

Building evidence for conservation globally

Journal of Threatened TAXA

10.11609/jott.2025.17.10.27551-27786

www.threatenedtaxa.org

26 October 2025 (Online & Print)

17(10): 27551-27786

ISSN 0974-7907 (Online)

ISSN 0974-7893 (Print)

Open Access

Publisher

Wildlife Information Liaison Development Societywww.wild.zooreach.org

Host

Zoo Outreach Organizationwww.zooreach.org

Srivari Illam, No. 61, Karthik Nagar, 10th Street, Saravanampatti, Coimbatore, Tamil Nadu 641035, India
Registered Office: 3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore, Tamil Nadu 641006, India
Ph: +91 9385339863 | www.threatenedtaxa.org
Email: sanjay@threatenedtaxa.org

EDITORS

Founder & Chief Editor

Dr. Sanjay Molur

Wildlife Information Liaison Development (WILD) Society & Zoo Outreach Organization (ZOO), Coimbatore, Tamil Nadu 641006, India

Assistant Editor

Dr. Chaithra Shree J., WILD/ZOO, Coimbatore, Tamil Nadu 641006, India

Managing Editor

Mr. B. Ravichandran, WILD/ZOO, Coimbatore, Tamil Nadu 641006, India

Associate Editors

Dr. Mandar Paingankar, Government Science College Gadchiroli, Maharashtra 442605, India**Dr. Ulrike Streicher**, Wildlife Veterinarian, Eugene, Oregon, USA**Ms. Priyanka Iyer**, ZOO/WILD, Coimbatore, Tamil Nadu 641006, India

Board of Editors

Dr. Russel Mittermeier

Executive Vice Chair, Conservation International, Arlington, Virginia 22202, USA

Prof. Mewa Singh Ph.D., FASc, FNA, FNAsc, FNAPsy

Ramanna Fellow and Life-Long Distinguished Professor, Biopsychology Laboratory, and Institute of Excellence, University of Mysore, Mysuru, Karnataka 570006, India; Honorary Professor, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore; and Adjunct Professor, National Institute of Advanced Studies, Bangalore

Stephen D. Nash

Scientific Illustrator, Conservation International, Dept. of Anatomical Sciences, Health Sciences Center, T-8, Room 045, Stony Brook University, Stony Brook, NY 11794-8081, USA

Dr. Fred Pluthero

Toronto, Canada

Dr. Priya Davidar

Sigur Nature Trust, Chadapatti, Mavinhalla PO, Nilgiris, Tamil Nadu 643223, India

Dr. John Fellowes

Honorary Assistant Professor, The Kadoorie Institute, 8/F, T.T. Tsui Building, The University of Hong Kong, Pokfulam Road, Hong Kong

Prof. Dr. Mirco Solé

Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Vice-coordenador do Programa de Pós-Graduação em Zoologia, Rodovia Ilhéus/Itabuna, Km 16 (45662-000) Salobrinho, Ilhéus - Bahia - Brasil

Dr. Rajeev Raghavan

Professor of Taxonomy, Kerala University of Fisheries & Ocean Studies, Kochi, Kerala, India

English Editors**Mrs. Mira Bhojwani**, Pune, India**Dr. Fred Pluthero**, Toronto, Canada**Copy Editors****Ms. Usha Madgunki**, Zooreach, Coimbatore, India**Ms. Trisa Bhattacharjee**, Zooreach. Coimbatore, India**Ms. Paloma Noronha**, Daman & Diu, India**Web Development****Mrs. Latha G. Ravikumar**, ZOO/WILD, Coimbatore, India**Typesetting****Mrs. Radhika**, Zooreach, Coimbatore, India**Mrs. Geetha**, Zooreach, Coimbatore India**Fundraising/Communications****Mrs. Payal B. Molur**, Coimbatore, India**Subject Editors 2021–2023****Fungi****Dr. B. Shivaraju**, Bengaluru, Karnataka, India**Dr. R.K. Verma**, Tropical Forest Research Institute, Jabalpur, India**Dr. Vatsavaya S. Raju**, Kakatiya University, Warangal, Andhra Pradesh, India**Dr. M. Krishnappa**, Jnana Sahyadri, Kuvenpu University, Shimoga, Karnataka, India**Dr. K.R. Sridhar**, Mangalore University, Mangalagangotri, Mangalore, Karnataka, India**Dr. Gunjan Biswas**, Vidyasagar University, Midnapore, West Bengal, India**Dr. Kiran Ramchandra Ranadive**, Annaheb Magar Mahavidyalaya, Maharashtra, India**Plants****Dr. G.P. Sinha**, Botanical Survey of India, Allahabad, India**Dr. N.P. Balakrishnan**, Ret. Joint Director, BSI, Coimbatore, India**Dr. Shonil Bhagwat**, Open University and University of Oxford, UK**Prof. D.J. Bhat**, Retd. Professor, Goa University, Goa, India**Dr. Ferdinand Boero**, Università del Salento, Lecce, Italy**Dr. Dale R. Calder**, Royal Ontario Museum, Toronto, Ontario, Canada**Dr. Cleofas Cervancia**, Univ. of Philippines Los Baños College Laguna, Philippines**Dr. F.B. Vincent Florens**, University of Mauritius, Mauritius**Dr. Merlin Franco**, Curtin University, Malaysia**Dr. V. Irudayaraj**, St. Xavier's College, Palayamkottai, Tamil Nadu, India**Dr. B.S. Kholia**, Botanical Survey of India, Gangtok, Sikkim, India**Dr. Pankaj Kumar**, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, USA**Dr. V. Sampath Kumar**, Botanical Survey of India, Howrah, West Bengal, India**Dr. A.J. Solomon Raju**, Andhra University, Visakhapatnam, India**Dr. Vijayasankar Raman**, University of Mississippi, USA**Dr. B. Ravi Prasad Rao**, Sri Krishnadevaraya University, Anantapur, India**Dr. K. Ravikumar**, FRLHT, Bengaluru, Karnataka, India**Dr. Aparna Watve**, Pune, Maharashtra, India**Dr. Qiang Liu**, Xishuangbanna Tropical Botanical Garden, Yunnan, China**Dr. Noor Azhar Mohamed Shazili**, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia**Dr. M.K. Vasudeva Rao**, Shiv Ranjan Housing Society, Pune, Maharashtra, India**Prof. A.J. Solomon Raju**, Andhra University, Visakhapatnam, India**Dr. Manda Datar**, Agharkar Research Institute, Pune, Maharashtra, India**Dr. M.K. Janarthanam**, Goa University, Goa, India**Dr. K. Karthigeyan**, Botanical Survey of India, India**Dr. Errol Vela**, University of Montpellier, Montpellier, France**Dr. P. Lakshminarasiham**, Botanical Survey of India, Howrah, India**Dr. Larry R. Noblick**, Montgomery Botanical Center, Miami, USA**Dr. K. Haridasan**, Pallavur, Palakkad District, Kerala, India**Dr. Analinda Manila-Fajard**, University of the Philippines Los Banos, Laguna, Philippines**Dr. P.A. Siru**, Central University of Kerala, Kasaragod, Kerala, India**Dr. Afroz Alam**, Banasthali Vidyapith (accredited A grade by NAAC), Rajasthan, India**Dr. K.P. Rajesh**, Zamorin's Guruvayurappan College, GA College PO, Kozhikode, Kerala, India**Dr. David E. Boufford**, Harvard University Herbaria, Cambridge, MA 02138-2020, USA**Dr. Ritesh Kumar Choudhary**, Agharkar Research Institute, Pune, Maharashtra, India**Dr. A.G. Pandurangan**, Thiruvananthapuram, Kerala, India**Dr. Navendu Page**, Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India**Dr. Kannan C.S. Warrier**, Institute of Forest Genetics and Tree Breeding, Tamil Nadu, India**Invertebrates****Dr. R.K. Avasthi**, Rohtak University, Haryana, India**Dr. D.B. Bastawade**, Maharashtra, India**Dr. Partha Pratim Bhattacharjee**, Tripura University, Suryamaninagar, India**Dr. Kailash Chandra**, Zoological Survey of India, Jabalpur, Madhya Pradesh, India**Dr. Ansie Dippenaar-Schoeman**, University of Pretoria, Queenswood, South Africa**Dr. Rory Dow**, National Museum of natural History Naturalis, The Netherlands**Dr. Brian Fisher**, California Academy of Sciences, USA**Dr. Richard Gallon**, Ilandudno, North Wales, LL30 1UP**Dr. Hemant V. Ghate**, Modern College, Pune, India**Dr. M. Monwar Hossain**, Jahangirnagar University, Dhaka, BangladeshFor Focus, Scope, Aims, and Policies, visit https://threatenedtaxa.org/index.php/JoTT/aims_scopeFor Article Submission Guidelines, visit <https://threatenedtaxa.org/index.php/JoTT/about/submissions>For Policies against Scientific Misconduct, visit https://threatenedtaxa.org/index.php/JoTT/policies_various

continued on the back inside cover

Cover: A Warty Hammer Orchid *Drakaea livida* gets pollinated by a male thynnine wasp through 'sexual deception' — a colour pencil reproduction of photos by ron_n_beths (flickr.com) and Rod Peakall; Water colour reproduction of Flame Lily *Gloriosa superba* — photo by Passakoran_14; and a bag worm and its architectural genius (source unknown). Art work by Pannagarsri G.

Floral traits, pollination syndromes, and nectar resources in tropical plants of Western Ghats

Ankur Patwardhan¹ , Medhavi Tadwalkar² , Amruta Joglekar³ , Mrunalini Sonne⁴ , Vivek Pawar⁵ , Pratiksha Mestry⁶ , Shivani Kulkarni⁷ , Akanksha Kashikar⁸ & Tejaswini Pachpor⁹

^{1–7,9} Annasaheb Kulkarni Department of Biodiversity, MES Abasaheb Garware College, Pune, Maharashtra 411004, India.

^{1,2,3} Research and Action in Natural Wealth Administration (RANWA), 16 Swastishree Society, Ganeshnagar, Kothrud, Pune, Maharashtra 411052, India.

⁹ Department of Bioscience and Technology, Dr Vishwanath Karad's MIT WPU, Paud Road Pune, Maharashtra 411038, India.

⁸ Department of Statistics, Savitribai Phule Pune University, Ganeshkhind, Pune, Maharashtra 411007, India.

¹ankurpatwardhan@gmail.com (corresponding author), ²himedhavi@gmail.com, ³amrutamjoglekar@gmail.com,

⁴ssonne929@gmail.com, ⁵pawarvivek100@gmail.com, ⁶pratiksha.mestry46@gmail.com, ⁷shivani.kulkarni46@gmail.com,

⁸akanksha.kashikar@gmail.com, ⁹tejaswini.pachpor@gmail.com (corresponding author)

Abstract: Tropical regions are known to have a high percentage of animal-pollinated plants. This study explores the natural history of pollination in an understudied biodiversity hotspot, the tropical forests of India's Western Ghats. It is the first-ever attempt to gain insights into three critical aspects of pollination simultaneously, i.e., pollination syndromes, floral visitors, and standing nectar crop. Data on the attributes of floral visitors of 62 plant species were collected through regular field visits for three years allowing for sampling across seasons. 'Tube' was the most dominant flower type (20) followed by 'Dish to bowl' with 18 species, 'Brush or Head' (13), and 'Gullet' with nine species. The range of nectar quantity per flower varied from 0.05–13.7 µL. Nearly 40 percent of plant species observed by us have only Lepidopteran visitors. Fifteen plant species were visited by hymenopterans and lepidopterans, whereas five plant species had hymenopteran visitors only. In the light of rapidly declining pollinator diversity, our study highlights the significance of floral visitors in the pollination of some conservation-significant species, as well as points to determinants of floral visitation and success.

Keywords: Biodiversity hotspot, floral visitor diversity, flower colour, flower shape, pollinators, standing nectar crop, northern Western Ghats.

