C- Type quarter
<i>Python bivittatus</i>	26.699	92.829	Live	11.vii.2023	1445	On a branch of a Litchee plant near the C-type quarters
<i>Python bivittatus</i>	26.698	92.828	Live	12.ix.2023	1230	In a secondary forest near the children park

Mr. Jatishwor Singh Irungbam, Biology Centre CAS, Branišovská, Czech Republic.
Dr. Ian J. Kitching, Natural History Museum, Cromwell Road, UK
Dr. George Mathew, Kerala Forest Research Institute, Peechi, India
Dr. John Noyes, Natural History Museum, London, UK
Dr. Albert G. Orr, Griffith University, Nathan, Australia
Dr. Sameer Padhye, Katholieke Universiteit Leuven, Belgium
Dr. Nancy van der Poorten, Toronto, Canada
Dr. Karen Schnabel, NIWA, Wellington, New Zealand
Dr. R.M. Sharma, (Retd.) Scientist, Zoological Survey of India, Pune, India
Dr. Manju Siliwal, WILD, Coimbatore, Tamil Nadu, India
Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India
Dr. K.A. Subramanian, Zoological Survey of India, New Alipore, Kolkata, India
Dr. P.M. Sureshan, Zoological Survey of India, Kozhikode, Kerala, India
Dr. R. Varatharajan, Manipur University, Imphal, Manipur, India
Dr. Eduard Vives, Museu de Ciències Naturals de Barcelona, Terrassa, Spain
Dr. James Young, Hong Kong Lepidopterists' Society, Hong Kong
Dr. R. Sundararaj, Institute of Wood Science & Technology, Bengaluru, India
Dr. M. Nithyanandan, Environmental Department, La Al Kuwait Real Estate. Co. K.S.C., Kuwait
Dr. Himender Bharti, Punjabi University, Punjab, India
Mr. Purnendu Roy, London, UK
Mr. Saito Motoki, The Butterfly Society of Japan, Tokyo, Japan
Dr. Sanjay Sondhi, TITLI TRUST, Kalpavriksh, Dehradun, India
Dr. Nguyen Thi Phuong Lien, Vietnam Academy of Science and Technology, Hanoi, Vietnam
Dr. Nitin Kulkarni, Tropical Research Institute, Jabalpur, India
Dr. Robin Wen Jiang Ngiam, National Parks Board, Singapore
Dr. Lional Monod, Natural History Museum of Geneva, Genève, Switzerland.
Dr. Asheesh Shivam, Nehru Gram Bharti University, Allahabad, India
Dr. Rosana Moreira da Rocha, Universidade Federal do Paraná, Curitiba, Brasil
Dr. Kurt R. Arnold, North Dakota State University, Saxony, Germany
Dr. James M. Carpenter, American Museum of Natural History, New York, USA
Dr. David M. Claborn, Missouri State University, Springfield, USA
Dr. Karen Schnabel, Marine Biologist, Wellington, New Zealand
Dr. Amazonas Chagas Júnior, Universidade Federal de Mato Grosso, Cuiabá, Brasil
Mr. Monsoon Jyoti Gogoi, Assam University, Silchar, Assam, India
Dr. Heo Chong Chin, Universiti Teknologi MARA (UiTM), Selangor, Malaysia
Dr. R.J. Shiel, University of Adelaide, SA 5005, Australia
Dr. Siddharth Kulkarni, The George Washington University, Washington, USA
Dr. Priyadarshan Dharma Rajan, ATREE, Bengaluru, India
Dr. Phil Alderslade, CSIRO Marine And Atmospheric Research, Hobart, Australia
Dr. John E.N. Veron, Coral Reef Research, Townsville, Australia
Dr. Daniel Whitmore, State Museum of Natural History Stuttgart, Rosenstein, Germany.
Dr. Yu-Feng Hsu, National Taiwan Normal University, Taipei City, Taiwan
Dr. Keith V. Wolfe, Antioch, California, USA
Dr. Siddharth Kulkarni, The Hormiga Lab, The George Washington University, Washington, D.C., USA
Dr. Tomas Ditrich, Faculty of Education, University of South Bohemia in Ceske Budejovice, Czech Republic
Dr. Mihaly Foldvari, Natural History Museum, University of Oslo, Norway
Dr. V.P. Uniyal, Wildlife Institute of India, Dehradun, Uttarakhand 248001, India
Dr. John T.D. Caleb, Zoological Survey of India, Kolkata, West Bengal, India
Dr. Priyadarshan Dharma Rajan, Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Bangalore, Karnataka, India

