

Open Access

Publisher

Wildlife Information Liaison Development Societywww.wild.zooreach.org

Host

Zoo Outreach Organizationwww.zooreach.org

Srivari Illam, No. 61, Karthik Nagar, 10th Street, Saravanampatti, Coimbatore, Tamil Nadu 641035, India
Registered Office: 3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore, Tamil Nadu 641006, India
Ph: +91 9385339863 | www.threatenedtaxa.org
Email: sanjay@threatenedtaxa.org

EDITORS

Founder & Chief Editor

Dr. Sanjay Molur

Wildlife Information Liaison Development (WILD) Society & Zoo Outreach Organization (ZOO), Coimbatore, Tamil Nadu 641006, India

Assistant Editor

Dr. Chaithra Shree J., WILD/ZOO, Coimbatore, Tamil Nadu 641006, India

Managing Editor

Mr. B. Ravichandran, WILD/ZOO, Coimbatore, Tamil Nadu 641006, India

Associate Editors

Dr. Mandar Paingankar, Government Science College Gadchiroli, Maharashtra 442605, India**Dr. Ulrike Streicher**, Wildlife Veterinarian, Eugene, Oregon, USA**Ms. Priyanka Iyer**, ZOO/WILD, Coimbatore, Tamil Nadu 641006, India

Board of Editors

Dr. Russel Mittermeier

Executive Vice Chair, Conservation International, Arlington, Virginia 22202, USA

Prof. Mewa Singh Ph.D., FASc, FNA, FNAsc, FNAPsy

Ramanna Fellow and Life-Long Distinguished Professor, Biopsychology Laboratory, and Institute of Excellence, University of Mysore, Mysuru, Karnataka 570006, India; Honorary Professor, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore; and Adjunct Professor, National Institute of Advanced Studies, Bangalore

Stephen D. Nash

Scientific Illustrator, Conservation International, Dept. of Anatomical Sciences, Health Sciences Center, T-8, Room 045, Stony Brook University, Stony Brook, NY 11794-8081, USA

Dr. Fred Pluthero

Toronto, Canada

Dr. Priya Davidar

Sigur Nature Trust, Chadapatti, Mavinhalla PO, Nilgiris, Tamil Nadu 643223, India

Dr. John Fellowes

Honorary Assistant Professor, The Kadoorie Institute, 8/F, T.T. Tsui Building, The University of Hong Kong, Pokfulam Road, Hong Kong

Prof. Dr. Mirco Solé

Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Vice-coordenador do Programa de Pós-Graduação em Zoologia, Rodovia Ilhéus/Itabuna, Km 16 (45662-000) Salobrinho, Ilhéus - Bahia - Brasil

Dr. Rajeev Raghavan

Professor of Taxonomy, Kerala University of Fisheries & Ocean Studies, Kochi, Kerala, India