Editor: Anonymity requested.

Date of publication: 26 October 2025 (online & print)

Citation: Patwardhan, A., M. Tadwalkar, A. Joglekar, M. Sonne, V. Pawar, P. Mestry, S. Kulkarni, A. Kashikar & T. Pachpor (2025). Floral traits, pollination syndromes, and nectar resources in tropical plants of Western Ghats. *Journal of Threatened Taxa* 17(10): 27637–27650. <https://doi.org/10.11609/jott.9755.17.10.27637-27650>

Copyright: © Patwardhan et al. 2025. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: The study is supported by Elsevier Foundation and ISC3 'Green and Sustainable Chemistry Challenge' initiative (Awardee – Dr Ankur Patwardhan).

Competing interests: The authors declare no competing interests.

Author details: See end of this article.

Author contributions: AP: conceptualization, investigation and supervision, funding acquisition, manuscript checking. MT and AJ: methodology design for pollination syndrome studies and data collection. MS and VP: data collection and curation regarding standing nectar crop estimation. PM and SK: data collection, organization and curation pertaining to floral visitors. AK: statistical analyses. TP: data validation, methodology design for standing nectar crop estimation, original draft preparation.

Acknowledgments: The study was a part of the project entitled, 'Developing butterfly attractants for pollination and ecosystem health' supported by Elsevier Foundation and ISC3 under 'Green and Sustainable Chemistry Challenge' initiative. We are thankful to prof. Rob van Daalen and prof. Klaus Kümmerer for their encouragement and guidance. The support from principal, MES Abasaheb Garware College and RANWA, Pune is duly acknowledged. We also thank Shri. Subhash Puranik, deputy conservator of forests, State Forest Department, and Maharashtra State Biodiversity Board for their cooperation and support. Assistance in the field by Ganpat Kale, Shweta Mujumdar, Vidya Kudale, Madhura Agashe, Kshitija Parkar and Alap Bhatt is also acknowledged. We thank prof. Ganeshaiyah for his critical inputs on the draft manuscript. Akanksha Kashikar's work was supported by a grant from Rashtriya Uchchatar Shiksha Abhiyan (RUSA I and II) for Biodiversity projects implemented at Savitribai Phule Pune University. Thanks are also due to Sujal Phadke and Aley Joseph Pallickaparambil for inputs during the manuscript preparation. We also thank Dr Navendu Page for his inputs.

Annasaheb Kulkarni
Department of BIODIVERSITY

MIT-WPU
[सिविल इंजिनियरिंग यूनिवर्सिटी]

INTRODUCTION

Flowering plants play a critical role in the ecosystem by not only providing food and rewards to different animal visitors, but also by providing sites for predation, mating, and as oviposition & brooding sites (Larson et al. 2001). Pollination is a crucial ecosystem service provided by diverse floral visitors to both wild and cultivated plants. Plants and pollinators interact in diverse, and complex ways. Pollination syndromes—defined by floral traits such as morphology, phylogeny, and rewards—help predict plant visitors (Barrios et al. 2016). The amount of nectar, its composition, and placement are also determinants of plant-pollinator interactions (Parachnowitsch et al. 2019).

Bees are assumed to be the most important pollinators for crops as well as wild plants. Globally, 56% of plant species rely on bees and wasps for pollination, while butterflies & moths account for 11%, flies 10%, beetles 3%, birds 12%, and 8% are wind-pollinated (Sanchez & Wyckhuys 2019). Without floral visitors, about 1/3rd of the flowering species would be unable to contribute to seed formation, germination, and the survival of the species (Ollerton et al. 2011).

Pollination syndromes are a set of floral characters including colour, presence of nectar guides, flower scent, nectar reward, pollen, and flower shape that play a role in attracting a particular type of pollinator towards the plant (Yan et al. 2016; Dellinger 2020). They are named after the most typical pollinators (Faegri & van der Pijl 1979; Fenster et al. 2004). The blossom classes (flower types) are correlated to a particular pollinating agent. For instance, flowers with long corolla tubes are pollinated by insects having long proboscis, such as butterflies & moths, and are a part of psychophily pollination syndrome. Ollerton et al. (2011) stated that the percentage of animal-pollinated plants is above 90% in case of tropical regions. This has led to increase in the proportion of plants with functionally specialized pollination systems (i.e., pollination by only one functional group of animals such as lepidopterans or hymenopterans) in tropical regions.

The need to shift the focus from studies related to 'bee only pollination process' to pollination carried out by 'non-bee pollinators' have been highlighted by many researchers (Garibaldi et al. 2013; Bartomeus et al. 2014). Cusser et al. (2021), in their recent paper, have shown that non-bee pollinators such as butterflies, and flies contribute much more than reported, and credited for so far. They play a role in providing pollination service to spatially and temporally unique

flowers, which would otherwise remain unpollinated by conventional pollinators such as bees. Considering the significant role played by non-bee pollinators in the process of pollination, there is a need for study of other insects such as butterflies, wasps, flies, and beetles for developing strategies for increasing pollination of wild, and cultivated plant species. In such cases, studying floral visitor networks can be the first step towards understanding the role of diverse pollinators in an ecosystem.

Global studies are underway to investigate the roles of pollinators in sustaining both wild and cultivated plant species. In diverse tropical forests, flower-visiting insects remain underexplored for their relationship with plants (Tan et al. 2017). Though there are few studies focusing on identifying floral visitors of agricultural crop species in India (Chaudhary 2006; Sinu & Shivanna 2007), there is dearth of comparative studies involving multiple species of wild forest flora. Certain studies have attempted to explore the plant-floral visitor relationship, but they were largely species specific (Somanathan & Borges 2001; Sharma et al. 2011). Despite extensive research on agricultural pollination in India (Chaudhary 2006; Sinu & Shivanna 2007), studies on pollination syndromes in wild forest flora remain scarce.

According to Johnson & Steiner (2000) and Ollerton & Watts (2000), plants were often categorized according to their perceived syndrome, but mostly in absence of actual data of flower visitation or pollination by animals. Especially in Western Ghats and tropical forests, where the documentation of pollinator data mainly focused on one or few species (Grindeland et al. 2005; Huang et al. 2006; Sharma et al. 2011; Lemaitre et al. 2014). Our study investigates floral traits and visitor diversity across 62 plant species, addressing the following questions:

1. How is floral visitor diversity influenced by flower morphology, color, pollination syndrome, and sexual organ placement?
2. What are the patterns of standing nectar crop (SNC) across species?
3. Is there a relationship between nectar volume, blossom type, and flower color?

MATERIALS AND METHODS

Experimental study sites

Present study was conducted at two locations - evergreen forests of Amboli in northern Western Ghats (NWG) and dry scrub hill forests within the city of Pune (Image 1).

Amboli (15.950° N, 74.000° E), situated at 700 m is located in Sawantwadi Taluka of Sindhudurg District of Maharashtra (Image 1C) in northern Western Ghats. These seasonal forests receive annual rainfall ranging 6,000–7,000 mm, dry period length (DPL) of 7–8 months, and average temperatures of minimum 8°C, and maximum 35°C. Primary vegetation type is evergreen. The forests harbour several endemic and threatened plant species. The area is proposed as ecologically sensitive zone and also forms a part of geographically, and ecologically important Sahyadri–Konkan Ecological Corridor (Bawa et al. 2007).

Pune (18.516° N, 73.850° E) is a plateau city situated near the western margin of the Deccan plateau. It lies on the leeward side of the Western Ghats. It is situated at an altitude of 560 m. The city is surrounded by hills on the east and the south. The climate is typical monsoon, with three distinct seasons, viz., summer, rainy, and winter. The hill forests (Bhamburda–Vetal Hill and Parvati–Pachgaon) are located in the heart of Pune city. The temperature ranges between 10–43 °C with annual rainfall range of 600–700 mm, and DPL of 8–9 months. The fragile hill forests primarily harbour scrub forests

and grasslands, but now witnessed plantation drives of exotic species such as *Glyricidia sepium*, *Dalbergia melanoxylon*, and are 'Habitat Islands' surrounded by ever-increasing urbanization from all sides (Image 1B).

Plant species selection

A total of 62 flowering plant species (48 wild and 14 cultivated) belonging to 30 families were studied for floral visitor documentation. These plant species are found in the study areas 1 and 2. Species - level identification and nomenclature were done using regional flora (Almeida 1990; Singh et al. 2001) and by referring to Plants of the World Online database (<https://pwo.science.kew.org>). Endemicity and IUCN Red List status of the species were assigned by referring to standard literature (Pascal 1988; BIOTIK 2008; Singh et al. 2015; <https://www.iucnredlist.org/>). For species-specific floral visitor documentation, individual plants were selected based on peak flowering season, flowering percentage, and ease of access to the flowering branches.

Floral attributes

Each species was classified by flower type such

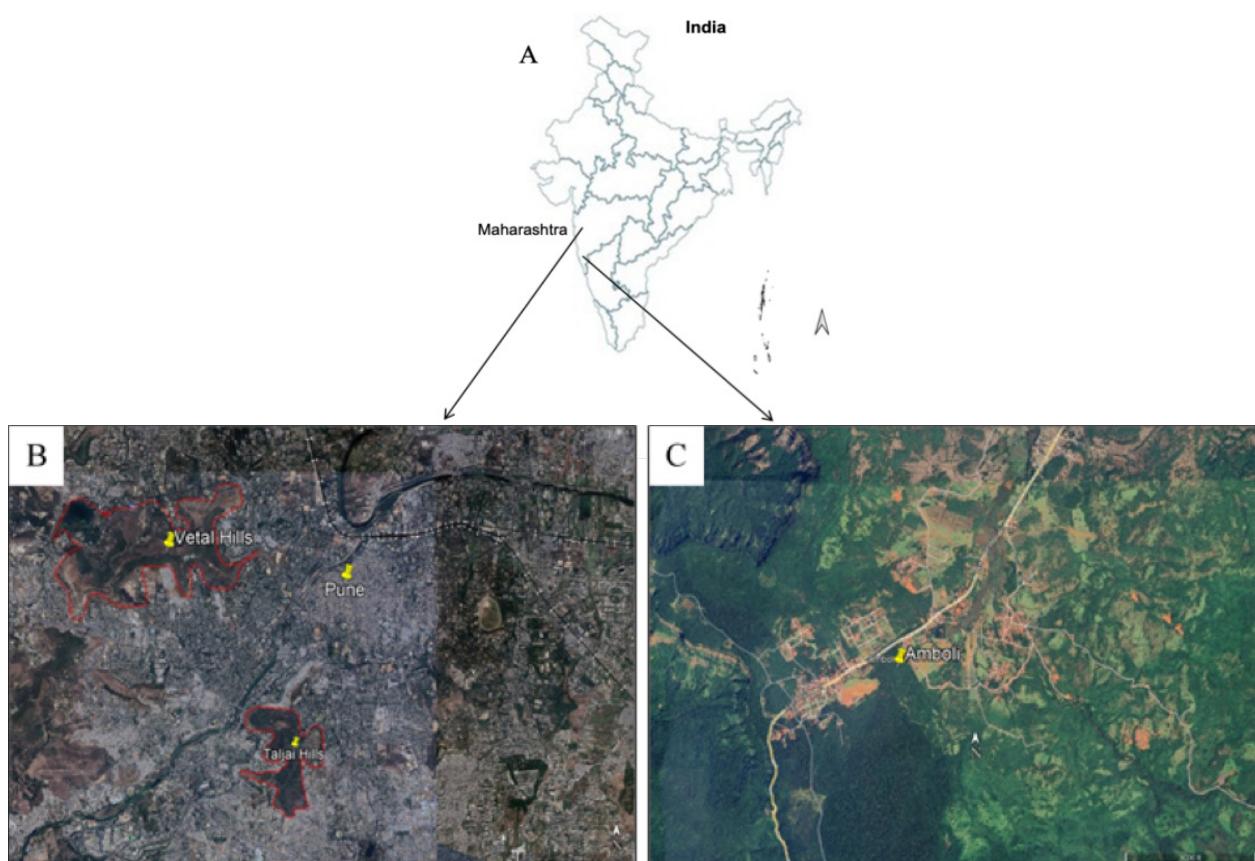


Image 1. Study Area: A—Map of India depicting state of Maharashtra | B—Pune hill forests | C—Evergreen forests of Amboli.

as dish to bowl, brush or head, bell or funnel, gullet, flag, tube, and trap, based on the description, and classification of flower type given by Faegri & Van der Pijl (1979) as represented in Image 2. Flower colour was also assigned based on field observations. Dish to bowl type has the reproductive organs more or less at the centre of the blossom and is actinomorphic. Brush or head type defines itself and the external surface as exclusively or partly formed by the sexual organs and is actinomorphic or asymmetric. Bell or funnel type has rim which advertises functions and sexual organs that are distinctly centric, and is actinomorphic. Gullet type has sexual organs that are restricted to the functionally upper side of the blossom, and pollen is deposited on the back of the pollinator, and are zygomorphic. Flag types have sexual organs that are found in the lower part of the blossom, and pollen is deposited on the ventral part of the pollinator, and are actinomorphic or zygomorphic. Tube types are large and narrow, the tubes may be central, subcentric (as a spur) or excentric, excluding all visitors with mouth-parts shorter than effective tube length. In case of trap types pollinators are temporarily held in the blossom, or experience difficulty in leaving the blossom, and are actinomorphic or zygomorphic.

