

Building evidence for conservation globally

Journal of Threatened TAXA

10.11609/jott.2026.18.1.28151-28262
www.threatenedtaxa.org

26 January 2026 (Online & Print)
18 (1): 28151-28262
ISSN 0974-7907 (Online)
ISSN 0974-7893 (Print)

Open Access

Publisher

Wildlife Information Liaison Development Societywww.wild.zooreach.org

Host

Zoo Outreach Organizationwww.zooreach.org

Srivari Illam, No. 61, Karthik Nagar, 10th Street, Saravanampatti, Coimbatore, Tamil Nadu 641035, India
Registered Office: 3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore, Tamil Nadu 641006, India

Ph: +91 9385339863 | www.threatenedtaxa.org

Email: sanjay@threatenedtaxa.org

EDITORS

Founder & Chief Editor

Dr. Sanjay Molur

Wildlife Information Liaison Development (WILD) Society & Zoo Outreach Organization (ZOO), Coimbatore, Tamil Nadu 641006, India

Assistant Editor

Dr. Chaithra Shree J., WILD/ZOO, Coimbatore, Tamil Nadu 641006, India

Managing Editor

Mr. B. Ravichandran, WILD/ZOO, Coimbatore, Tamil Nadu 641006, India

Associate Editors

Dr. Mandar Paingankar, Government Science College Gadchiroli, Maharashtra 442605, India**Dr. Ulrike Streicher**, Wildlife Veterinarian, Eugene, Oregon, USA**Ms. Priyanka Iyer**, ZOO/WILD, Coimbatore, Tamil Nadu 641006, India

Board of Editors

Dr. Russel Mittermeier

Executive Vice Chair, Conservation International, Arlington, Virginia 22202, USA

Prof. Mewa Singh Ph.D., FASc, FNA, FNAsc, FNAPsy

Ramanna Fellow and Life-Long Distinguished Professor, Biopsychology Laboratory, and Institute of Excellence, University of Mysore, Mysuru, Karnataka 570006, India; Honorary Professor, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore; and Adjunct Professor, National Institute of Advanced Studies, Bangalore

Stephen D. Nash

Scientific Illustrator, Conservation International, Dept. of Anatomical Sciences, Health Sciences Center, T-8, Room 045, Stony Brook University, Stony Brook, NY 11794-8081, USA

Dr. Fred Pluthero

Toronto, Canada

Dr. Priya Davidar

Sigur Nature Trust, Chadapatti, Mavinhalla PO, Nilgiris, Tamil Nadu 643223, India

Dr. John Fellowes

Honorary Assistant Professor, The Kadoorie Institute, 8/F, T.T. Tsui Building, The University of Hong Kong, Pokfulam Road, Hong Kong

Prof. Dr. Mirco Solé

Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Vice-coordenador do Programa de Pós-Graduação em Zoologia, Rodovia Ilhéus/Itabuna, Km 16 (45662-000) Salobrinho, Ilhéus - Bahia - Brasil

Dr. Rajeev Raghavan

Professor of Taxonomy, Kerala University of Fisheries & Ocean Studies, Kochi, Kerala, India

English Editors

Mrs. Mira Bhojwani, Pune, India**Dr. Fred Pluthero**, Toronto, Canada

Copy Editors

Ms. Usha Madgunki, Zooreach, Coimbatore, India**Ms. Trisa Bhattacharjee**, Zooreach. Coimbatore, India**Ms. Paloma Noronha**, Daman & Diu, India

Web Development

Mrs. Latha G. Ravikumar, ZOO/WILD, Coimbatore, India

Typesetting

Mrs. Radhika, Zooreach, Coimbatore, India**Mrs. Geetha**, Zooreach, Coimbatore India

Fundraising/Communications

Mrs. Payal B. Molur, Coimbatore, India

Subject Editors 2021–2023

Fungi

Dr. B. Shivaraju, Bengaluru, Karnataka, India**Dr. R.K. Verma**, Tropical Forest Research Institute, Jabalpur, India**Dr. Vatsavaya S. Raju**, Kakatiya University, Warangal, Andhra Pradesh, India**Dr. M. Krishnappa**, Jnana Sahyadri, Kuvenpu University, Shimoga, Karnataka, India**Dr. K.R. Sridhar**, Mangalore University, Mangalagangotri, Mangalore, Karnataka, India**Dr. Gunjan Biswas**, Vidyasagar University, Midnapore, West Bengal, India**Dr. Kiran Ramchandra Ranadive**, Annaheb Magar Mahavidyalaya, Maharashtra, India

Plants

Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India**Dr. N.P. Balakrishnan**, Ret. Joint Director, BSI, Coimbatore, India**Dr. Shonil Bhagwat**, Open University and University of Oxford, UK**Prof. D.J. Bhat**, Retd. Professor, Goa University, Goa, India**Dr. Ferdinand Boero**, Università del Salento, Lecce, Italy**Dr. Dale R. Calder**, Royal Ontario Museum, Toronto, Ontario, Canada**Dr. Cleofas Cervancia**, Univ. of Philippines Los Baños College Laguna, Philippines**Dr. F.B. Vincent Florens**, University of Mauritius, Mauritius**Dr. Merlin Franco**, Curtin University, Malaysia**Dr. V. Irudayaraj**, St. Xavier's College, Palayamkottai, Tamil Nadu, India**Dr. B.S. Kholia**, Botanical Survey of India, Gangtok, Sikkim, India**Dr. Pankaj Kumar**, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, USA**Dr. V. Sampath Kumar**, Botanical Survey of India, Howrah, West Bengal, India**Dr. A.J. Solomon Raju**, Andhra University, Visakhapatnam, India**Dr. Vijayasankar Raman**, University of Mississippi, USA**Dr. B. Ravi Prasad Rao**, Sri Krishnadevaraya University, Anantapur, India**Dr. K. Ravikumar**, FRLHT, Bengaluru, Karnataka, India**Dr. Aparna Watve**, Pune, Maharashtra, India**Dr. Qiang Liu**, Xishuangbanna Tropical Botanical Garden, Yunnan, China**Dr. Noor Azhar Mohamed Shazili**, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia**Dr. M.K. Vasudeva Rao**, Shiv Ranjan Housing Society, Pune, Maharashtra, India**Prof. A.J. Solomon Raju**, Andhra University, Visakhapatnam, India**Dr. Manda Datar**, Agharkar Research Institute, Pune, Maharashtra, India**Dr. M.K. Janarthanam**, Goa University, Goa, India**Dr. K. Karthigeyan**, Botanical Survey of India, India**Dr. Errol Vela**, University of Montpellier, Montpellier, France**Dr. P. Lakshminarasiham**, Botanical Survey of India, Howrah, India**Dr. Larry R. Noblick**, Montgomery Botanical Center, Miami, USA**Dr. K. Haridasan**, Pallavur, Palakkad District, Kerala, India**Dr. Analinda Manila-Fajard**, University of the Philippines Los Banos, Laguna, Philippines**Dr. P.A. Siru**, Central University of Kerala, Kasaragod, Kerala, India**Dr. Afroz Alam**, Banasthali Vidyapith (accredited A grade by NAAC), Rajasthan, India**Dr. K.P. Rajesh**, Zamorin's Guruvayurappan College, GA College PO, Kozhikode, Kerala, India**Dr. David E. Boufford**, Harvard University Herbaria, Cambridge, MA 02138-2020, USA**Dr. Ritesh Kumar Choudhary**, Agharkar Research Institute, Pune, Maharashtra, India**Dr. A.G. Pandurangan**, Thiruvananthapuram, Kerala, India**Dr. Navendu Page**, Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India**Dr. Kannan C.S. Warrier**, Institute of Forest Genetics and Tree Breeding, Tamil Nadu, India