English Editors**Mrs. Mira Bhojwani**, Pune, India**Dr. Fred Pluthero**, Toronto, Canada**Copy Editors****Ms. Usha Madgunki**, Zooreach, Coimbatore, India**Ms. Trisa Bhattacharjee**, Zooreach. Coimbatore, India**Ms. Paloma Noronha**, Daman & Diu, India**Web Development****Mrs. Latha G. Ravikumar**, ZOO/WILD, Coimbatore, India**Typesetting****Mrs. Radhika**, Zooreach, Coimbatore, India**Mrs. Geetha**, Zooreach, Coimbatore India**Fundraising/Communications****Mrs. Payal B. Molur**, Coimbatore, India**Subject Editors 2021–2023****Fungi****Dr. B. Shivaraju**, Bengaluru, Karnataka, India**Dr. R.K. Verma**, Tropical Forest Research Institute, Jabalpur, India**Dr. Vatsavaya S. Raju**, Kakatiya University, Warangal, Andhra Pradesh, India**Dr. M. Krishnappa**, Jnana Sahyadri, Kuvenpu University, Shimoga, Karnataka, India**Dr. K.R. Sridhar**, Mangalore University, Mangalagangotri, Mangalore, Karnataka, India**Dr. Gunjan Biswas**, Vidyasagar University, Midnapore, West Bengal, India**Dr. Kiran Ramchandra Ranadive**, Annaheb Magar Mahavidyalaya, Maharashtra, India**Plants****Dr. G.P. Sinha**, Botanical Survey of India, Allahabad, India**Dr. N.P. Balakrishnan**, Ret. Joint Director, BSI, Coimbatore, India**Dr. Shonil Bhagwat**, Open University and University of Oxford, UK**Prof. D.J. Bhat**, Retd. Professor, Goa University, Goa, India**Dr. Ferdinand Boero**, Università del Salento, Lecce, Italy**Dr. Dale R. Calder**, Royal Ontario Museum, Toronto, Ontario, Canada**Dr. Cleofas Cervancia**, Univ. of Philippines Los Baños College Laguna, Philippines**Dr. F.B. Vincent Florens**, University of Mauritius, Mauritius**Dr. Merlin Franco**, Curtin University, Malaysia**Dr. V. Irudayaraj**, St. Xavier's College, Palayamkottai, Tamil Nadu, India**Dr. B.S. Kholia**, Botanical Survey of India, Gangtok, Sikkim, India**Dr. Pankaj Kumar**, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, USA.**Dr. V. Sampath Kumar**, Botanical Survey of India, Howrah, West Bengal, India**Dr. A.J. Solomon Raju**, Andhra University, Visakhapatnam, India**Dr. Vijayasankar Raman**, University of Mississippi, USA**Dr. B. Ravi Prasad Rao**, Sri Krishnadevaraya University, Anantapur, India**Dr. K. Ravikumar**, FRLHT, Bengaluru, Karnataka, India**Dr. Aparna Watve**, Pune, Maharashtra, India**Dr. Qiang Liu**, Xishuangbanna Tropical Botanical Garden, Yunnan, China**Dr. Noor Azhar Mohamed Shazili**, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia**Dr. M.K. Vasudeva Rao**, Shiv Ranjan Housing Society, Pune, Maharashtra, India**Prof. A.J. Solomon Raju**, Andhra University, Visakhapatnam, India**Dr. Manda Datar**, Agharkar Research Institute, Pune, Maharashtra, India**Dr. M.K. Janarthanam**, Goa University, Goa, India**Dr. K. Karthigeyan**, Botanical Survey of India, India**Dr. Errol Vela**, University of Montpellier, Montpellier, France**Dr. P. Lakshminarasiham**, Botanical Survey of India, Howrah, India**Dr. Larry R. Noblick**, Montgomery Botanical Center, Miami, USA**Dr. K. Haridasan**, Pallavur, Palakkad District, Kerala, India**Dr. Analinda Manila-Fajard**, University of the Philippines Los Banos, Laguna, Philippines**Dr. P.A. Siru**, Central University of Kerala, Kasaragod, Kerala, India**Dr. Afroz Alam**, Banasthali Vidyapith (accredited A grade by NAAC), Rajasthan, India**Dr. K.P. Rajesh**, Zamorin's Guruvayurappan College, GA College PO, Kozhikode, Kerala, India**Dr. David E. Boufford**, Harvard University Herbaria, Cambridge, MA 02138-2020, USA**Dr. Ritesh Kumar Choudhary**, Agharkar Research Institute, Pune, Maharashtra, India**Dr. A.G. Pandurangan**, Thiruvananthapuram, Kerala, India**Dr. Navendu Page**, Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India**Dr. Kannan C.S. Warrier**, Institute of Forest Genetics and Tree Breeding, Tamil Nadu, India**Invertebrates****Dr. R.K. Avasthi**, Rohtak University, Haryana, India**Dr. D.B. Bastawade**, Maharashtra, India**Dr. Partha Pratim Bhattacharjee**, Tripura University, Suryamaninagar, India**Dr. Kailash Chandra**, Zoological Survey of India, Jabalpur, Madhya Pradesh, India**Dr. Ansie Dippenaar-Schoeman**, University of Pretoria, Queenswood, South Africa**Dr. Rory Dow**, National Museum of natural History Naturalis, The Netherlands**Dr. Brian Fisher**, California Academy of Sciences, USA**Dr. Richard Gallon**, Ilandudno, North Wales, LL30 1UP**Dr. Hemant V. Ghate**, Modern College, Pune, India**Dr. M. Monwar Hossain**, Jahangirnagar University, Dhaka, BangladeshFor Focus, Scope, Aims, and Policies, visit https://threatenedtaxa.org/index.php/JoTT/aims_scopeFor Article Submission Guidelines, visit <https://threatenedtaxa.org/index.php/JoTT/about/submissions>For Policies against Scientific Misconduct, visit https://threatenedtaxa.org/index.php/JoTT/policies_various