Floral visitor documentation

The data were collected for three years (2018–2021). An uncontrolled observation method was used for data collection. Regular field surveys once in every month for five days were conducted. The areas included Choukul Road, Mahadevgad Road, Hiranyakeshi (Amboli), and various areas of Pune's hill forests (Taljai, ARAI). All the floral visitors observed contacting the reproductive organs of flowers were systematically documented in the morning (0700–1000 h) and evening session (1600–1800 h) with the naked eye, and binoculars (Nikon Action 8 X 40). These time slots were decided based on a literature review Pachpor et al. (2022) and pilot survey conducted in the study area. Digital SLR camera (Nikon D7100, 105 mm macro lens, Sigma 150–500 mm telephoto lens and Canon 1200 D with 18 X 55 mm lens and 55 X 250 mm telephoto lens) was used for the photo-documentation. Insects were also collected using a sweep net method. Floral visitors were identified using standard literature (McGavin 2002; Grimmett et al. 2011; Bhakare & Ogale 2018). For shortlisted species, floral visitors' occurrence was counted based on the number of times the particular visitor foraged on the flower using a 30-minute count method. Floral visitors were assigned to one of the following taxonomic groups: Hymenoptera, Hemiptera, Diptera, Coleoptera, Lepidoptera, Aranae,

and Passeriformes. Butterflies were identified at the species level. Other insect visitors were identified up to the order level.

Nectar collection and standing nectar crop estimation

Nectar was sampled from at least 50 bagged and 50 unbagged individual flowers in the morning hours between 0700–1000 h by probing each flower with a calibrated Drummonds 0.5 μ L micro-capillary tube, measuring the lengths of nectar in the tube in order to determine nectar volumes. For the flowering species with large sized nectaries and larger nectar volume, nectar was estimated using Biohit Proline micropipettes of 5–10 μ L (FAO 1995). Standing nectar crop was estimated by bagging the inflorescence/flowers with the fine mesh bridal veil the previous evening to ensure that the nectar was not robbed by the floral visitors before sampling.

Statistical analyses

It was observed that the nectar values do not follow normal distribution. The distributions of nectar values are highly skewed. Since median is a better measure of central tendency in skewed data sets, we used non-parametric multi sample bootstrap-based string for differences in the median nectar value for different flower types and different colours. For each flower type and each colour, we have generated 5,000 bootstrap samples, of the same size as in the original data and estimated the mean difference between the medians for each pair of types, and colours. We have also constructed quantile-based confidence interval for the difference of medians. The confidence intervals which do not contain zero, correspond to the pairs which have significantly different values of medians.

RESULTS

Floral attributes

Sixty-two plant species belonging to 30 families were studied for floral morphology and visitors' diversity. Table 1 provides data on flower morphology, flower colour, flower type, odour, primary attractants, sexual organs, and types of floral visitors. Out of 62 plant species (including wild and cultivated varieties), 41 were actinomorphic and 21 exhibited zygomorphic symmetry. In total six flower types were recorded. 'Tube' was the most dominant flower type (20) followed by 'dish to bowl' with 18 species, 'brush or head' (13), and 'gullet' type with nine species, whereas 'flag' and 'bell or funnel'

type was each represented by a solitary species. White colour flowers were seen in case of 25 species. Coloured flowers included orange, lavender, blue, yellow, orange, pink, and red flowers. Sexual organs were exposed in 41 species and concealed in 21 plant species. Twenty seven species possess both flower colour and nectar as primary attractants, whereas in 22 species nectar serves as the sole attractant. Eleven species have characteristic odour associated with them. Seven species had nectar guides, while extra floral nectaries were found only in *Euphorbia*.

Floral visitors

The floral visitors that were encountered during the present study belonged to seven different orders. Floral visitors primarily belonged to Hymenoptera (bees, wasps, and ants), Diptera (flies), and Lepidoptera (butterflies and moths) orders. Few plants were also visited by members of Araneae (spiders), Coleoptera (beetles), Hemiptera (bugs), and Passeriformes (birds). Members of Araneae (spiders) were seen ambushing prey in the flowers. Nearly 40 percent plant species observed by us have only lepidopteran visitors (Table 1). Fifteen plant species were visited by hymenopterans and lepidopterans, and five plant species visited by only hymenopterans. Less than three plants species were visited by Diptera and Hymenoptera; Coleoptera, Diptera, Hymenoptera, and Lepidoptera; Passeriformes; Hymenoptera and Passeriformes; Diptera, Hymenoptera, Lepidoptera, and Passeriformes; Araneae, Diptera, Hymenoptera, and Lepidoptera; Hymenoptera, Lepidoptera, and Passeriformes; Coleoptera, Lepidoptera, and Passeriformes; Coleoptera, Hymenoptera, and Passeriformes; and Coleoptera, Diptera, Hemiptera, and Hymenoptera. Rest all other insect orders were found to be visiting less than 5 percent species (Table 1).

Out of 62 total plant species, we further shortlisted eight species from evergreen forests for detailed investigation of floral visitor study. This selection was based on either their endemic status (for e.g., *Holigarna grahamii*, *Moullava spicata*, and *Ligustrum robustum* ssp. *perrottetii*), or significance for conservation (*Syzygium caryophyllum* is endangered) or potential for medicinal value (*Mappia nimmoniana*, *Symplocos racemosa*, *Salacia chinensis*, and *Lagerstroemia microcarpa*). In depth investigation of actual floral visits by different visitors revealed their foraging patterns (Figure 1). Of the total visits recorded, Diptera (flies) and Hymenoptera (bees) were the primary floral visitors, accounting for 39% and 28% of the visits, respectively, followed by Lepidoptera (18%). Members of

Hymenoptera, Diptera, and Lepidoptera were amongst the most common foragers in all the species studied. Maximum observations of lepidopteran visitors were recorded on *Holigarna grahamii*. In species like *Mappia nimmoniana* nearly 50% observations were of dipteran flies. Three species of *Apis* were found to be foraging on *Syzygium caryophyllum*. Ants were main floral visitors of *Salacia chinensis*. Few spiders (Order Araneae) were seen ambushing in the flowers and preyed upon the floral visitors, while insects like thrips were observed residing in the flowers of *Holigarna grahamii*. Birds like Crimson-backed Sunbird *Leptocoma minima* and Pale-billed Flowerpecker *Dicaeum erythrorhynchos*, were observed foraging on flowers of *H. grahamii* and *M. spicata*. Although we did not specifically compare the diversity of floral visitors between the two sites (wild vs. urban), we did record certain observations. For example, *Leptocoma minima* was found visiting plant species such as *Leea indica* in the wild, whereas, the same plant species in the urban area was found attracting Purple Sunbird *Cinnyris asiaticus*. Figure 1 illustrates the dominance of Hymenoptera and Diptera in floral visits, with Lepidoptera showing species-specific preferences.

Standing nectar crop

Nectar serves as a primary reward for most pollinators. Pollinators' visit to a particular flower is guided by various factors. Various olfactory & visual cues and nectar rewards play a role in predicting which pollinator visits, and successfully pollinates the plant (Barrios et al. 2016). Standing nectar crop (SNC) is the total amount of nectar available for pollinators at a given time. We collected data on the standing nectar crop for 52 plant species. Nectar volume ranged from 0.05–13.7 μ l.

Association of nectar volume with flower type and flower colour

Mean difference between median values of nectar volume was calculated for each pair of flower types. We have considered five flower types. Hence, there are 10 possible pairs. The mean difference between median nectar volumes ranged from 0.19–8.8 μ l. Maximum mean difference between median nectar values (>8) was observed between 'flag' type and other flower types (rush or head, gullet, dish to bowl and tube). Thus, flag type flowers contain significantly more nectar than the other types.

Similarly, mean difference between median values of nectar volume was calculated for each pair of colours. We have considered 17 colours. Hence, there are 136

Table 1. Pollination syndromes, floral attributes, and floral visitors of plant species in the study area.

Plant species	Family	Flower symmetry	Colour	Type	Odour	Primary attractants	Sexual organs	Nectar volume (µl) (Mean ± SD)	Floral visitors (present study)	Floral visitors (previous study)
1 <i>Crossandra undulifolia</i> Salisb. ** [§]	Acanthaceae	Zygomorphic	Orange	Tube	Not significant	Colour and nectar	Concealed	0.27 ± 0.23	Hymenoptera and Lepidoptera	—
2 <i>Cynospernum aspernum</i> Nees* [§]	Acanthaceae	Zygomorphic	Blue	Gullet	Not significant	Colour and nectar	Exposed	0.68 ± 0.18	Lepidoptera	—
3 <i>Eranthemum roseum</i> (Vahl) R.Br.* [§]	Acanthaceae	Zygomorphic	Blue	Tube	Not significant	Colour and nectar	Concealed	1.87 ± 0.55	Lepidoptera	—
4 <i>Hygrophila serpyllum</i> (Nees) T.Anderson* [§]	Acanthaceae	Zygomorphic	Blue	Gullet	Not significant	Colour and nectar; nectar guides present	Exposed	0.44	Lepidoptera	—
5 <i>Justicia santapaui</i> Bennet* [§]	Acanthaceae	Zygomorphic	White	Gullet	Not significant	Nectar; nectar guides present	Exposed	10.06 ± 0.16	Hymenoptera and Lepidoptera	—
6 <i>Holigarna grahamii</i> (Wight) Kurz	Anacardiaceae	Actinomorphic	Cream	Dish to Bowl	Not significant	Nectar	Exposed	—	Coleoptera, Lepidoptera and Passeriformes	—
7 <i>Carissa spinarum</i> L.* [§]	Apocynaceae	Actinomorphic	White	Tube	Mild sweet	Odour and nectar	Concealed	4.27	Lepidoptera	Lepidoptera (Raju et al. 2004)
8 <i>Catharanthus roseus</i> (L.) G.Don ** [§]	Apocynaceae	Actinomorphic	Pink	Tube	Not significant	Colour and nectar	Concealed	0.69 ± 0.32	Lepidoptera	Lepidoptera (Raju et al. 2004)
9 <i>Gymnema sylvestre</i> (Retz.) R.Br. ex Schultes* [§]	Apocynaceae	Actinomorphic	Yellowish white	Dish to Bowl	Not significant	Nectar	Exposed	0.57 ± 0.17	Lepidoptera	—
10 <i>Schefflera</i> spp. * [§]	Araliaceae	Actinomorphic	Pinkish White	Dish to Bowl	Not significant	Colour and nectar	Exposed	0.04 ± 0.2	Hymenoptera	—
11 <i>Adelocaryum coelestinum</i> (Lindl.) Brandis* [§]	Boraginaceae	Actinomorphic	Bluish white	Dish to Bowl	Mild sweet	Colour, odour and nectar; nectar guides present	Exposed	0.522 ± 0.28	Lepidoptera	—
12 <i>Boswellia serrata</i> Roxb.*	Burseraceae	Actinomorphic	White	Dish to Bowl	Not significant	Nectar	Exposed	—	Hymenoptera and Lepidoptera	Hymenoptera and Lepidoptera (Sunmichan et al. 2005)
13 <i>Capparis moonii</i> Wight* [§]	Capparaceae	Actinomorphic	White	Brush or Head	Not significant	Nectar	Exposed	3.34 ± 0.27	Hymenoptera	—
14 <i>Salacia chinensis</i> L.*	Celastraceae	Actinomorphic	Green	Dish to Bowl	Pungent	Nectar	Exposed	—	Diptera and Hymenoptera	—
15 <i>Garcinia talbotii</i> Raiz. ex Sant.* [§]	Clusiaceae	Actinomorphic	White	Dish to Bowl	Strong unpleasant	Odour and nectar	Exposed	0.8 ± 0.41	Hymenoptera and Passeriformes	—
16 <i>Euphorbia terracina</i> L.* [§]	Euphorbiaceae	Zygomorphic	Green	Dish to Bowl	Not significant	Nectar, extra floral nectar present	Exposed	0.095 ± 0.11	Hymenoptera and Lepidoptera	—
17 <i>Albizia chinensis</i> (Osbeck) Merr.*	Fabaceae	Actinomorphic	Pink	Brush or Head	Not significant	Colour and nectar	Exposed	—	Hymenoptera	—