Invertebrates

Dr. R.K. Avasthi, Rohtak University, Haryana, India**Dr. D.B. Bastawade**, Maharashtra, India**Dr. Partha Pratim Bhattacharjee**, Tripura University, Suryamaninagar, India**Dr. Kailash Chandra**, Zoological Survey of India, Jabalpur, Madhya Pradesh, India**Dr. Ansie Dippenaar-Schoeman**, University of Pretoria, Queenswood, South Africa**Dr. Rory Dow**, National Museum of natural History Naturalis, The Netherlands**Dr. Brian Fisher**, California Academy of Sciences, USA**Dr. Richard Gallon**, Ilandudno, North Wales, LL30 1UP**Dr. Hemant V. Ghate**, Modern College, Pune, India**Dr. M. Monwar Hossain**, Jahangirnagar University, Dhaka, BangladeshFor Focus, Scope, Aims, and Policies, visit https://threatenedtaxa.org/index.php/JoTT/aims_scopeFor Article Submission Guidelines, visit <https://threatenedtaxa.org/index.php/JoTT/about/submissions>For Policies against Scientific Misconduct, visit https://threatenedtaxa.org/index.php/JoTT/policies_various

continued on the back inside cover

Cover: Golden-headed Lion Tamarin *Leontopithecus chrysomelas*. Watercolor and acrylics by P. Kritika.

Habitat associations and feeding ecology of adult Tamdil Leaf-litter Frog *Leptobrachella tamdil* (Amphibia: Megophryidae) from the type locality – the Tamdil wetland, Mizoram, India

Malsawmdawngiana¹ , Esther Lalhmingliani² , Samuel Lalronunga³ , Lalrinmawia⁴ & Lalnuntluanga⁵

^{1,5} Department of Environmental Science, Mizoram University, Aizawl, Mizoram 796004, India.

² Systematic and Toxicology Laboratory, Department of Zoology, Mizoram University, Aizawl, Mizoram 796004, India.

³ House No. B-10/B, YMA Road, Chawnpui, Aizawl, Mizoram 796009, India.

⁴ Department of Zoology, Govt. Zirtiri Residential Science College, Durtlang Leitan, Mizoram 796025, India.

¹valpuia17@gmail.com, ²es_ral@yahoo.in (corresponding author), ³samuellrna@gmail.com, ⁴lrmawia@gmail.com,

⁵tluanga_249@rediffmail.com

Abstract: We conducted a study on the habitat use, food, and feeding ecology of the lesser known Tamdil Leaf-litter Frog *Leptobrachella tamdil* at its type locality. The places occupied by *L. tamdil* in the wild are characterised by 13–25 °C night temperature, 10–20 °C water temperature, 54–86% humidity, 6.84–7.15 pH, and 5–7 mg/L dissolved oxygen. We observed eight orders of prey in the gut contents of *L. tamdil*, examined by stomach-flushing live frogs among which the order Diptera was the most abundant, followed by Hymenoptera, while Hemiptera and Coleoptera were the least abundant.

Keywords: Anuran, biodiversity hotspot, Chhawl-chang, food, gut contents, Indo-Burma, microhabitat, natural history.

Mizo: Tamdil Chhawl-chang (*L. tamdil*) khawsak phung leh an chaw ei zirchianna Tamdil-ah neih a ni a. Kan zir hun chhung hian zan lam boruak chu 13–25° C, tui vawh zawng 10–20° C, boruak uap zawng 54–86% a ni. Heng uchang kawchhung atanga rannung chi hrang hrang order chi 8 rhuh a ni a, chung zingah chuan Diptera (tho/thosi lam chi) an tam ber a, Hymenoptera (fanghmir lam chi) ten an dawt a, chutih lain Hemiptera (khuangbai lam chi) leh Coleoptera (Rawmung lam chi) te an tlem ber a ni.

Editor: S.R. Ganesh, Kalinga Foundation, Agumbe, India.

Date of publication: 26 January 2026 (online & print)

Citation: Malsawmdawngiana, E. Lalhmingliani, S. Lalronunga, Lalrinmawia & Lalnuntluanga (2026). Habitat associations and feeding ecology of adult Tamdil Leaf-litter Frog *Leptobrachella tamdil* (Amphibia: Megophryidae) from the type locality – the Tamdil wetland, Mizoram, India. *Journal of Threatened Taxa* 18(1): 28194–28200. <https://doi.org/10.11609/jott.9733.18.1.28194-28200>

Copyright: © Malsawmdawngiana et al. 2026. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: The study is a part of PhD thesis and there is no real funding agency apart from UGC's Non-Net Fellowship for PhD scholars and no logos for the funding.

Competing interests: The authors declare no competing interests.

Author details: MALSAWMDAWNGIANA: He is currently enrolled as a PhD scholar in the department of Environmental Science, Mizoram University. His interest lies in the ecology of lesser known herpetofauna with special reference to northeastern India. ESTHER LALHMINGLIANI: She currently works as a professor in the Department of Zoology, Mizoram University. Her main works lies in the systematics and toxicology of insects and herpetofauna. SAMUEL LALRONUNGA: Former research associate and DBT-National Post-doctoral fellow, his main interest lies in the systematics and ecology of Herpetofauna and Ichthyofauna with special preference to northeastern India. LALRINMAWIA: He currently works as associate professor in the Department of Zoology, Govt. Zirtiri Residential Science College, Aizawl. He specialise in parasitic helminthology & soil bio-engineering. LALNUNTLUANGA: He currently works as professor in the Department of Environmental Science, Mizoram University. His specialize in social and agroforestry and biodiversity.

Author contributions: Malsawmdawngiana did field work and data collection, laboratory works and wrote the manuscript. Esther Lalhmingliani co-supervised the work and provided the financial support, laboratory support and manuscript writing. Samuel Lalronunga helps in designing the work, data collection and editing the manuscripts. Lalrinmawia helps in manuscript writing and editing. Lalnuntluanga supervised the work, preparation and editing manuscript.

Acknowledgements: We thank the CWW, Department of Environment, Forest and Climate Change, Government of Mizoram for issuing research permit (No. B. 19060/1/2020-CWLW/12) to study frogs in Tamdil Wetland. We also thank Mr Isaac Zosangliana for his assistance in field work and Mr R. Lalruatdika for helping in preparation of the study map.