Fishes

Dr. Topiltzin Contreras MacBeath, Universidad Autónoma del estado de Morelos, México
Dr. Heok Hee Ng, National University of Singapore, Science Drive, Singapore
Dr. Rajeev Raghavan, St. Albert's College, Kochi, Kerala, India
Dr. Robert D. Sluka, Chiltern Gateway Project, A Rocha UK, Southall, Middlesex, UK
Dr. E. Vivekanandan, Central Marine Fisheries Research Institute, Chennai, India
Dr. Davor Zanella, University of Zagreb, Zagreb, Croatia
Dr. A. Biju Kumar, University of Kerala, Thiruvananthapuram, Kerala, India
Dr. Akhilesh KV, ICAR-Central Marine Fisheries Research Institute, Mumbai Research Centre, Mumbai, Maharashtra, India
Dr. J.A. Johnson, Wildlife Institute of India, Dehradun, Uttarakhand, India
Dr. R. Ravinesh, Gujarat Institute of Desert Ecology, Gujarat, India

Amphibians

Dr. Sushil K. Dutta, Indian Institute of Science, Bengaluru, Karnataka, India
Dr. Annemarie Ohler, Muséum national d'Histoire naturelle, Paris, France

Reptiles

Dr. Gernot Vogel, Heidelberg, Germany
Dr. Raja Vyas, Vadodara, Gujarat, India
Dr. Pritpal S. Soorae, Environment Agency, Abu Dhabi, UAE.
Prof. Dr. Wayne J. Fuller, Near East University, Mersin, Turkey
Prof. Chandrashekher U. Rironker, Goa University, Taleigao Plateau, Goa, India
Dr. S.R. Ganesh, Chennai Snake Park, Chennai, Tamil Nadu, India
Dr. Himansu Sekhar Das, Terrestrial & Marine Biodiversity, Abu Dhabi, UAE

Journal of Threatened Taxa is indexed/abstracted in Bibliography of Systematic Mycology, Biological Abstracts, BIOSIS Previews, CAB Abstracts, EBSCO, Google Scholar, Index Copernicus, Index Fungorum, JournalSeek, National Academy of Agricultural Sciences, NewJour, OCLC WorldCat, SCOPUS, Stanford University Libraries, Virtual Library of Biology, Zoological Records.

NAAS rating (India) 5.64

Birds

Dr. Hem Sagar Baral, Charles Sturt University, NSW Australia
Mr. H. Biju, Coimbatore, Tamil Nadu, India
Dr. Chris Bowden, Royal Society for the Protection of Birds, Sandy, UK
Dr. Priya Davidar, Pondicherry University, Kalapet, Puducherry, India
Dr. J.W. Duckworth, IUCN SSC, Bath, UK
Dr. Rajah Jayopal, SACON, Coimbatore, Tamil Nadu, India
Dr. Rajiv S. Kalsi, M.L.N. College, Yamuna Nagar, Haryana, India
Dr. V. Santharam, Rishi Valley Education Centre, Chittoor Dt., Andhra Pradesh, India
Dr. S. Balachandran, Bombay Natural History Society, Mumbai, India
Mr. J. Praveen, Bengaluru, India
Dr. C. Srinivasulu, Osmania University, Hyderabad, India
Dr. K.S. Gopi Sundar, International Crane Foundation, Baraboo, USA
Dr. Gombobaatar Sundev, Professor of Ornithology, Ulaanbaatar, Mongolia
Prof. Reuven Yosef, International Birding & Research Centre, Eilat, Israel
Dr. Taej Mundkur, Wetlands International, Wageningen, The Netherlands
Dr. Carol Inskip, Bishop Auckland Co., Durham, UK
Dr. Tim Inskip, Bishop Auckland Co., Durham, UK
Dr. V. Gokula, National College, Tiruchirappalli, Tamil Nadu, India
Dr. Arkady Lelej, Russian Academy of Sciences, Vladivostok, Russia
Dr. Simon Dowell, Science Director, Chester Zoo, UK
Dr. Mário Gabriel Santiago dos Santos, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, Vila Real, Portugal
Dr. Grant Connette, Smithsonian Institution, Royal, VA, USA
Dr. P.A. Azeez, Coimbatore, Tamil Nadu, India