Plant species	Family	Flower symmetry	Colour	Type	Odour	Primary attractants	Sexual organs	Nectar volume (μ l) (Mean \pm SD)	Floral visitors (present study)	Floral visitors (previous study)
18 <i>Crotalaria retusa</i> L. * ^s	Fabaceae	Zygomorphic	Yellow	Flag	Not significant	Colour and nectar	Concealed	8.4 \pm 0.54	Lepidoptera	Lepidoptera and Hymenoptera (Raju et al. 2022)
19 <i>Moullava spicata</i> (Daltz.) Nicols. * ^s	Fabaceae	Zygomorphic	Red and yellow	Gullet	Not significant	Colour and nectar	Exposed	12.01 \pm 0.18	Coleoptera, Hymenoptera and Passeriformes	—
20 <i>Senegalia rugata</i> (Lam.) Britton & Rose* ^s	Fabaceae	Actinomorphic	White	Brush or Head	Not significant	Nectar	Exposed	—	Diptera and Hymenoptera	—
21 <i>Mappia nimmoniana</i> (J.Graham) Byng & Stull * ^s	Icacinaceae	Actinomorphic	Yellowish green	Dish to Bowl	Strong foetid rotten	Odour and nectar	Exposed	1.37 \pm 0.49	Coleoptera, Diptera, Hymenoptera and Lepidoptera (Sharma et al. 2011)	—
22 <i>Callicarpa tomentosa</i> (L.) Murt. *	Lamiaceae	Actinomorphic	Pink	Brush or Head	Mild sweet	Colour, odour, and nectar	Exposed	—	Diptera and Hymenoptera	—
23 <i>Clerodendrum infortunatum</i> L. * ^s	Lamiaceae	Zygomorphic	White	Gullet	Mild sweet	Odour and nectar	Exposed	1.36 \pm 0.52	Lepidoptera	Hymenoptera (Laha et al. 2020)
24 <i>Clerodendrum paniculatum</i> L.** ^s	Lamiaceae	Zygomorphic	Orange	Tube	Not significant	Colour and nectar	Exposed	0.088 \pm 0.067	Lepidoptera	Lepidoptera (Kato et al. 2008)
25 <i>Leucas stelligera</i> Wall. * ^s	Lamiaceae	Zygomorphic	White	Gullet	Mild sweet	Odour and nectar	Concealed	0.526 \pm 0.4	Hymenoptera and Lepidoptera	Lepidoptera (Kulkarni et al. 2023)
26 <i>Vitex negundo</i> L. * ^s	Lamiaceae	Zygomorphic	Blue	Gullet	Not significant	Colour and nectar	Exposed	0.134 \pm 0.075	Lepidoptera	—
27 <i>Saraca asoca</i> – Bisexual (Roxb.) * ^s	Leguminosae	Actinomorphic	Orange	Tube	Not significant	Colour and nectar	Exposed	0.35	Lepidoptera	—
28 <i>Torenia fournieri</i> Linden ex E. Fourn. ** ^s	Linderniaceae	Zygomorphic	Pink	Gullet	Not significant	Colour and nectar, nectar guides present	Concealed	0.3 \pm 0.37	Lepidoptera	—
29 <i>Torenia fournieri</i> Linden ex E. Fourn. *** ^s	Linderniaceae	Zygomorphic	Violet	Gullet	Not significant	Colour and nectar, nectar guides present	Concealed	2.14 \pm 1.44	Lepidoptera	—
30 <i>Lagerstroemia microcarpa</i> Wight*	Lythraceae	Actinomorphic	White	Dish to Bowl	Not significant	Nectar	Exposed	—	Coleoptera, Diptera, Hemiptera and Hymenoptera	Hymenoptera (Kumar & Khanduri 2016)
31 <i>Woodfordia fruticosa</i> (L.) Kurz * ^s	Lythraceae	Zygomorphic	Red	Brush or Head	Not significant	Colour and nectar	Exposed	6.33 \pm 0.76	Passeriformes	Lepidoptera (Raju et al. 2004), Hymenoptera (Laha et al. 2020)
32 <i>Sida acuta</i> Burm.f.* ^s	Malvaceae	Actinomorphic	Yellow	Dish to Bowl	Not significant	Colour and nectar	Exposed	0.1	Lepidoptera	—

Plant species	Family	Flower symmetry	Colour	Type	Odour	Primary attractants	Sexual organs	Nectar volume (μl) (Mean±SD)	Floral visitors (present study)	Floral visitors (previous study)
33 <i>Memecylon umbellatum</i> Burm.f. [*]	Melastomataceae	Actinomorphic	Blue	Dish to Bowl	Not significant	Colour and nectar	Exposed	–	Hymenoptera	Hymenoptera (Nayak & Davidar 2010)
34 <i>Syzygium canophyllum</i> Aiston ^{*\$}	Myrtaceae	Actinomorphic	White	Brush or Head	Not significant	Nectar	Exposed	0.34 ± 0.20	Coleoptera, Diptera, Hymenoptera and Lepidoptera	–
35 <i>Syzygium cumini</i> (L.) Skeels ^{*\$}	Myrtaceae	Actinomorphic	White	Brush or Head	Not significant	Nectar	Exposed	0.26 ± 0.019	Coleoptera, Hymenoptera, Lepidoptera and Passeriformes	Lepidoptera (Rau et al. 2004)
36 <i>Syzygium hemisphericum</i> (Wight) Aiston ^{*\$}	Myrtaceae	Actinomorphic	White	Brush or Head	Not significant	Nectar	Exposed	13.7 ± 20.3	Hymenoptera, Lepidoptera and Passeriformes	–
37 <i>Syzygium zeylanicum</i> (L.) DC. ^{*\$}	Myrtaceae	Actinomorphic	White	Brush or Head	Not significant	Nectar	Exposed	–	Hymenoptera and Lepidoptera	–
38 <i>Ligustrum robustum</i> subsp. <i>perrottetii</i> (A.DC.) de Juan ^{*\$}	Oleaceae	Actinomorphic	White	Tube	Not significant	Nectar	Exposed	0.28 ± 0.135	Coleoptera, Diptera, Hymenoptera and Lepidoptera	Lepidoptera (Pachpor et al. 2022)
39 <i>Parasopubia delphiniifolia</i> (L.) H.-P.Hoffm. & Eb.Fisch. ^{*\$}	Orobanchaceae	Zygomorphic	Pink	Bell or Funnel	Not significant	Colour and nectar, nectar guides present	Concealed	0.06	Lepidoptera	–
40 <i>Persicaria chinensis</i> (L.) H.Gross ^{*\$}	Polygonaceae	Actinomorphic	White	Dish to Bowl	Not significant	Nectar	Exposed	0.27 ± 0.17	Lepidoptera	–
41 <i>Catunaregam spinosa</i> (Thunb.) Tirveng ^{*\$}	Rubiaceae	Actinomorphic	White and Yellow	Tube	Not significant	Colour and nectar	Exposed	9.34 ± 2.4	Hymenoptera and Lepidoptera	Lepidoptera (Kato et al. 2008)
42 <i>Ixora coccinea</i> L. ^{**\$}	Rubiaceae	Actinomorphic	Peach	Tube	Not significant	Colour and nectar	Concealed	0.058 ± 0.019	Lepidoptera	–
43 <i>Ixora coccinea</i> L. ^{**\$}	Rubiaceae	Actinomorphic	Pink	Tube	Not significant	Colour and nectar	Concealed	0.11 ± 0.055	Lepidoptera	–
44 <i>Ixora coccinea</i> L. ^{**\$}	Rubiaceae	Actinomorphic	Red	Tube	Not significant	Colour and nectar	Concealed	0.06 ± 0.022	Lepidoptera	Lepidoptera (Kulkarni et al. 2023)
45 <i>Pentas lanceolata</i> (Forssk.) ^{**\$}	Rubiaceae	Actinomorphic	Lavender	Tube	Not significant	Colour and nectar	Concealed	0.24 ± 0.17	Lepidoptera	–
46 <i>Pentas lanceolata</i> (Forssk.) ^{**\$}	Rubiaceae	Actinomorphic	Pink	Tube	Not significant	Colour and nectar	Concealed	0.144 ± 0.16	Lepidoptera	–
47 <i>Psydrax dicoccos</i> (Gaertn.) ^{*\$}	Rubiaceae	Actinomorphic	White	Dish to Bowl	Strong sweet	Colour, odour, and nectar	Exposed	1.27 ± 0.322	Lepidoptera and Hymenoptera	Lepidoptera (Kato et al. 2008; Pachpor et al. 2022)
48 <i>Wendlandia thyrsoidea</i> (Roth) Steud. ^{*\$}	Rubiaceae	Actinomorphic	White	Tube	Mild sweet	Nectar	Concealed	0.09 ± 0.03	Lepidoptera and Hymenoptera	Lepidoptera (Pachpor et al. 2022)