INTRODUCTION

Understanding the habitat selection of an organism is essential in determining its distribution and behaviour. For this, we need to understand the behavioural interaction with its surrounding environments and quality of habitats (Figuera & Crowder 2006). Amphibians begin their lives in water, and terrestrial dwellers later transition to moist terrestrial habitats (Wells 2007). They remain closely linked to specific microhabitats and their precincts. Amphibians are endothermic animals, and are sensitive to rising temperatures. They depend on an external source to raise body temperature by absorbing solar radiation (Carey 1978). Climate change is one factor threatening amphibian populations, driving them into decline (Stuart et al. 2004). Amphibian assemblages in natural forests are always higher than in areas disturbed by anthropogenic activities, viz., jhum (slash-&-burn) cultivation land, plantation, and logging (Pawar 1999; Krishnamurthy 2003), and the presence of leaf litter and canopy cover are predictors for their assemblage (Balaji et al. 2013).

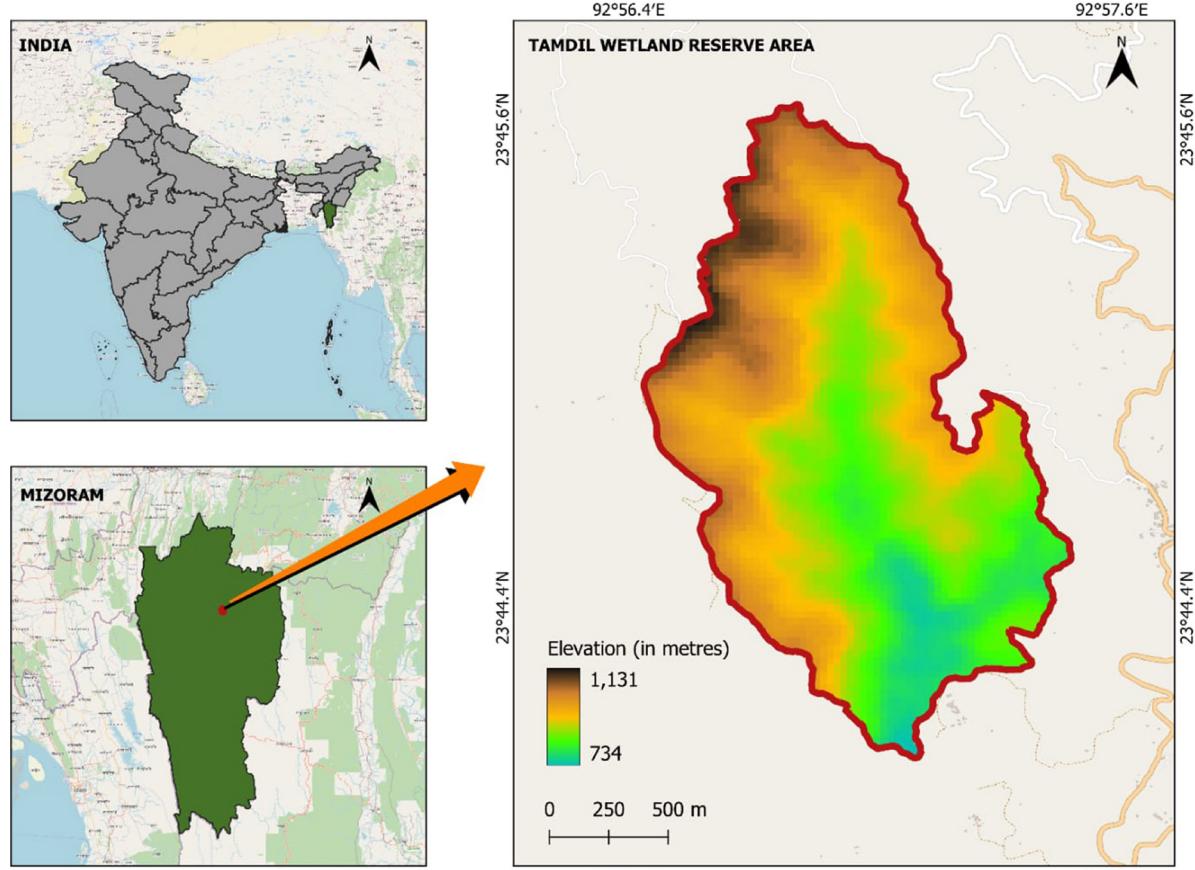
Leaf litter presence and depth are essential for the occurrence of amphibians (Fauth et al. 1989; Allmon 1991). Vegetation, sunlight, temperature, and other environmental factors strongly influence the distribution and activities of amphibians (Halverson et al. 2003). The ecological organisation of a community and its assemblage, the phylogenetic relationship among species, their behaviour, and their physiology can all be used to understand to a large extent the species' feeding ecology (Lima & Magnuson 1998; Grant et al. 2006; Arroyo et al. 2008). The diet of amphibians may depend on seasonal availability of prey, presence of competitors, and other relevant factors (Isaach & Barg 2002). Amphibians also play an important role in the biological control of mosquitoes to control diseases like malaria and dengue (Raghavendra et al. 2008; Bowatte et al. 2013).

The megophryiid frog genus *Leptobrachella* Smith, 1925 consists of 104 species, out of which four species, viz., *L. khasiorum* (Das, Tron, Rangad & Hooroo, 2010), *L. lateralis* (Anderson, 1971), *L. nokrekensis* (Matthew & Sen, 2010), and *L. tamdil* (Sengupta, Sailo, Lalremsanga, Das & Das, 2010), are found in India, all restricted to the northeast of the country (Frost 2025). The Tamdil Leaf-litter Frog (*L. tamdil*) was described from Tamdil wetland, Saitual District, Mizoram, in 2010 (Sengupta et al. 2010). Later on, additional records were made from Dampa Tiger Reserve, Hmuifang Community Reserve Forest, Sizhau Lake from Zotlang, Champhai District (Vanlalsiammawii et al. 2020; Muansanga et al. 2021) and also from Manipur (Decemson et al. 2021). However, the natural history of

the frog is still largely unknown (Vanlalsiammawii et al. 2020). Muansanga et al. (2021) partially reported the diet of *L. tamdil* to be insects of four orders based on the study of three individuals of *L. tamdil*. Herein, we present the habitat association and diet of *L. tamdil* studied at the type locality, based on in-situ field observations of wild frogs.

METHODS

Study area


Tamdil wetland was enlisted as a National Wetland in 2006–2007 by the National Wetland Conservation Programme, Government of India. It is located in the Saitual District of Mizoram (23.71° E & 92.95° N), about 100 km from the capital district, Aizawl and it covers about 13.7 km² with a mean elevation of 760 m (Image 1). The area falls under the Indo-Burma biodiversity hotspot and the vegetation type falls under Cachar Tropical Semi-evergreen Forest (2B/2C) category of Champion & Seth (1968).

Data Collection

Studies were conducted from February 2023 to May 2024 along the streams in Tamdil Wetland. The species were found to be active during the pre-monsoon months before the onset of peak monsoon. Visual encounter survey (Crump & Scott 1994), audio encounter survey, and opportunistic search were deployed to assess the diet during the survey period. Microhabitats in which the individuals were found are recorded along with relative humidity and temperature. The ecological parameters were recorded in the field using portable devices. We photographed the targeted species in its natural habitat with minimal disturbances.