Mammals

Dr. Giovanni Amori, CNR - Institute of Ecosystem Studies, Rome, Italy
Dr. Anwaruddin Chowdhury, Guwahati, India
Dr. David Mallon, Zoological Society of London, UK
Dr. Shomita Mukherjee, SACON, Coimbatore, Tamil Nadu, India
Dr. Angie Appel, Wild Cat Network, Germany
Dr. P.O. Nameer, Kerala Agricultural University, Thrissur, Kerala, India
Dr. Ian Redmond, UNEP Convention on Migratory Species, Lansdown, UK
Dr. Heidi S. Riddle, Riddle's Elephant and Wildlife Sanctuary, Arkansas, USA
Dr. Karin Schwartz, George Mason University, Fairfax, Virginia.
Dr. Lala A.K. Singh, Bhubaneswar, Orissa, India
Dr. Mewa Singh, Mysore University, Mysore, India
Dr. Paul Racey, University of Exeter, Devon, UK
Dr. Honnavalli N. Kumara, SACON, Anaikatty P.O., Coimbatore, Tamil Nadu, India
Dr. Nishith Dharaiya, HNG University, Patan, Gujarat, India
Dr. Spartaco Gippoliti, Socio Onorario Società Italiana per la Storia della Fauna "Giuseppe Altobello", Rome, Italy
Dr. Justus Joshua, Green Future Foundation, Tiruchirappalli, Tamil Nadu, India
Dr. H. Raghuram, The American College, Madurai, Tamil Nadu, India
Dr. Paul Bates, Harison Institute, Kent, UK
Dr. Jim Sanderson, Small Wild Cat Conservation Foundation, Hartford, USA
Dr. Dan Challender, University of Kent, Canterbury, UK
Dr. David Mallon, Manchester Metropolitan University, Derbyshire, UK
Dr. Brian L. Cypher, California State University-Stanislaus, Bakersfield, CA
Dr. S.S. Talmale, Zoological Survey of India, Pune, Maharashtra, India
Prof. Karan Bahadur Shah, Budhanilkantha Municipality, Kathmandu, Nepal
Dr. Susan Cheyne, Borneo Nature Foundation International, Palangkaraya, Indonesia
Dr. Hemanta Kafley, Wildlife Sciences, Tarleton State University, Texas, USA

Other Disciplines

Dr. Aniruddha Belsare, Columbia MO 65203, USA (Veterinary)
Dr. Mandar S. Paingankar, University of Pune, Pune, Maharashtra, India (Molecular)
Dr. Jack Tordoff, Critical Ecosystem Partnership Fund, Arlington, USA (Communities)
Dr. Ulrike Streicher, University of Oregon, Eugene, USA (Veterinary)
Dr. Hari Balasubramanian, EcoAdvisors, Nova Scotia, Canada (Communities)
Dr. Rayanna Helleni Santos Bezerra, Universidade Federal de Sergipe, São Cristóvão, Brazil
Dr. Jamie R. Wood, Landcare Research, Canterbury, New Zealand
Dr. Wendy Collinson-Jonker, Endangered Wildlife Trust, Gauteng, South Africa
Dr. Rajeshkumar G. Jani, Anand Agricultural University, Anand, Gujarat, India
Dr. O.N. Tiwari, Senior Scientist, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
Dr. L.D. Singla, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
Dr. Rupika S. Rajakaruna, University of Peradeniya, Peradeniya, Sri Lanka
Dr. Bharat Baviskar, Wild-CER, Nagpur, Maharashtra 440013, India

Reviewers 2021–2023

Due to paucity of space, the list of reviewers for 2021–2023 is available online.

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.