Plant species	Family	Flower symmetry	Colour	Type	Odour	Primary attractants	Sexual organs	Nectar volume (μ l) (Mean \pm SD)	Floral visitors (present study)	Floral visitors (previous study)
49 <i>Atalantia racemosa</i> Wight [*]	Rutaceae	Actinomorphic	White	Dish to Bowl	Not significant	Nectar	Exposed	0.36 \pm 0.17	Diptera and Hymenoptera	—
50 <i>Alliophyllum cobbe</i> (L.) Forsyth f. [§]	Sapindaceae	Zygomorphic	White	Dish to Bowl	Not significant	Nectar	Exposed	0.37 \pm 0.18	Lepidoptera	Hymenoptera (Laha et al. 2020)
51 <i>Dimocarpus longan</i> Lour. [*]	Sapindaceae	Actinomorphic	White	Dish to Bowl	Not significant	Nectar	Exposed	—	Hymenoptera and Lepidoptera (Riwanta et al. 2021)	Diptera, Lepidoptera and Hymenoptera (Riwanta et al. 2021)
52 <i>Lepisanthes tetraphylla</i> (Vahl) Radlk. [§]	Sapindaceae	Zygomorphic	White	Brush or Head	Not significant	Nectar	Exposed	—	Hymenoptera and Lepidoptera (Nayak & Davidar 2010)	Hymenoptera and Lepidoptera (Nayak & Davidar 2010)
53 <i>Symplocos cochinchinensis</i> (Lour.) S. Moore [§]	Symplocaceae	Actinomorphic	White	Brush or Head	Not significant	Nectar	Exposed	0.42 \pm 0.22	Hymenoptera and Lepidoptera (Nayak & Davidar 2010)	Hymenoptera (Nayak & Davidar 2010)
54 <i>Symplocos racemosa</i> Roxb. [*]	Symplocaceae	Actinomorphic	White	Brush or Head	Not significant	Nectar	Exposed	0.3 \pm 0.2	Hymenoptera	—
55 <i>Lasiosiphon glaucus</i> (Fresen.) [§]	Thymelaeaceae	Actinomorphic	Yellow	Tube	Mild bitter	Colour, odour, and nectar	Exposed	—	Araneae, Diptera, Hymenoptera and Lepidoptera	—
56 <i>Grewia</i> spp. [§]	Tiliaceae	Actinomorphic	White	Brush or Head	Not significant	Nectar	Exposed	0.17 \pm 0.096	Lepidoptera	—
57 <i>Lantana camara</i> L. ^{*§}	Verbenaceae	Actinomorphic	Yellow	Tube	Mild sweet	Colour, odour, and nectar	Concealed	0.42 \pm 0.19	Passeriformes	—
58 <i>Lantana camara</i> L. ^{*§}	Verbenaceae	Actinomorphic	Pink and Yellow	Tube	Mild sweet	Colour, odour, and nectar	Concealed	0.128 \pm 0.13	Hymenoptera and Lepidoptera	Lepidoptera (Raju et al. 2004)
59 <i>Stachytarpheta indica</i> (L.) Vahl ^{**§}	Verbenaceae	Zygomorphic	Blue	Tube	Not significant	Colour and nectar	Concealed	0.18 \pm 0.16	Hymenoptera and Lepidoptera	Lepidoptera (Raju et al. 2004)
60 <i>Stachytarpheta jamaicensis</i> (L.) Vahl ^{**§}	Verbenaceae	Zygomorphic	Purple	Tube	Not significant	Colour and nectar	Concealed	0.24 \pm 0.11	Hymenoptera and Lepidoptera	Lepidoptera (Raju et al. 2004)
61 <i>Stachytarpheta mutabilis</i> (Jacq.) Vahl ^{**§}	Verbenaceae	Zygomorphic	Red	Tube	Not significant	Colour and nectar	Concealed	2.28 \pm 0.39	Hymenoptera and Passeriformes	—
62 <i>Leea indica</i> (Burm. f.) Merr. [§]	Vitaceae	Actinomorphic	White	Dish to Bowl	Not significant	Nectar	Exposed	0.71 \pm 0.73	Diptera, Hymenoptera, Lepidoptera and Passeriformes	—

*—Wild | **—Cultivated | §—nectar sample collected.
Plant species are arranged family-wise in alphabetical order.

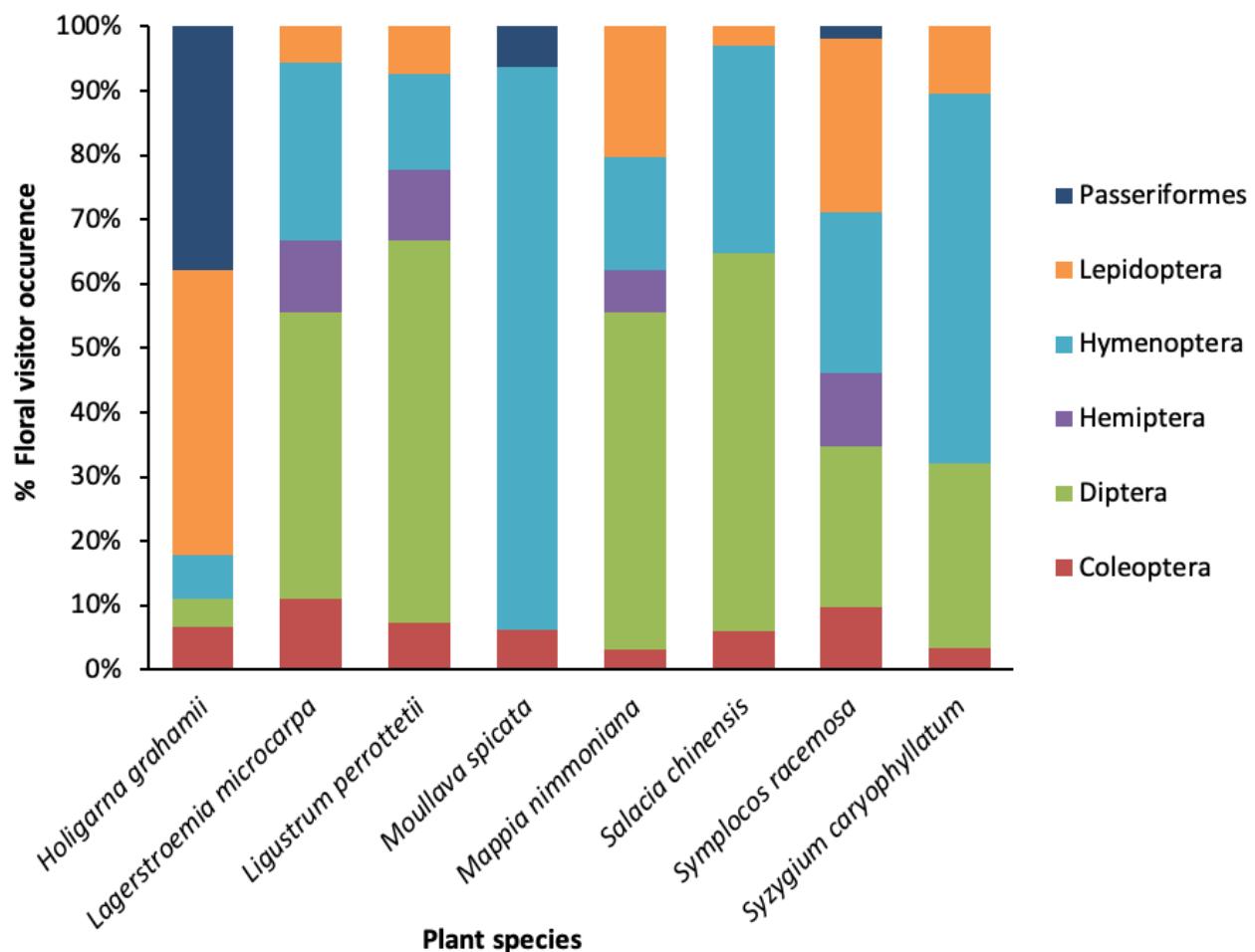


Figure 1. Floral visitor diversity in selected endemic and conservation-significant plant species.

possible pairs. Maximum mean difference between median nectar values (>9) was observed between 'white & yellow' flowers and coloured flowers (peach, orange, green, red & yellow, pink, yellowish-white, pink & yellow, lavender, purple, pinkish-white, blue, white).

DISCUSSION

Documentation of floral visitor diversity is important for understanding the role of specific pollinators in the survival of particular plant species (Rader et al. 2016). In tropical forests, the relationships between plants, and insect visitors remain largely unexplored (Tan et al. 2017). Though attempts have been made to document floral visitors of economically important agricultural crop species, there is dearth of studies pertaining to wild plants. Most studies on pollinator diversity in wild plants have focused on single species (Raju & Medabalimi 2016; Balducci et al. 2019; Cusser et al. 2021). Juan

Fernandez Islands in Chile were explored in detail for studies related to floral traits, breeding systems, floral visitors, and pollination systems, by Bernardello et al. (2001). Widespread presence of 'dish-shaped' flowers, followed by 'tubular' flowers, and dominance of green coloured flowers, followed by white & yellow coloured flowers, was reported by them. However, in the present study, we observed that 'tube' was the most dominant flower type followed by 'dish to bowl'. White colour flowers were seen in case of 42% species followed by yellow, and pink coloured flowers.

Few researchers have attempted to show how floral colour influences pollinator partitioning in plant communities (Reverté et al. 2016). Sourakov et al. (2012) has shown the preferences for flower colour influencing the type of butterfly visitors. Selwyn & Parthasarathy (2006) recorded white as the most common flower colour (similar to the present study) with predominance of night-blooming flowers. Present study showed dominance of day blooming species.

Image 2. Representative flower types in the study area: A—Dish to bowl type flowers of *Leea indica* | B—Tube flowers of *Lantana camara* | C—Brush or head type flowers of *Syzygium caryophyllatum* | D—Gullet type flowers of *Hygrophila serpyllum* | E—Bell or funnel shaped flowers of *Parasopubia delphinifolia* | F—Flag type flowers of *Crotalaria retusa*. © Ankur Patwardhan.

According to Leppik (1969) and Faegri & van der Pijl (1979) the blossom classes (flower types) are correlated to a particular pollinating agent. Many species in the tropics may have morphologically simple flowers, allowing the access of different categories of visitors, such as bees, butterflies, moths, flies, and wasps (Bawa 1990). The 'dish' and 'brush' type of flower morphology thus provide a simple entry to the floral resources for a diverse range of floral visitors. In the present study, out of seven orders of floral visitors, 'dish to bowl' and 'brush or head' flower type supported six orders each.

In the mid-elevation evergreen forests of Western Ghats, majority of the plant species were categorized as specialized for single pollinator taxa – bee, beetle or moth (Devy & Davidar 2003). The study also revealed the importance of bees as pollinating agents, as majority of the plants were visited by bees across varied floral traits. The plant species in the current study could not be assigned to a specific pollinating agent as many plant species were visited by a wide variety of pollinators ranging from bees to birds. Our findings are in accordance with studies conducted by Bawa et al. (1985) in the tropical lowland forest at La Selva, which showed that most of the plant species in the study area were found to have pollinators with wide foraging ranges. The bipartite network shows that lepidopterans visit and pollinate the highest number of plant species.

Available nectar at the time of foraging and the nectar composition are other key factors that determine the floral visits by pollinators. As per the observations by Kaeser et al. (2008), standing nectar crop is affected by both rate of nectar production (that will depend on nectar production mechanism and will vary from flower to flower) as well as nectar consumption by pollinators. We recorded a wide range of nectar volumes 0.05–13.7 μ l during the present study.

CONCLUSION

Our study documents the pollinators of tropical plant species in India and indicates that, although pollination syndromes are important in defining the diversity of floral visitors, other factors such as nectar composition, and flower type may play a more significant role in the process. Further exploration of this aspect is essential to understand the relationship between nectar volume, nectar production rate, and the number of visits by pollinators. More efforts to study the extent to which flower colour and other visual cues influence visitors' flower choice are needed for improved understanding

of the costs, and rewards of the pollination process to the plants, and the pollinators. These trade-offs will be valuable in understanding the evolution of pollinator-plant relationships.

REFERENCES

Almeida, S.M. (1990). *The Flora of Sawantwadi, Maharashtra, India*. Scientific Publishers, Jodhpur, India, Vol I, 411 pp. & Vol II, 304 pp.