Species confirmation

Genomic DNA was extracted from the collected tissue samples of one tadpole and one adult using Qiagen DNeasy Blood & Tissue Kit (Qiagen, Valencia, CA, USA) following the manufacturer's protocol. A partial fragment (~570 base pairs) of the 16S rRNA was amplified and sequenced using previously published primers in Simon et al. (1994). Polymerase chain reaction (PCR) conditions were as follows: initial denaturation at 95 °C for 3 minutes, followed by 39 cycles of denaturation at 94 °C for 45 seconds, annealing at 52 °C for 45 seconds, and extension at 72 °C for 2 minutes. Final extension was at 72 °C for 10 minutes. Amplified PCR products were run on a 2% agarose gel and viewed under UV transilluminator. Purified PCR product was sequenced

Image 1. Map of Tamdil Wetland (Inset: Elevation map), in Mizoram, northeastern India.

directly in an Applied Biosystems Genetic Analyzer 3500 XL in both directions using BigDye v3.1. The tadpole we studied was identified as *Leptobrachella tamdil* based on genetic congruence (0.11% in 16S rRNA) of our sample's sequence with published (also see Vanlalsammawil et al. 2020; Decemson et al. 2021; Muansanga et al. 2021) sequences of *L. tamdil* in GenBank (NCBI # ON500517.1, generated from MZMU 2675; ncbi.nlm.nih.gov/nuccore/ON500517.1).

Gut content analysis

Specimens were collected by hand and gut contents of the collected specimens were obtained by flushing the stomach using standardised protocol (Solé et al. 2005). The flushed contents are fixed in 10% formalin solution for laboratory analysis. The snout-vent length (SVL) of the specimens were taken using a calliper to the nearest 0.1 mm and they were released on the spot. The flushed gut contents obtained from the field were analysed in the laboratory using a Motic SMZ - 161 microscope and identified to the level of order. The abundance of various prey was estimated from the stomach contents

(percentage of the total number of individual prey/total number of all prey). Frequency of occurrence was determined by dividing the number of stomachs that contained a particular prey by the total number of stomachs with prey (Hyslops 1980). The rate of feeding activity was estimated as the percentage of stomach containing food with respect to the total number of stomachs examined (Sala & Ballesteros 1997). Rate of feeding activity = $100 n/N$ (where n is the number of stomachs with food, N is the total number of stomachs examined). Diet diversity was estimated using the Shanon-Weiner diversity Index (H), where $H = -\sum P_i \ln P_i$ and P_i = proportion of each taxa in the sample.

Food availability of the study area

The habitat where the species were most frequently encountered was selected for food availability estimation. Prey availability was estimated by making 10 plots of 1×1 m in the stream bank and inside the stream. The different types of potential prey (such as insects, spiders) were identified to the level of order and are left in the habitat. The potential preys were then compared with the actual

food items obtained from the gut of adult frogs.

RESULTS

We encountered different stages of *Leptobrachella tamdil* during the dry months when there is little precipitation and low stream flow (Image 2). Adults of *L. tamdil* were encountered under rocks, above rocks, in water-logged puddles, and on fallen leaves and twigs in and around the streambed. Encounters of tadpoles were usually in small water puddles, but upon approach, they bury themselves in mud quickly. The surrounding vegetation includes *Melocanna baccifera*, *Laurocerasus jenkinsii*, *Ficus fistulosa*, *Terminalia myriocarpa*, *Duabanga grandiflora*, *Macropanax* sp., *Pilea symmeria*, *Leea compactiflora*, *Drypetes indica*, *Aglaia spectabilis*, *Homalium ceylanicum*, *Phrynum capitatum*, and *Ensete* sp. (Image 3).

The air temperature during the study ranged from 13–25 °C at night; the water temperature ranged from 10–20 °C; the relative humidity ranged 54–86%; the pH of the water ranged 6.84–7.15; the dissolved oxygen ranged 5–7 mg/L. The species emerges mainly during the dry pre-monsoon months (January–May) when the water level is low, and pockets of small, waterlogged pools are formed in the depressions of the streambanks.

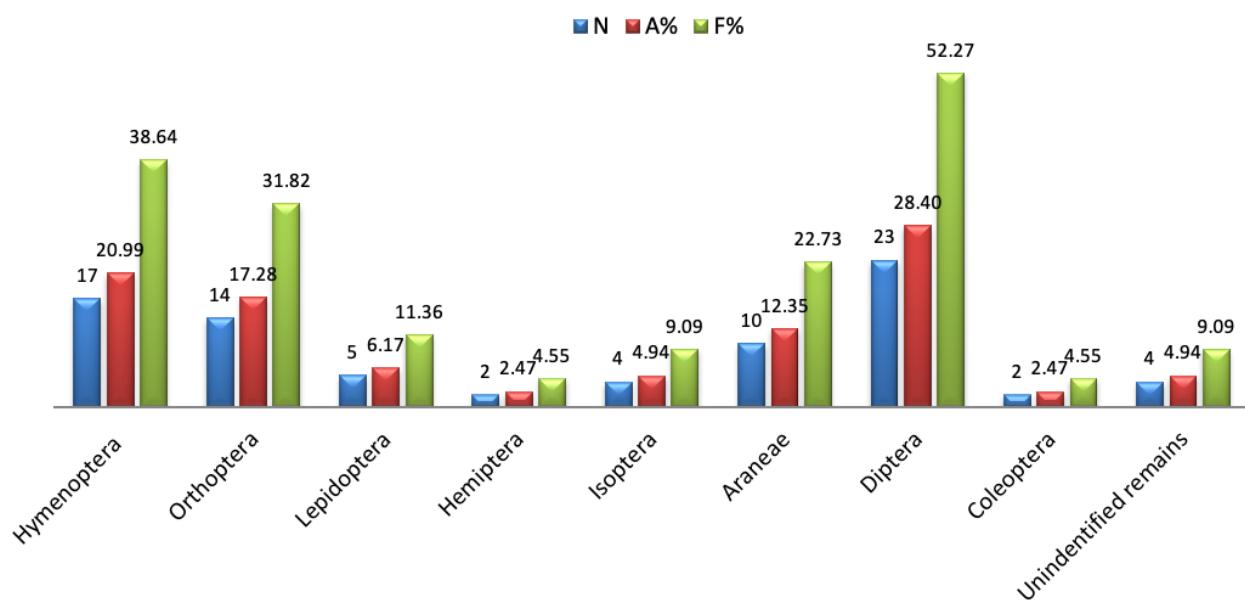

A total of 50 adult individuals of *L. tamdil* (SVL 25.2–35.9 mm) were examined for diet content. We obtained

Table 1. Prey availability of the Tamdil Leaf-litter Frog in the study area.

Hymenoptera	Ants
Orthoptera	Grasshoppers & crickets
Lepidoptera	Moths & butterflies
Hemiptera	Water striders, water bugs, & leafhopper
Isoptera	Termites
Diptera	Flies
Araneae	Spiders
Coleoptera	Beetles
Odonata (larvae)	Dragonflies & damselflies

81 prey items from 44 frogs, belonging to eight orders, viz., Hymenoptera (ants), Orthoptera (grasshoppers, crickets), Lepidoptera (moths), Hemiptera (leafhoppers), Isoptera (termites), Araneae (spiders), Diptera (flies), Coleoptera (beetles), and unidentified objects (Image 4). The remaining six individuals had empty stomachs. The rate of feeding was found to be 88% and the diversity of prey, measured with Shanon-Weiner diversity Index, is 1.90.