Print copies of the Journal are available at cost. Write to:
The Managing Editor, JoTT,
c/o Wildlife Information Liaison Development Society,
3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore,
Tamil Nadu 641006, India
ravi@threatenedtaxa.org & ravi@zooreach.org

Articles

Floral inventory and habitat significance of riparian ecosystem along the banks of Chithari River, Kasaragod, Kerala, India

– Sreehari K. Mohan, Shyamkumar Puravankara & P. Biju, Pp. 27407–27425

Propagation through stem cutting and air layering of a Critically Endangered tree *Humboldtia unijuga* Bedd. var. *trijuga* J.Joseph & V.Chandras. (Magnoliopsida: Fabales: Fabaceae)

– Scaria Shintu & P.S. Jothish, Pp. 27426–27432

Niche characterization and distribution of Sikkim Himalayan *Begonia* (Begoniaceae), India: a niche modeling approach

– Aditya Pradhan, Dibyendu Adhikari & Arun Chettri, Pp. 27433–27443

Diversity of snakes (Reptilia: Serpentes) in the Tezpur University Campus, Assam, India

– Mahari Jiumin Basumatary, Anubhav Bhuyan & Robin Doley, Pp. 27444–27455

Diversity and status of shorebirds in the estuaries of Algiers, northern Algeria

– Imad Eddine Rezouani, Belkacem Aimene Boulaouad, Selmane Chabani, Khalil Draidi & Badis Bakhouche, Pp. 27456–27463

Communities attitudes and conservation strategies for flying foxes *Pteropus* spp. (Mammalia: Chiroptera: Pteropodidae): a case study from Sabah, Malaysia Borneo

– Lawrence Alan Bansa, Marcela Pimid, Liesbeth Frias, Sergio Guerrero-Sánchez & Noor Haliza Hasan, Pp. 27464–27487

Communications

Leaf architecture of threatened *Aquilaria cumingiana* (Decne.) Ridley and *Aquilaria malaccensis* Lam. (Thymelaeales: Thymelaeaceae) using morphometrics analysis

– Rhea Lou R. Germo, Christian C. Estrologo & Gindol Rey A. Limbaro, Pp. 27488–27495

First record of *Euclimacia nodosa* (Westwood, 1847) and two species of the genus *Mantispilla* Enderlein, 1910 (Neuroptera: Mantispidae) from the sub-Himalayan foothills of West Bengal, India

– Abhirup Saha, Ratnadeep Sarkar, Subhajit Das, Prapti Das & Dhiraj Saha, Pp. 27496–27505

Butterfly diversity in Jitpur Simara Sub-metropolitan City, Bara District, Nepal: a preliminary checklist

– Alisha Mulmi, Prakriti Chataut & Mahamad Sayab Miya, Pp. 27506–27516

First documented case of flunixin residue in a Himalayan Vulture *Gyps himalayensis* Hume, 1869 (Aves: Accipitridae: Accipitridae) in India: conservation and veterinary implications

– Soumya Sundar Chakraborty, Debal Ray, Apurba Sen, P.J. Harikrishnan, Nabi Kanta Jha & Rounaq Ghosh, Pp. 27517–27522

Review

MaxENT tool for species modelling in India: an overview

– S. Suresh Ramanan, A. Arunachalam, U.K. Sahoo & Kalidas Upadhyaya, Pp. 27523–27534

Short Communications

Vocalisations of Rusty-spotted Cats *Prionailurus rubiginosus* (I. Geoffroy Saint-Hilaire, 1831) (Mammalia: Carnivora: Felidae) in Frankfurt Zoo

– Vera Pfannerstill, Johannes Köhler & Sabrina Linn, Pp. 27535–27539

Effect of schistosomiasis on captive elephants in Madhya Pradesh, India

– Onkar Anchal & K.P. Singh, Pp. 27540–27543

Notes

Recent additions and taxonomic changes in the liverwort and hornwort flora of India

– Shuvadeep Majumdar & Monalisa Dey, Pp. 27544–27547

First photographic record of the Smooth-coated Otter *Lutra perspicillata* in Polavaram Forest Range, Andhra Pradesh, India

– Arun Kumar Gorati, Ritesh Vishwakarma, Anukul Nath & Parag Nigam, Pp. 27548–27550

Publisher & Host

Threatened Taxa