Balducci, M.G., T. Van-der-Niet & S.D. Johnson (2019). Butterfly pollination of *Bonateacassidea* (Orchidaceae): Solving a puzzle from the Darwin era. *South African Journal of Botany* 123: 308–316. <https://doi.org/10.1016/j.sajb.2019.03.030>

Barrios, B., S.R. Pena, A. Salas & S. Koptur (2016). Butterflies visit more frequently, but bees are better pollinators: the importance of mouthpart dimensions in effective pollen removal and deposition. *AoB Plants* 8: plw 001. <https://doi.org/10.1093/aobpla/plw001AoB>

Bartomeus, I., S.G. Potts, I. Steffan-Dewenter, B.E. Vaissière, M. Woyciechowski, K.M. Krewenka, T. Tscheulin, S.P. Roberts, H. Szentgyörgyi, C. Westphal & R. Bommarco (2014). Contribution of insect pollinators to crop yield and quality varies with agricultural intensification. *PeerJ* 2: e328. <https://doi.org/10.7717/peerj.328>

Bawa, K.S. (1990). Plant-pollinator interactions in tropical rain forests. *Annual Review of Ecology and Systematics* 21(1): 399–422. <https://doi.org/10.1146/annurev.es.21.1101900.002151>

Bawa, K.S., S.H. Bullock, D.R. Perry, R.E. Coville & M.H. Grayum (1985). Reproductive Biology of Tropical Lowland Rain Forest Trees. II. Pollination Systems. *American Journal of Botany* 72(3): 346–356. <https://doi.org/10.2307/2443527>

Bernardello, G., G.J. Anderson, T.F. Stuessy & D.J. Crawford (2001). A survey of floral traits, breeding systems, floral visitors, and pollination systems of the angiosperms of the Juan Fernández Islands (Chile). *The Botanical Review* 67(3): 255–308. <https://doi.org/10.1007/BF02858097>

Bhakare, M. & H. Ogale (2018). A Guide to Butterflies of Western Ghats (India): Includes Butterflies of Kerala, Tamil Nadu, Karnataka, Goa, Maharashtra and Gujarat State. Milind Bhakare (privately published), x + 496 pp.

BIOTIK (2008). Biodiversity Informatics and Co-operation in Taxonomy for Interactive Shared Knowledge Base. <http://www.biotik.org/>. Accessed on 08.iv.2020.

Bawa, K.S., A. Das, J. Krishnaswamy, K.U. Karanth, N.S. Kumar & M. Rao (2007). Ecosystem profile: Western Ghats and Sri Lanka Biodiversity Hotspot Western Ghats Region. A report by Critical Ecosystem Partnership Fund, 100 pp. <https://www.cepf.net/sites/default/files/western-ghats-ecosystem-profile-english.pdf>

Chaudhary, O.P. (2006). Diversity, foraging behaviour of floral visitors and pollination ecology of fennel (*Foeniculum vulgare* Mill.). *Journal of Spices and Aromatic Crops* 15(1): 34–41.

Cusser, S., N.M. Haddad & S. Jha (2021). Unexpected functional complementarity from non-bee pollinators enhances cotton yield. *Agriculture, Ecosystems and Environment* 314: 107415. <https://doi.org/10.1016/j.agee.2021.107415>

Dellinger, A. (2020). Pollination syndromes in the 21st century: Where do we stand and where may we go? *New Phytologist* 228(4): 1193–1213. <https://doi.org/10.1111/nph.16793>

Devy, M.S. & P. Davidar (2003). Pollination systems of trees in Kakachi, a mid-elevation wet evergreen forest in Western Ghats, India. *American Journal of Botany* 90(4): 650–657. <https://doi.org/10.3732/ajb.90.4.650>

Faegri, K. & L. Van-der-Pijl (1979). *The Principles of Pollination Ecology*. Pergamon Press, Oxford, UK, 244 pp.

Food and Agriculture Organization of the United Nations (1995). *Pollination of Cultivated Plants in the Tropics*. Rome, Italy, 4 pp.

Fenster, C.B., W.S. Armbruster, P. Wilson, M.R. Dudash & J.D.

Thomson (2004). Pollination Syndromes and Floral Specialization. *Annual Review of Ecology, Evolution, and Systematics* 35: 375–403. <https://doi.org/10.1146/annurev.ecolsys.34.011802.132347>

Garibaldi, L.A., I. Steffan-Dewenter, R. Winfree, M.A. Aizen, R. Bommarco, S. Cunningham, C. Kremen, L.G. Carvalheiro, L.D. Harder, O. Afik, I. Bartomeus, F. Benjamin, V. Boreux, D. Cariveau, N.P. Chacoff, J.H. Dudenhöffer, B.M. Freitas, J. Ghazoul, S. Greenleaf, J. Hipólito & Holzs (2013). Wild pollinators enhance fruit set of crops regardless of honey bee abundance. *Science* 339(6127): 1608–1611. <https://doi.org/10.1126/science.1230200>

Grimmett, R., C. Inskip & T. Inskip (2011). *Birds of the Indian Subcontinent*. 2nd Edition. Oxford University Press & Christopher Helm, London, 528 pp.

Grindeland, J., N. Sletvold & R. Ims (2005). Effects of floral display and plant density on pollinator visitation rate in a natural population of *Digitalis purpurea*. *Functional Ecology* 19: 383–390. <https://doi.org/10.1111/j.1365-2435.2005.00988.x>

Huang, S.Q., L.L. Tang, J.F. Sun & Y. Lu (2006). Pollinator response to female and male floral display in a monoecious species and its implications for the evolution of floral dimorphism. *New Phytologist* 171: 417–424. <https://doi.org/10.1111/j.1469-8137.2006.01766.x>

Johnson, S.D. & K.E. Steiner (2000). Generalization versus specialization in plant pollination systems. *Trends in Ecology & Evolution* 15(4): 140–143. [https://doi.org/10.1016/S0169-5347\(99\)01811-X](https://doi.org/10.1016/S0169-5347(99)01811-X)

Kaeser, T., A. Sadeh & A. Shimda (2008). Variability in nectar production and standing crop, and their relation to pollinator visits in a Mediterranean shrub. *Arthropod-Plant Interactions* 2: 117–123.

Kato, M., Y. Kosaka, A. Kawakita, Y. Okuyama, C. Kobayashi, T. Phimminith & D. Thongphan (2008). Plant-pollinator interactions in tropical monsoon forests in Southeast Asia. *American Journal of Botany* 95(11): 1375–1394. <https://doi.org/10.3732/ajb.0800114>

Kulkarni, S., P. Mestry, T. Pachpor & A. Patwardhan (2023). Nectar dynamics and butterfly floral visitors of *Leucas stelligera* Wall. ex Benth. and *Ixora coccinea* L. *Arthropod-Plant Interactions* 17: 43–49. <https://doi.org/10.1007/s11829-022-09938-5>

Kumar, K.S. & V.P. Khanduri (2016). Flower pollinator interactions within two tropical tree species of Mizoram, North East India. *Notulae Scientia Biologicae* 8(2): 256–262. <https://doi.org/10.15835/nsb829789>

Laha, S., S. Chatterjee, A. Das, B. Smith & P. Basu (2020). Exploring the importance of floral resources and functional trait compatibility for maintaining bee fauna in tropical agricultural landscapes. *Journal of Insect Conservation* 24: 431–443. <https://doi.org/10.1007/s10841-020-00225-3>

Larson, B.M.H., P.G. Kevan & D.W. Inouye (2001). Flies and flowers: Taxonomic diversity of anthophiles and pollinators. *The Canadian Entomologist* 133(4): 439–465. <https://doi.org/10.4039/Ent133439-4>

Lemaitre, A.B., C.F. Pinto & H.M. Niemeyer (2014). Generalized pollination system: Are floral traits adapted to different pollinators? *Arthropod-Plant Interactions* 8: 261–272. <https://doi.org/10.1007/s11829-014-9308-1>

Leppik, E.E. (1969). Morphogenic classification of flower types. *Phytomorphology* 18: 451–466.

McGavin, G.C. (2002). Insects, Spiders and other Terrestrial Arthropods. Dorling Kindersley, London.

Nayak, G.K. & P. Davidar (2010). Pollination and breeding systems of woody plant species in tropical dry evergreen forests, southern India. *Flora - Morphology, Distribution, Functional Ecology of Plants* 205(11): 745–753. <https://doi.org/10.1016/j.flora.2009.12.041>

Ollerton, J. & S. Watts (2000). Phenotype space and floral typology: towards an objective assessment of pollination syndromes. *Det Norske Videnskaps-Akademii. I. Matematisk-Naturvidenskapelige Klasse, Skrifter, Ny Series* 39: 149–159.

Ollerton, J., R. Winfree & S. Tarrant (2011). How many flowering plants are pollinated by animals? *Oikos* 120: 321–326. <https://doi.org/10.1111/j.1600-0706.2010.18644.x>

Pachpor, T., M. Sonne, A. Bhatt, K. Parkar, S. Shahane, P. Mestry, S. Kulkarni, H. Ogale & A. Patwardhan (2022). Nectar sugar composition, standing nectar crop and floral visitor diversity of three endemic plant species from Western Ghats Biodiversity Hot-Spot of India. *Chemistry & Biodiversity* 19(6): e202200001. <https://doi.org/10.1002/cbdv.202200001>

Parachnowitsch, L.A., J.S. Manson & N. Sletvold (2019). Evolutionary ecology of nectar. *Annals of Botany* 123: 247–261. <https://doi.org/10.1093/aob/mcy132>

Pascal, J. (1988). Wet evergreen forests of Western Ghats: ecology, structure, floristic composition and succession. Institut Français Pondicherry, Travaux. De la Science et Technique, Pondicherry, 365 pp.

Plants of the World Online. <https://powo.science.kew.org>. Accessed on 18 March 2025.

Rader, R., I. Bartomeus, L.A. Garibaldi, M.P. Garratt, B.G. Howlett, R. Winfree, S.A. Cunningham, M.M. Mayfield, A.D. Arthur, G.K. Andersson & R. Bommarco (2016). Non-bee insects are important contributors to global crop pollination. *Proceedings of the National Academy of Sciences* 113(1): 146–151. <https://doi.org/10.1073/pnas.1517092112>

Raju, A.J.S. & M.R. Medabalimi (2016). Flowering phenology, breeding system, pollinators and fruiting behaviour of *Pavetta tomentosa* (Rubiaceae) Roxb. Ex. Sm., a keystone shrub species in the southern Eastern Ghats Forest, Andhra Pradesh, India. *Annali Di Botanica* 6: 9–20. <https://doi.org/10.4462/annbotrm-13160>

Raju, A.J.S., A. Bhattacharya & S.P. Rao (2004). Nectar host plants of some butterfly species at Visakhapatnam. *Science and Culture* 70(5/6): 187–190.

Raju, A.J.S., S.S. Kumar, G. Lakshminarayana, G.U. Rao, C.P. Rao & K.V. Ramana (2022). Bee-pollination in *Crotalaria laburnifolia*, *Crotalaria medicaginea*, *Crotalaria retusa* and *Crotalaria verrucosa* and *C. retusa* as a source of alkaloids for nymphalid butterflies. *Discovery* 58(317): 399–408.

Reverté, S., Retana, J., Gómez, J.M., Bosch, J. (2016). Pollinators show flower colour preferences but flowers with similar colours do not attract similar pollinators. *Annals of Botany* 118(2): 249–257. <https://doi.org/10.1093/aob/mcw103>

Riswanta, U.R., N.C. Aditya, A. Sobri & S. Sukirno (2021). Diversity and abundance of insect pollinator on *Dimocarpus longan* L. in Sawitsari research station, Sleman, Yogyakarta. In *IOP Conference Series: Earth and Environmental Science* 819(1): 012070.

Sanchez, B.F. & K.A.G. Wyckhyus (2019). Worldwide decline of the entomofauna: A review of its drivers. *Biological Conservation* 232: 8–27. <https://doi.org/10.1016/j.biocon.2019.01.020>

Selwyn, M.A. & N. Parthasarathy (2006). Reproductive traits and phenology of plants in tropical dry evergreen forest on the coromandel coast of India. *Biodiversity and Conservation* 15(10): 3207–3234. <https://doi.org/10.1007/s10531-005-0035-x>

Sharma, M., S.R. Uma, S. Leather, R. Vasudeva & K.R. Shivanna (2011). Floral resources, pollinators and fruiting in a threatened tropical deciduous tree. *Journal of Plant Ecology* 4: 259–267. <https://doi.org/10.1093/jpe/rtq029>

Singh, N.P., P. Lakshminarayanan, S. Karthikeyan & P. Prasanna (2001). *Flora of Maharashtra State*. Botanical Survey of India, Vol. I (898+228pp) & Vol. II (1079+182pp).