The order Diptera (28.40%) was the most abundant food item followed by Hymenoptera (20.99%). The least consumed food items were Coleoptera and Hemiptera (both at 2.47%) (Image 4). The frequency of occurrence was also calculated and it shows that Diptera (52.27%) and Hymenoptera (38.64%) were the most frequent

Figure 1. Frequency of occurrence and abundance of prey (%) in gut contents of *Leptobrachella tamdil*.

Image 2. Larvae, subadults, and adult *Leptobrachella tamdil* in its microhabitat. © Malsawmdawngliana.

Image 3. Habitat of *Leptobrachella tamdil* at the type locality – Tamdil wetland (Images A–D indicate different parts of the stream banks in the study area). © Malsawmdawngliana.

Image 4. Diet of *Leptobrachella tamdil*: A—Hymenoptera | B—Orthoptera | C—Lepidoptera | D—Hemiptera | E—Isoptera | F—Araneae | G—Diptera | H—Coleoptera | I—Unidentified objects. © Malsawmdawngliana.

contents (Figure 1). We recorded nine orders of potential prey species during the study (Table 1).

DISCUSSION

After the description of *L. tamdil* based on two individuals by Sengupta et al. (2010), there were no reports of this species for almost a decade. Vanlalsiammawii et al. (2020) recorded the third individual from Dampa Tiger Reserve (~54 km from type locality) and subsequent records were made from Hmuifang Community Reserve Forest (~39 km from type locality), Zotlang (~52 km from type locality), and Chakpi stream (~122 km from type locality) (Decemson et al. 2021; Muansanga et al. 2021). These, however, are inventory studies that were at the alpha taxonomic level, and the information on the natural history and its ecology is still at its infant stage. This study found that *Leptobrachella tamdil* inhabits forest floors and hill streams with rocks, similar to reports made in other studies on its congeners, viz., Lathrop et al. (1997)

(*L. ailaonicum*, *L. sungi*), Matsui (2006) (*L. fuliginosa*), Jiang et al. (2013) (*L. zhangyapingi*), Rowley et al. (2013) (*L. botsfordi*), and Tron et al. (2015) (*L. khasiorum*).

This study found eight orders of prey in the gut of *L. tamdil* of which the most abundant prey were Diptera and Hymenoptera, and also the most frequent food items obtained. Muansanga et al. (2021) reported four orders of insects, i.e., Orthoptera, Hemiptera, Hymenoptera, and Coleoptera from the gut contents of three individuals of *L. tamdil*. The gut contents observed by Muansanga et al. (2021) were also found in our studies with the addition of Lepidoptera, Isoptera, Araneae, and Diptera. Although studies have recorded that body size and prey size have a positive relation in amphibians (Quigora et al. 2009), *L. tamdil* is a medium-sized frog species, and the size of male and female individuals do not vary much, as deduced during our study.

Available prey of *L. tamdil* is represented in Table 1, and most of the available food items (except for Odonata) were found in the gut of the examined frogs. We cannot rule out the possibility that *L. tamdil* feeds on odonates, as

most amphibians are opportunistic feeders. The present study demonstrated that the diet of *L. tamdil* is largely composed of the available food items in their habitat. The peak active season of the frog was before the onset of the monsoon (Sengupta et al. 2010; Vanlalsiammawii et al. 2020; Decemson et al. 2021; Muansanga et al. 2021) when insect activity is low, which may influence the availability of potential food in the area. Additionally, plants, vegetation remains, sand, rocks, and other particles may be accidentally ingested and are therefore not counted as part of the diet. We have a few caveats in our study as this is the first attempt to study the ecology and natural history of *L. tamdil*. This study will, nevertheless, further help in the conservation of this endemic species and documenting its natural history.

REFERENCES

Allmon, W.D. (1991). A plot study of forest floor litter frogs, Central Amazon, Brazil. *Journal of Tropical Ecology* 7: 503–522.

Arroyo, S.B., V.H. Cardozo & M.P. Pinilla (2008). Diet, microhabitat and time of activity in a *Pristimantis* (Anura, Strabomantidae) assemblage. *Phylomedusa* 7(2): 109–119.

Balaji, D., R. Sreekar & S. Rao (2014). Drivers of reptile and amphibian assemblages outside the protected areas of Western Ghats, India. *Journal of Nature Conservation* 22: 337–341. <https://doi.org/10.1016/j.jnc.2014.03.004>

Bowatte, G., P. Perera, G. Senevirathne, S. Meegaskumbura & M. Meegaskumbura (2013). Tadpoles as dengue mosquito (*Aedes aegypti*) egg predators. *Biological Control* 67(3): 469–474.

Carey, C. (1978). Factors affecting body temperatures of toads. *Oecologia* 35: 197–219. <https://doi.org/10.1007/BF00344732>

Champion, H.G. & S.K. Seth. (1968). *A Revised Survey of Forest Types of India*. Manager of Publications, Government of India, New Delhi, 404 pp.

Crump, M.L. & N.J. Scott (1994). Visual encounter survey pp 84–91. In: Heyer, W.R., M.A. Donnelly, R.W. McDiarmid, R.W. Donnelly, L.C. Heyek & M.S. Foster (eds.). *Measuring and Monitoring Biological Diversity: Standard Methods for Amphibians*. Smithsonian Institution Press, Washington D.C.

Das, I., R.K.L. Tron, D. Rangad & R.N.K. Hooroo (2010). A new species of *Leptolalax* (Anura: Megophryidae) from the sacred groves of Mawphlang, Meghalaya, north-eastern India. *Zootaxa* 2339: 44–56. <https://doi.org/10.11646/zootaxa.2339.1.2>

Decemson, H., Vanlalsiammawii, L. Biakzuala, M. Mathipi, F. Malsawmdawngliana & H.T. Lalremsanga (2021). Occurrence of Tamdil Leaf-litter Frog *Leptobrachella tamdil* (Sengupta et al. 2010) (Amphibia: Megophryidae) from Manipur, India and its phylogenetic position. *Journal of Threatened Taxa* 13: 18624–18630. <https://doi.org/10.11609/jott.7250.13.6.18624-18630>

Fauth, J.E., B.I. Crother & J.B. Slowinski (1989). Elevational patterns of species richness, evenness, and abundance of Costa Rican leaf-litter herpetofauna. *Biotropica* 21: 178–185. <https://doi.org/10.2307/2388708>

Figueira, W.F. & L.B. Crowder (2006). Defining patch contribution in source-sink metapopulations: the importance of including dispersal and its relevance to marine systems. *Population Ecology* 48: 215–224. <https://doi.org/10.1007/s10144-006-0265-0>

Frost, D.R. (2025). Amphibian Species of the World: An Online Reference. Version 6.2 (20.i.2025). AMNH, New York, USA. <https://amphibiansoftheworld.amnh.org/index.php>

Grant, T., D.R. Frost, J.P. Caldwell, R. Gagliardo, C.F.B. Haddad, P.J.R. Kok, B.D.B. Means, P. Noonan, W. Schargel & W.C. Wheeler (2006).