Singh, P.K., Karthigeyan, P. Lakshminarayanan & S.S. Dash (2015). *Endemic Vascular Plants of India*. Botanical Survey of India, Kolkata, xvi + 143 pp.

Sinu, P.A. & K.R. Shivanna (2007). Pollination biology of large cardamom (*Amomum subulatum*). *Current Science* 93(4): 548–552.

Somanathan, H. & R.M. Borges (2001). Nocturnal pollination by the Carpenter Bee *Xylocopa tenuiscapa* (Apidae) and the effect of floral display on fruit set of *Heterophragma quadriloculare* (Bignoniaceae) in India. *Biotropica* 33(1): 78–89. <https://doi.org/10.1111/j.1744-7429.2001.tb00159x>

Sourakov, A., A. Duehl & A. Sourakov (2012). Foraging Behavior of the Blue Morpho and Other Tropical Butterflies: The Chemical and Electrophysiological Basis of Olfactory Preferences and the Role of Color. *Psyche: A Journal of Entomology* 2012: 1–10. <https://doi.org/10.1155/2012/378050>

Sunnichan, V.G., H.Y. Mohan-Ram & K.R. Shivanna (2005). Reproductive biology of *Boswellia serrata*, the source of salai guggul, an important gum-resin. *Botanical Journal of the Linnean Society* 147: 73–82. <https://doi.org/10.1111/j.1095-8339.2005.00349x>

Tan, M.K., T. Artchwakom, R. Abdul-Wahab C.Y. Lee, D.M. Belabut & H.T. Wah-Tan (2017). Overlooked flower-visiting Orthoptera in Southeast Asia. *Journal of Orthoptera Research* 26(2): 143–153. <https://doi.org/10.3897/jor.26.15021>

Yan, J., Gang-Wang, Yi-Sui, Menglin-Wang & Ling-Zhang (2016). Pollinator responses to floral colour change, nectar and scent promote reproductive fitness in *Quisqualis indica* (Combretaceae). *Scientific Reports* 6(1): 1–10. <https://doi.org/10.1038/srep24408>

Author details: ANKUR PATWARDHAN—is an associate professor and entrepreneur. He holds a doctorate in Environmental Sciences. His main interests include assessment of ecosystem services, understanding impact of climate change on phenology in plants, plant-insect interaction, seed biology and urban ecology. He undertakes 'Ecological Surveys' and drafts 'Biodiversity Management Plans' (essential for Environmental Sustainability Disclosures) for industrial establishments and developmental projects. MEDHAVI TADWALKAR—holds a doctorate degree in environmental science. She has worked as an assistant professor in the field of biodiversity, ecology. She is a co-founder and director of Ecovrat Enviro Solutions, a startup committed to aid businesses achieve their sustainability goals and combat climate change. She aims to bring the research aptitude to on-ground implementation of biodiversity enhancement, sustainable livelihood practices, and nature-based solutions. AMRUTA JOGLEKAR—holds a doctorate degree in environmental science. She has research experience in field of forest ecology and natural resources database management. She is a co-founder and director of Ecovrat Enviro Solutions, a startup committed to aid businesses achieve their sustainability goals and combat climate change. Her startup work helps businesses, local community groups and organizations to attain SDGs and environmental compliance under sustainability frameworks. MRUNALINI SONNE—is a PhD research scholar at the Annasaheb Kulkarni Department of Biodiversity at M.E.S. Abasaheb Garware College, Pune, India. Her doctoral research focuses on developing biocontrol agents for freshwater purification and environmental sustainability. VIVEK PAWAR—is an assistant teacher. He holds a master's degree in biodiversity from the Annasaheb Kulkarni Department of Biodiversity, M.E.S. Abasaheb Garware College, Pune. As well as he holds another master's degree in zoology from Department of Zoology, Shivaji University Kolhapur. PRATIKSHA MESTRY—holds a master's degree in biodiversity from the Annasaheb Kulkarni Department of Biodiversity, M.E.S. Abasaheb Garware College, Pune. As a project coordinator at RANWA, she has explored plant-insect interactions, woody species diversity, and reproductive phenology cycles in tree species in evergreen forests of northern Western Ghats. Currently, she works on the conservation of threatened plant species. She is a recipient of Prakriti Research Fellowship for conservation two endangered plant species. SHIVANI KULKARNI—is a field researcher at the Applied Environmental Research Foundation (AERF), where she is currently involved in a project focused on promoting green economy for biodiversity conservation. She holds a master's degree in biodiversity. Shivan's research interests lie at the intersection of biodiversity conservation and sustainable development, with a particular focus on the SDGs through nature-based solutions. AKANKSHA KASHIKAR—an associate professor in the Department of Statistics, Savitribai Phule Pune University, specializes in stochastic processes including count data time series, and applied statistics. She is involved in interdisciplinary projects related to biodiversity and astrophysics. She recently authored the book, "Probability Theory: An Introduction Using R", published by CRC press. TEJASWINI PACHPOR—is assistant professor at Dr Vishwanath Karad's MIT WPU. She has a doctorate in microbiology and her research interests include environmental biotechnology, bioprocess technology.

Mr. Jatishwor Singh Irungbam, Biology Centre CAS, Branišovská, Czech Republic.
Dr. Ian J. Kitching, Natural History Museum, Cromwell Road, UK
Dr. George Mathew, Kerala Forest Research Institute, Peechi, India
Dr. John Noyes, Natural History Museum, London, UK
Dr. Albert G. Orr, Griffith University, Nathan, Australia
Dr. Sameer Padhye, Katholieke Universiteit Leuven, Belgium
Dr. Nancy van der Poorten, Toronto, Canada
Dr. Karen Schnabel, NIWA, Wellington, New Zealand
Dr. R.M. Sharma, (Retd.) Scientist, Zoological Survey of India, Pune, India
Dr. Manju Siliwal, WILD, Coimbatore, Tamil Nadu, India
Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India
Dr. K.A. Subramanian, Zoological Survey of India, New Alipore, Kolkata, India
Dr. P.M. Sureshan, Zoological Survey of India, Kozhikode, Kerala, India
Dr. R. Varatharajan, Manipur University, Imphal, Manipur, India
Dr. Eduard Vives, Museu de Ciències Naturals de Barcelona, Terrassa, Spain
Dr. James Young, Hong Kong Lepidopterists' Society, Hong Kong
Dr. R. Sundararaj, Institute of Wood Science & Technology, Bengaluru, India
Dr. M. Nithyanandan, Environmental Department, La Al Kuwait Real Estate. Co. K.S.C., Kuwait
Dr. Himender Bharti, Punjabi University, Punjab, India
Mr. Purnendu Roy, London, UK
Mr. Saito Motoki, The Butterfly Society of Japan, Tokyo, Japan
Dr. Sanjay Sondhi, TITLI TRUST, Kalpavriksh, Dehradun, India
Dr. Nguyen Thi Phuong Lien, Vietnam Academy of Science and Technology, Hanoi, Vietnam
Dr. Nitin Kulkarni, Tropical Research Institute, Jabalpur, India
Dr. Robin Wen Jiang Ngiam, National Parks Board, Singapore
Dr. Lional Monod, Natural History Museum of Geneva, Genève, Switzerland.
Dr. Asheesh Shivam, Nehru Gram Bharti University, Allahabad, India
Dr. Rosana Moreira da Rocha, Universidade Federal do Paraná, Curitiba, Brasil
Dr. Kurt R. Arnold, North Dakota State University, Saxony, Germany
Dr. James M. Carpenter, American Museum of Natural History, New York, USA
Dr. David M. Claborn, Missouri State University, Springfield, USA
Dr. Karen Schnabel, Marine Biologist, Wellington, New Zealand
Dr. Amazonas Chagas Júnior, Universidade Federal de Mato Grosso, Cuiabá, Brasil
Mr. Monsoon Jyoti Gogoi, Assam University, Silchar, Assam, India
Dr. Heo Chong Chin, Universiti Teknologi MARA (UiTM), Selangor, Malaysia
Dr. R.J. Shiel, University of Adelaide, SA 5005, Australia
Dr. Siddharth Kulkarni, The George Washington University, Washington, USA
Dr. Priyadarshan Dharma Rajan, ATREE, Bengaluru, India
Dr. Phil Alderslade, CSIRO Marine And Atmospheric Research, Hobart, Australia
Dr. John E.N. Veron, Coral Reef Research, Townsville, Australia
Dr. Daniel Whitmore, State Museum of Natural History Stuttgart, Rosenstein, Germany.
Dr. Yu-Feng Hsu, National Taiwan Normal University, Taipei City, Taiwan
Dr. Keith V. Wolfe, Antioch, California, USA
Dr. Siddharth Kulkarni, The Hormiga Lab, The George Washington University, Washington, D.C., USA
Dr. Tomas Ditrich, Faculty of Education, University of South Bohemia in Ceske Budejovice, Czech Republic
Dr. Mihaly Foldvari, Natural History Museum, University of Oslo, Norway
Dr. V.P. Uniyal, Wildlife Institute of India, Dehradun, Uttarakhand 248001, India
Dr. John T.D. Caleb, Zoological Survey of India, Kolkata, West Bengal, India
Dr. Priyadarshan Dharma Rajan, Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Bangalore, Karnataka, India

Fishes

Dr. Topiltzin Contreras MacBeath, Universidad Autónoma del estado de Morelos, México
Dr. Heok Hee Ng, National University of Singapore, Science Drive, Singapore
Dr. Rajeev Raghavan, St. Albert's College, Kochi, Kerala, India
Dr. Robert D. Sluka, Chiltern Gateway Project, A Rocha UK, Southall, Middlesex, UK
Dr. E. Vivekanandan, Central Marine Fisheries Research Institute, Chennai, India
Dr. Davor Zanella, University of Zagreb, Zagreb, Croatia
Dr. A. Biju Kumar, University of Kerala, Thiruvananthapuram, Kerala, India
Dr. Akhilesh KV, ICAR-Central Marine Fisheries Research Institute, Mumbai Research Centre, Mumbai, Maharashtra, India
Dr. J.A. Johnson, Wildlife Institute of India, Dehradun, Uttarakhand, India
Dr. R. Ravinesh, Gujarat Institute of Desert Ecology, Gujarat, India

Amphibians

Dr. Sushil K. Dutta, Indian Institute of Science, Bengaluru, Karnataka, India
Dr. Annemarie Ohler, Muséum national d'Histoire naturelle, Paris, France

Reptiles

Dr. Gernot Vogel, Heidelberg, Germany
Dr. Raja Vyas, Vadodara, Gujarat, India
Dr. Pritpal S. Soorae, Environment Agency, Abu Dhabi, UAE.
Prof. Dr. Wayne J. Fuller, Near East University, Mersin, Turkey
Prof. Chandrashekher U. Rironker, Goa University, Taleigao Plateau, Goa, India
Dr. S.R. Ganesh, Chennai Snake Park, Chennai, Tamil Nadu, India
Dr. Himansu Sekhar Das, Terrestrial & Marine Biodiversity, Abu Dhabi, UAE

Journal of Threatened Taxa is indexed/abstracted in Bibliography of Systematic Mycology, Biological Abstracts, BIOSIS Previews, CAB Abstracts, EBSCO, Google Scholar, Index Copernicus, Index Fungorum, JournalSeek, National Academy of Agricultural Sciences, NewJour, OCLC WorldCat, SCOPUS, Stanford University Libraries, Virtual Library of Biology, Zoological Records.