Phylogenetic systematics of dart poison frogs and their relatives (Anura: Athesphatanura: Dendrobatidae). *Bulletin of the American Museum of Natural History* 299: 1–262. <https://doi.org/10.5531/sd.sp.14>

Halverson, M.A., D.K. Swelly, J.M. Kiesecker & L.K. Freidenburg. (2003). Forest mediated light regime linked to amphibian distribution and performance. *Oecologia* 134: 360–364. <https://doi.org/10.1007/s00442-002-1136-9>

Hyslop, E.J. (1980). Stomach contents analysis: a review of methods and their application. *Journal of Fish Biology* 17: 411–429. <https://doi.org/10.1111/j.1095-8649.1980.tb02775.x>

Isacch, J.P. & M. Barg (2002). Are bufonid toads specialized antfeeders? A case test from the Argentinian flooding pampa. *Journal of Natural History* 36: 2005–2012. <https://doi.org/10.1080/00222930110092153>

Jiang, K., F. Yan, C. Swannapoom, S. Chomdej & J. Che (2013). A New Species of the Genus *Leptolalax* (Anura: Megophryidae) from Northern Thailand. *Asian Herpetological Research* 4(2): 100–108.

Krishnamurthy, S.V. (2003). Amphibian assemblages in undisturbed and disturbed areas of Kudremukh National Park, central Western Ghats, India. *Environmental Conservation* 30: 274–282.

Lima, A.P. & W.E. Magnusson (1998). Partitioning seasonal timeinteractions among size, foraging activity and diet in leaf litter frogs. *Oecologia* 116: 259–266.

Muansanga, L., V. Siammawii, G.Z. Hmar, F. Malsawmdawngliana, L. Biakzuala, H. Decemson, Z. Sangi, & H.T. Lalremsanga (2021). New elevational and locality records and notes on the natural history of the Tamdil Leaf-litter Frog, *Leptobrachella tamdil* (Sengupta, Sailo, Lalremsanga, Das, & Das 2010) (Megophryidae), in Mizoram, India. *Reptiles & Amphibians* 28: 295–297. <https://doi.org/10.17161/RANDA.V28I2.15548>

Pawar, S.S. (1999). Effect of habitat alteration on herpetofaunal assemblages of evergreen forest in Mizoram, North-East India. MSc Thesis. Wildlife Institute of India, Dehradun, 64 pp.

Quigora, L.B., E.A. Sanabria & J.C. Acosta (2009). Size- and sex dependent variation in diet of *Rhinella arenarum* (Anura: Bufonidae) in a wetland of San Juan, Argentina. *Journal of Herpetology* 43: 311–317. <https://doi.org/10.1670/07-117R2.1>

Raghavendra, K., P. Sharma & A.P. Dash (2008). Biological control of mosquito populations through frogs: opportunities & constraints. *Indian Journal of Medical Research* 128(1): 22. https://doi.org/10.25259/IJMR_20081281_22

Rowley, J.J., V.Q. Dau & T.T. Nguyen (2013). A new species of *Leptolalax* (Anura: Megophryidae) from the highest mountain in Indochina. *Zootaxa* 3737 (4): 415–428. <https://doi.org/10.11646/zootaxa.3737.4.5>

Sala, E. & E. Ballesteros (1997). Partitioning of space and food resources by three fish of the genus *Diplodus* (Sparidae) in a Mediterranean rocky infralittoral ecosystem. *Marine Ecology Progress Series* 152(1–3): 273–283. <https://doi.org/10.3354/meps152273>

Solé, M., O. Beckmann, B. Pelz, A. Kwet & W. Engels (2005). Stomach-flushing for diet analysis in anurans: an improved protocol evaluated in a case study in Araucaria forests, southern Brazil. *Studies on Neotropical Fauna and Environment* 40(1): 23–28. <https://doi.org/10.1080/01650520400025704>

Stuart, S.N., J.S. Chanson, N.A. Cox, B.E. Young, A.S.L. Rodrigues, D.L. Fischman & R.W. Waller (2004). Status and trends of amphibian declines and extinctions worldwide. *Science* 306: 1783–1786. <https://doi.org/10.1126/science.1103538>

Vanlalsiammawil, R., V.L. Malsawmhriatzuall, Lalmuansanga, G.Z. Hmar, S. Sailo, Ht. Decemson, L. Biakzuala & H.T. Lalremsanga (2020). An additional record of the Tamdil Leaf-litter Frog *Leptobrachella tamdil* (Sengupta et al., 2010) (Amphibia: Megophryidae) from Dampa Tiger Reserve, Mizoram, India. *Journal of Threatened Taxa* 12(8): 15951–15954. <https://doi.org/10.11609/jott.5999.12.8.15954-15954>

Wells, K.D. (2007). *The Ecology and Behaviour of Amphibians*. University of Chicago Press, Chicago, IL, 1400 pp.

Mr. Jatishwor Singh Irungbam, Biology Centre CAS, Branišovská, Czech Republic.
Dr. Ian J. Kitching, Natural History Museum, Cromwell Road, UK
Dr. George Mathew, Kerala Forest Research Institute, Peechi, India
Dr. John Noyes, Natural History Museum, London, UK
Dr. Albert G. Orr, Griffith University, Nathan, Australia
Dr. Sameer Padhye, Katholieke Universiteit Leuven, Belgium
Dr. Nancy van der Poorten, Toronto, Canada
Dr. Karen Schnabel, NIWA, Wellington, New Zealand
Dr. R.M. Sharma, (Retd.) Scientist, Zoological Survey of India, Pune, India
Dr. Manju Siliwal, WILD, Coimbatore, Tamil Nadu, India
Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India
Dr. K.A. Subramanian, Zoological Survey of India, New Alipore, Kolkata, India
Dr. P.M. Sureshan, Zoological Survey of India, Kozhikode, Kerala, India
Dr. R. Varatharajan, Manipur University, Imphal, Manipur, India
Dr. Eduard Vives, Museu de Ciències Naturals de Barcelona, Terrassa, Spain
Dr. James Young, Hong Kong Lepidopterists' Society, Hong Kong
Dr. R. Sundararaj, Institute of Wood Science & Technology, Bengaluru, India
Dr. M. Nithyanandan, Environmental Department, La Al Kuwait Real Estate. Co. K.S.C., Kuwait
Dr. Himender Bharti, Punjabi University, Punjab, India
Mr. Purnendu Roy, London, UK
Mr. Saito Motoki, The Butterfly Society of Japan, Tokyo, Japan
Dr. Sanjay Sondhi, TITLI TRUST, Kalpavriksh, Dehradun, India
Dr. Nguyen Thi Phuong Lien, Vietnam Academy of Science and Technology, Hanoi, Vietnam
Dr. Nitin Kulkarni, Tropical Research Institute, Jabalpur, India
Dr. Robin Wen Jiang Ngiam, National Parks Board, Singapore
Dr. Lional Monod, Natural History Museum of Geneva, Genève, Switzerland.
Dr. Asheesh Shivam, Nehru Gram Bharti University, Allahabad, India
Dr. Rosana Moreira da Rocha, Universidade Federal do Paraná, Curitiba, Brasil
Dr. Kurt R. Arnold, North Dakota State University, Saxony, Germany
Dr. James M. Carpenter, American Museum of Natural History, New York, USA
Dr. David M. Claborn, Missouri State University, Springfield, USA
Dr. Karen Schnabel, Marine Biologist, Wellington, New Zealand
Dr. Amazonas Chagas Júnior, Universidade Federal de Mato Grosso, Cuiabá, Brasil
Mr. Monsoon Jyoti Gogoi, Assam University, Silchar, Assam, India
Dr. Heo Chong Chin, Universiti Teknologi MARA (UiTM), Selangor, Malaysia
Dr. R.J. Shiel, University of Adelaide, SA 5005, Australia
Dr. Siddharth Kulkarni, The George Washington University, Washington, USA
Dr. Priyadarshan Dharma Rajan, ATREE, Bengaluru, India
Dr. Phil Alderslade, CSIRO Marine And Atmospheric Research, Hobart, Australia
Dr. John E.N. Veron, Coral Reef Research, Townsville, Australia
Dr. Daniel Whitmore, State Museum of Natural History Stuttgart, Rosenstein, Germany.
Dr. Yu-Feng Hsu, National Taiwan Normal University, Taipei City, Taiwan
Dr. Keith V. Wolfe, Antioch, California, USA
Dr. Siddharth Kulkarni, The Hormiga Lab, The George Washington University, Washington, D.C., USA
Dr. Tomas Ditrich, Faculty of Education, University of South Bohemia in Ceske Budejovice, Czech Republic
Dr. Mihaly Foldvari, Natural History Museum, University of Oslo, Norway
Dr. V.P. Uniyal, Wildlife Institute of India, Dehradun, Uttarakhand 248001, India
Dr. John T.D. Caleb, Zoological Survey of India, Kolkata, West Bengal, India
Dr. Priyadarshan Dharma Rajan, Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Bangalore, Karnataka, India

Fishes

Dr. Topiltzin Contreras MacBeath, Universidad Autónoma del estado de Morelos, México
Dr. Heok Hee Ng, National University of Singapore, Science Drive, Singapore
Dr. Rajeev Raghavan, St. Albert's College, Kochi, Kerala, India
Dr. Robert D. Sluka, Chiltern Gateway Project, A Rocha UK, Southall, Middlesex, UK
Dr. E. Vivekanandan, Central Marine Fisheries Research Institute, Chennai, India
Dr. Davor Zanella, University of Zagreb, Zagreb, Croatia
Dr. A. Biju Kumar, University of Kerala, Thiruvananthapuram, Kerala, India
Dr. Akhilesh KV, ICAR-Central Marine Fisheries Research Institute, Mumbai Research Centre, Mumbai, Maharashtra, India
Dr. J.A. Johnson, Wildlife Institute of India, Dehradun, Uttarakhand, India
Dr. R. Ravinesh, Gujarat Institute of Desert Ecology, Gujarat, India

Amphibians

Dr. Sushil K. Dutta, Indian Institute of Science, Bengaluru, Karnataka, India
Dr. Annemarie Ohler, Muséum national d'Histoire naturelle, Paris, France

Reptiles

Dr. Gernot Vogel, Heidelberg, Germany
Dr. Raju Vyas, Vadodara, Gujarat, India
Dr. Pritpal S. Soorae, Environment Agency, Abu Dhabi, UAE.
Prof. Dr. Wayne J. Fuller, Near East University, Mersin, Turkey
Prof. Chandrashekher U. Rironker, Goa University, Taleigao Plateau, Goa, India
Dr. S.R. Ganesh, Kalinga Foundation, Agumbe, India.
Dr. Himansu Sekhar Das, Terrestrial & Marine Biodiversity, Abu Dhabi, UAE

Journal of Threatened Taxa is indexed/abstracted in Bibliography of Systematic Mycology, Biological Abstracts, BIOSIS Previews, CAB Abstracts, EBSCO, Google Scholar, Index Copernicus, Index Fungorum, JournalSeek, National Academy of Agricultural Sciences, NewJour, OCLC WorldCat, SCOPUS, Stanford University Libraries, Virtual Library of Biology, Zoological Records.

NAAS rating (India) 5.64

Birds

Dr. Hem Sagar Baral, Charles Sturt University, NSW Australia
Mr. H. Biju, Coimbatore, Tamil Nadu, India
Dr. Chris Bowden, Royal Society for the Protection of Birds, Sandy, UK
Dr. Priya Davidar, Pondicherry University, Kalapet, Puducherry, India
Dr. J.W. Duckworth, IUCN SSC, Bath, UK
Dr. Rajah Jayopal, SACON, Coimbatore, Tamil Nadu, India
Dr. Rajiv S. Kalsi, M.L.N. College, Yamuna Nagar, Haryana, India
Dr. V. Santharam, Rishi Valley Education Centre, Chittoor Dt., Andhra Pradesh, India
Dr. S. Balachandran, Bombay Natural History Society, Mumbai, India
Mr. J. Praveen, Bengaluru, India
Dr. C. Srinivasulu, Osmania University, Hyderabad, India
Dr. K.S. Gopi Sundar, International Crane Foundation, Baraboo, USA
Dr. Gombobaatar Sundev, Professor of Ornithology, Ulaanbaatar, Mongolia
Prof. Reuven Yosef, International Birding & Research Centre, Eilat, Israel
Dr. Taej Mundkur, Wetlands International, Wageningen, The Netherlands
Dr. Carol Inskip, Bishop Auckland Co., Durham, UK
Dr. Tim Inskip, Bishop Auckland Co., Durham, UK
Dr. V. Gokula, National College, Tiruchirappalli, Tamil Nadu, India
Dr. Arkady Lelej, Russian Academy of Sciences, Vladivostok, Russia
Dr. Simon Dowell, Science Director, Chester Zoo, UK
Dr. Mário Gabriel Santiago dos Santos, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, Vila Real, Portugal
Dr. Grant Connette, Smithsonian Institution, Royal, VA, USA
Dr. P.A. Azeez, Coimbatore, Tamil Nadu, India