NAAS rating (India) 5.64

Birds

Dr. Hem Sagar Baral, Charles Sturt University, NSW Australia
Mr. H. Biju, Coimbatore, Tamil Nadu, India
Dr. Chris Bowden, Royal Society for the Protection of Birds, Sandy, UK
Dr. Priya Davidar, Pondicherry University, Kalapet, Puducherry, India
Dr. J.W. Duckworth, IUCN SSC, Bath, UK
Dr. Rajah Jayopal, SACON, Coimbatore, Tamil Nadu, India
Dr. Rajiv S. Kalsi, M.L.N. College, Yamuna Nagar, Haryana, India
Dr. V. Santharam, Rishi Valley Education Centre, Chittoor Dt., Andhra Pradesh, India
Dr. S. Balachandran, Bombay Natural History Society, Mumbai, India
Mr. J. Praveen, Bengaluru, India
Dr. C. Srinivasulu, Osmania University, Hyderabad, India
Dr. K.S. Gopi Sundar, International Crane Foundation, Baraboo, USA
Dr. Gombobaatar Sundev, Professor of Ornithology, Ulaanbaatar, Mongolia
Prof. Reuven Yosef, International Birding & Research Centre, Eilat, Israel
Dr. Taej Mundkur, Wetlands International, Wageningen, The Netherlands
Dr. Carol Inskip, Bishop Auckland Co., Durham, UK
Dr. Tim Inskip, Bishop Auckland Co., Durham, UK
Dr. V. Gokula, National College, Tiruchirappalli, Tamil Nadu, India
Dr. Arkady Lelej, Russian Academy of Sciences, Vladivostok, Russia
Dr. Simon Dowell, Science Director, Chester Zoo, UK
Dr. Mário Gabriel Santiago dos Santos, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, Vila Real, Portugal
Dr. Grant Connette, Smithsonian Institution, Royal, VA, USA
Dr. P.A. Azeez, Coimbatore, Tamil Nadu, India

Mammals

Dr. Giovanni Amori, CNR - Institute of Ecosystem Studies, Rome, Italy
Dr. Anwaruddin Chowdhury, Guwahati, India
Dr. David Mallon, Zoological Society of London, UK
Dr. Shomita Mukherjee, SACON, Coimbatore, Tamil Nadu, India
Dr. Angie Appel, Wild Cat Network, Germany
Dr. P.O. Nameer, Kerala Agricultural University, Thrissur, Kerala, India
Dr. Ian Redmond, UNEP Convention on Migratory Species, Lansdown, UK
Dr. Heidi S. Riddle, Riddle's Elephant and Wildlife Sanctuary, Arkansas, USA
Dr. Karin Schwartz, George Mason University, Fairfax, Virginia.
Dr. Lala A.K. Singh, Bhubaneswar, Orissa, India
Dr. Mewa Singh, Mysore University, Mysore, India
Dr. Paul Racey, University of Exeter, Devon, UK
Dr. Honnavalli N. Kumara, SACON, Anaikatty P.O., Coimbatore, Tamil Nadu, India
Dr. Nishith Dharaiya, HNG University, Patan, Gujarat, India
Dr. Spartaco Gippoliti, Socio Onorario Società Italiana per la Storia della Fauna "Giuseppe Altobello", Rome, Italy
Dr. Justus Joshua, Green Future Foundation, Tiruchirappalli, Tamil Nadu, India
Dr. H. Raghuram, The American College, Madurai, Tamil Nadu, India
Dr. Paul Bates, Harison Institute, Kent, UK
Dr. Jim Sanderson, Small Wild Cat Conservation Foundation, Hartford, USA
Dr. Dan Challender, University of Kent, Canterbury, UK
Dr. David Mallon, Manchester Metropolitan University, Derbyshire, UK
Dr. Brian L. Cypher, California State University-Stanislaus, Bakersfield, CA
Dr. S.S. Talmale, Zoological Survey of India, Pune, Maharashtra, India
Prof. Karan Bahadur Shah, Budhanilkantha Municipality, Kathmandu, Nepal
Dr. Susan Cheyne, Borneo Nature Foundation International, Palangkaraya, Indonesia
Dr. Hemanta Kafley, Wildlife Sciences, Tarleton State University, Texas, USA

Other Disciplines

Dr. Aniruddha Belsare, Columbia MO 65203, USA (Veterinary)
Dr. Mandar S. Paingankar, University of Pune, Pune, Maharashtra, India (Molecular)
Dr. Jack Tordoff, Critical Ecosystem Partnership Fund, Arlington, USA (Communities)
Dr. Ulrike Streicher, University of Oregon, Eugene, USA (Veterinary)
Dr. Hari Balasubramanian, EcoAdvisors, Nova Scotia, Canada (Communities)
Dr. Rayanna Helleni Santos Bezerra, Universidade Federal de Sergipe, São Cristóvão, Brazil
Dr. Jamie R. Wood, Landcare Research, Canterbury, New Zealand
Dr. Wendy Collinson-Jonker, Endangered Wildlife Trust, Gauteng, South Africa
Dr. Rajeshkumar G. Jani, Anand Agricultural University, Anand, Gujarat, India
Dr. O.N. Tiwari, Senior Scientist, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
Dr. L.D. Singla, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
Dr. Rupika S. Rajakaruna, University of Peradeniya, Peradeniya, Sri Lanka
Dr. Bharat Baviskar, Wild-CER, Nagpur, Maharashtra 440013, India

Reviewers 2021–2023

Due to paucity of space, the list of reviewers for 2021–2023 is available online.

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.

Print copies of the Journal are available at cost. Write to:
The Managing Editor, JoTT,
c/o Wildlife Information Liaison Development Society,
3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore,
Tamil Nadu 641006, India
ravi@threatenedtaxa.org & ravi@zooreach.org

Articles

Fruit bat (Pteropodidae) composition and diversity in the montane forests of Mt. Kampalili, Davao De Oro, Philippines

– Ilamay Joy A. Yangurin, Marion John Michael M. Achondo, Aaron Froilan M. Raganas, Aileen Grace D. Delima, Cyrose Suzie Silvosa-Millado, Dolens James B. Iñigo, Shiela Mae E. Cabrera, Sheryl Moana Marie R. Ollamina, Jayson C. Ibañez & Lief Erikson D. Gamalo, Pp. 27551–27562

The impact of anthropogenic activities on *Manis javanica* Desmarest, 1822 (Mammalia: Pholidota: Manidae) in Sepanggar Hill, Malaysia

– Nurasyiqin Awang Shairi, Julius Kodoh, Normah Binti Awang Besar & Jephte Sompud, Pp. 27563–27575

Preliminary notes on a coastal population of Striped Hyena *Hyaena hyaena* (Linnaeus, 1758) from Chilika lagoon, India

– Partha Dey, Tiasa Adhya, Gottumukkala Himaja Varma & Supriya Nandy, Pp. 27576–27583

Wildlife management and conservation implications for Blackbuck corresponding with Tal Chhapar Wildlife Sanctuary, Rajasthan, India

– Ulhas Gondhali, Yogendra Singh Rathore, Sandeep Kumar Gupta & Kanti Prakash Sharma, Pp. 27584–27593

Amphibians and reptiles of Chitwan National Park, Nepal: an updated checklist and conservation issues

– Santosh Bhattarai, Bivek Gautam, Chiranjibi Prasad Pokhrel & Ram Chandra Kandel, Pp. 27594–27610

Butterfly diversity in Nagarahole (Rajiv Gandhi) National Park of Karnataka, India: an updated checklist

– S. Santhosh, V. Gopi Krishna, G.K. Amulya, S. Sheily, M. Nithesh & S. Basavarajappa, Pp. 27611–27636

Floral traits, pollination syndromes, and nectar resources in tropical plants of Western Ghats

– Ankur Patwardhan, Medhavi Tadwalkar, Amruta Joglekar, Mrunalini Sonne, Vivek Pawar, Pratiksha Mestry, Shivani Kulkarni, Akanksha Kashikar & Tejaswini Pachpor, Pp. 27637–27650

Ecological status, distribution, and conservation strategies of *Terminalia coronata* in the community forests of southern Haryana, India

– K.C. Meena, Neetu Singh, M.S. Bhandoria, Pradeep Bansal & S.S. Yadav, Pp. 27651–27660

Pterocarpus santalinus L.f. (Magnoliopsida: Fabaceae) associated arboreal diversity in Seshachalam Biosphere Reserve, Eastern Ghats of Andhra Pradesh, India

– Buchananpalli Sunil Kumar, Araveeti Madhusudhana Reddy, Chennuru Nagendra, Madha Venkata Suresh Babu, Nandimanadalam Rajasekhar Reddy, Veeramasu Jyosthna Sailaja Rani & Salkapuram Sunitha, Pp. 27661–27674

Potential distribution, habitat composition, preference and threats to Spikenard *Nardostachys jatamansi* (D.Don) DC. in Sakteng Wildlife Sanctuary, Trashigang, Bhutan

– Dorji Phuntsho, Namgay Shacha, Pema Rinzin & Tshewang Tenzin, Pp. 27675–27687

Checklist of floristic diversity of Mahadare Conservation Reserve, Satara, Maharashtra, India

– Sunil H. Bhoite, Shweta R. Sutar, Jaykumar J. Chavan & Swapnaja M. Deshpande, Pp. 27688–27704

Communication

Assessing fish diversity in the Ujani reservoir: an updated overview after one decade

– Ganesh Markad, Ranjit More, Vinod Kakade & Jiwan Sarwade, Pp. 27705–27719

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print)

October 2025 | Vol. 17 | No. 10 | Pages: 27551–27786

Date of Publication: 26 October 2025 (Online & Print)

DOI: [10.11609/jott.2025.17.10.27551-27786](https://doi.org/10.11609/jott.2025.17.10.27551-27786)

Reviews

A review of 21st century studies on lizards (Reptilia: Squamata: Sauria) in northeastern India with an updated regional checklist

– Manmath Bharali, Manab Jyoti Kalita, Narayan Sharma & Ananda Ram Boro, Pp. 27720–27733

Understanding the ethnozoological drivers and socioeconomic patterns of bird hunting in the Indian subcontinent

– Anish Banerjee, Pp. 27734–27747

Short Communications

Recent records of endemic bird White-faced Partridge *Arborophila orientalis* (Horsfield, 1821) in Meru Betiri National Park, Indonesia

– Arif Mohammad Siddiq & Nur Kholiq, Pp. 27748–27753

Exploring carapace phenotypic variation in female Fiddler Crab *Austruca annulipes* (H. Milne Edwards, 1837): insights into adaptive strategies and ecological significance

– Vaishnavi Bharti, Sagar Naik & Nitin Sawant, Pp. 27754–27760

Habitat-specific distribution and density of fireflies (Coleoptera: Lampyridae): a comparative study between grassland and woodland habitats

– Kushal Choudhury, Firdaus Ali, Bishal Basumatary, Meghraj Barman, Papiya Das & Hilloljyoti Singha, Pp. 27761–27765

Hygrophila phlomooides Nees (Acanthaceae), a new record to the flora of northern India from Suhelwa Wildlife Sanctuary, Uttar Pradesh

– Pankaj Bharti, Baleshwar Meena, T.S. Rana & K.M. Prabhukumar, Pp. 27766–27770

The rediscovery of *Strobilanthes parryorum* C.E.C.Fisch., 1928 (Asterids: Lamiales: Acanthaceae) in Mizoram, India

– Lucy Lalawmpuii, Renthlei Lalnunfeli, Paulraj Selva Singh Richard, Pochamoni Bharath Simha Yadav, Subbiah Karuppusamy & Kholring Lalchandama, Pp. 27771–27776

New report of *Biophytum nervifolium* Thwaites (Oxalidaceae) from Gujarat, India

– Kishan Ishwarlal Prajapati, Siddharth Dangar, Santhosh Kumar Ettickal Sukumaran, Vivek Chauhan & Ekta Joshi, Pp. 27777–27781

Note

Water Monitor *Varanus salvator* predation on a Hog Deer *Axis porcinus* fawn at Kaziranga National Park, Assam, India

– Saurav Kumar Boruah, Luku Ranjan Nath, Shisukanta Nath & Nilutpal Mahanta, Pp. 27782–27784

Book Review

A book review of moths from the Eastern Ghats: Moths of Agastya

– Sanjay Sondhi, Pp. 27785–27786

Publisher & Host

Threatened Taxa