Mammals

Dr. Giovanni Amori, CNR - Institute of Ecosystem Studies, Rome, Italy
Dr. Anwaruddin Chowdhury, Guwahati, India
Dr. David Mallon, Zoological Society of London, UK
Dr. Shomita Mukherjee, SACON, Coimbatore, Tamil Nadu, India
Dr. Angie Appel, Wild Cat Network, Germany
Dr. P.O. Nameer, Kerala Agricultural University, Thrissur, Kerala, India
Dr. Ian Redmond, UNEP Convention on Migratory Species, Lansdown, UK
Dr. Heidi S. Riddle, Riddle's Elephant and Wildlife Sanctuary, Arkansas, USA
Dr. Karin Schwartz, George Mason University, Fairfax, Virginia.
Dr. Lala A.K. Singh, Bhubaneswar, Orissa, India
Dr. Mewa Singh, Mysore University, Mysore, India
Dr. Paul Racey, University of Exeter, Devon, UK
Dr. Honnavalli N. Kumar, SACON, Anaikatty P.O., Coimbatore, Tamil Nadu, India
Dr. Nishith Dharaiya, HNG University, Patan, Gujarat, India
Dr. Spartaco Gippoliti, Socio Onorario Società Italiana per la Storia della Fauna "Giuseppe Altobello", Rome, Italy
Dr. Justus Joshua, Green Future Foundation, Tiruchirappalli, Tamil Nadu, India
Dr. H. Raghuram, Sri S. Ramasamy Naidu Memorial College, Virudhunagar, Tamil Nadu, India
Dr. Paul Bates, Harison Institute, Kent, UK
Dr. Jim Sanderson, Small Wild Cat Conservation Foundation, Hartford, USA
Dr. Dan Challender, University of Kent, Canterbury, UK
Dr. David Mallon, Manchester Metropolitan University, Derbyshire, UK
Dr. Brian L. Cypher, California State University-Stanislaus, Bakersfield, CA
Dr. S.S. Talmale, Zoological Survey of India, Pune, Maharashtra, India
Prof. Karan Bahadur Shah, Budhanilakantha Municipality, Kathmandu, Nepal
Dr. Susan Cheyne, Borneo Nature Foundation International, Palangkaraja, Indonesia
Dr. Hemanta Kafley, Wildlife Sciences, Tarleton State University, Texas, USA

Other Disciplines

Dr. Aniruddha Belsare, Columbia MO 65203, USA (Veterinary)
Dr. Manda S. Paingankar, University of Pune, Pune, Maharashtra, India (Molecular)
Dr. Jack Tordoff, Critical Ecosystem Partnership Fund, Arlington, USA (Communities)
Dr. Ulrike Streicher, University of Oregon, Eugene, USA (Veterinary)
Dr. Hari Balasubramanian, EcoAdvisors, Nova Scotia, Canada (Communities)
Dr. Rayanna Hellern Santos Bezerra, Universidade Federal de Sergipe, São Cristóvão, Brazil
Dr. Jamie R. Wood, Landcare Research, Canterbury, New Zealand
Dr. Wendy Collinson-Jonker, Endangered Wildlife Trust, Gauteng, South Africa
Dr. Rajeshkumar G. Jani, Anand Agricultural University, Anand, Gujarat, India
Dr. O.N. Tiwari, Senior Scientist, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
Dr. L.D. Singla, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
Dr. Rupika S. Rajakaruna, University of Peradeniya, Peradeniya, Sri Lanka
Dr. Bahar Baviskar, Wild-CER, Nagpur, Maharashtra 440013, India

Reviewers 2021–2023

Due to paucity of space, the list of reviewers for 2021–2023 is available online.

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.

Print copies of the Journal are available at cost. Write to:
The Managing Editor, JoTT,
c/o Wildlife Information Liaison Development Society,
3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore,
Tamil Nadu 641006, India
ravi@threatenedtaxa.org & ravi@zooreach.org

Articles

Biological validation of fecal glucocorticoid and triiodothyronine measures in free-ranging Golden-headed Lion Tamarins (Kühl, 1820), (Mammalia: Primates: Callitrichidae: *Leontopithecus chrysomelas*): effects of the stress of capture and body condition

– Roberto Fiorini-Torrico, Leonardo de Carvalho Oliveira, Damián Escrivano, José Joaquín Cerón & Kristel Myriam de Vleeschouwer, Pp. 28151–28166

Tricho-taxonomic prey identifications from faeces of Indian Rock Python *Python molurus* (Linnaeus, 1758) (Reptilia: Squamata: Pythonidae) in Moyar River Valley, Tamil Nadu, India

– Jyoti Nagarkoti, C.S. Vishnu, Chinnasamy Ramesh & Archana Bahuguna, Pp. 28167–28173

Field observations and citizen science reveal ecological insights into rare and threatened parrots in the Philippines

– Vince Angelo G. Gicaraya & Carmela P. Espa  ola, Pp. 28174–28185

People's perceptions on the impacts of select linear infrastructure projects on avifauna in Chhattisgarh, India

– C.P. Ashwin, J.M. Alby & P.R. Arun, Pp. 28186–28193

Communications

Habitat associations and feeding ecology of adult Tamdil Leaf-litter Frog *Leptobrachella tamdil* (Amphibia: Megophryidae) from the type locality – the Tamdil wetland, Mizoram, India

– Malsawmdawngiana, Esther Lalhminglani, Samuel Lalronunga, Lalrinmawia & Lalnuntluanga, Pp. 28194–28200

An inventory of hymenopteran insects from division Jammu of Jammu & Kashmir, India

– Charul, Anjoo Dhar, Shash Pal, Shivalika Loona, Neha Choudhary, Sourabh Sharma & Rakesh Kumar Panjaliya, Pp. 28201–28214

Four new additions to the angiosperm flora of Manipur, India

– Bimol Kumar Singh Sadokpam, Sanatombi Devi Yumkham, Dhaneshwor Waikhom & Sorokhaibam Sureshkumar Singh, Pp. 28215–28222

Review

Historical records of the Jaguar *Panthera onca* (Linnaeus, 1758) (Mammalia: Carnivora: Felidae) in the state of Santa Catarina, Brazil

– Jackson F  bio Preuss & Pedro Henrique Amancio Padilha, Pp. 28223–28234

Short Communications

First photographic record of Red-naped Ibis *Pseudibis papillosa* Temminck, 1824 in Sikkim Himalaya, India

– Laxmi Rai, Kritan Rai & Bijoy Chhetri, Pp. 28235–28238

New distribution record of *Sonoita lightfooti* G.W. Peckham & E.G. Peckham, 1903 (Araneae: Salticidae) from Gujarat, India

– Subhash I. Parmar, Pranav J. Pandya & Vivek U. Chauhan, Pp. 28239–28241

Garcinia pedunculata (Clusiaceae), a new record for Bhutan and its ethnopharmacological potential

– Jigme Wangchuk, Ugyen Dorji, Sherab Dorji, Yograj Chhetri & Tsethup Tshering, Pp. 28242–28245

Notes

First record of Indian Fox *Vulpes bengalensis* in Dang, Gujarat, India

– Aadil Kazi, Mohmad Navaz Dahya, Rohit Chaudhary & Pravin Chaudhari, Pp. 28246–28248

First record with photographic evidence of Dhole *Cuon alpinus* (Pallas, 1811) from Panshet, Pune, Maharashtra, India

– Sonali Shinde & Chinmay Sonawane, Pp. 28249–28251

First photographic evidence of Spot-bellied Eagle Owl *Ketupa nipalensis* (Strigiformes: Strigidae) in Palamau Tiger Reserve, Jharkhand, India

– Arshyaan Shahid, Shahzada Iqbal & Orus Ilyas, Pp. 28252–28254

Sighting of Sooty Gull *Ichthyaetus hemprichii* from the salt pans of Nagapattinam Coast, Tamil Nadu, India

– S. Babu, Anand Shibu & M. Kishore, Pp. 28255–28258

First record of *Colytus bilineatus* Thorell, 1891 (Arachnida: Araneae: Salticidae) from India

– Monica Chetry, John T.D. Caleb & Parthankar Choudhury, Pp. 28259–28262

Publisher & Host

Threatened Taxa