continued on the back inside cover

Cover: The nine vultures of India, digital art made on Krita by Dupati Poojitha.

First documented case of flunixin residue in a Himalayan Vulture *Gyps himalayensis* Hume, 1869 (Aves: Accipitriformes: Accipitridae) in India: conservation and veterinary implications

Soumya Sundar Chakraborty¹ , Debal Ray² , Apurba Sen³ , P.J. Harikrishnan⁴ , Nabi Kanta Jha⁵ & Rounaq Ghosh⁶

^{1,6} Buxa Vulture Conservation Breeding Centre and Aviary, Rajabhatkhawa, West Bengal 735227, India.

² Office of the Principal Chief Conservator of Forests, and Head of Forest Forces, West Bengal, Aranya Bhawan, LA-10A Block, Sector-III, 3rd Floor, Salt Lake City, Kolkata, West Bengal 700106, India.

^{3,4,5} Buxa Tiger Reserve, Alipurduar, West Bengal 736122, India.

¹ Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India; Wildlife Institute of India (WII), Chandrabani, Dehradun, Uttarakhand 248001, India.

¹ soumyachkrbty@yahoo.co.in (corresponding author), ² raydebal@gmail.com, ³ apurbasen@hotmail.com, ⁴ hareesnanpj@gmail.com, ⁵ nabikanta@yahoo.co.in, ⁶ rounaqghosh18@gmail.com

Abstract: Non-steroidal anti-inflammatory drugs (NSAID), particularly diclofenac, have been widely identified as a major cause of vulture deaths across Asia, leading to significant population declines. The impact of other veterinary NSAIDs, including flunixin, remains poorly documented. This study reports the first confirmed case of flunixin residue in a wild Himalayan Vulture *Gyps himalayensis* (Hume, 1869) in India. A juvenile vulture was rescued from Jaldapara National Park, West Bengal, and transferred to the Buxa Vulture Conservation Breeding Centre & Aviary at Rajabhatkhawa (West Bengal) for treatment and rehabilitation. Despite medical intervention, the bird died. Necropsy revealed extensive visceral gout, indicative of renal failure. Toxicological analysis confirmed the presence of flunixin residues in the tissues (stomach contents showed the highest level of flunixin with 903.9 ng/g, followed by the kidney with 214.3 ng/g, and the liver with 67.6 ng/g). This report highlights the requirement for careful monitoring of veterinary NSAID usage in India by trained professionals for the conservation of endangered vulture populations.

Keywords: Buxa Vulture Conservation Breeding Centre and Aviary, non-steroidal anti-inflammatory drugs (NSAIDs), renal failure, veterinary pharmaceuticals, visceral gout, vulture conservation, West Bengal, wildlife toxicology.

Editor: Anonymity requested.

Date of publication: 26 September 2025 (online & print)

Citation: Chakraborty, S.S., D. Ray, A. Sen, P.J. Harikrishnan, N.K. Jha & R. Ghosh (2025). First documented case of flunixin residue in a Himalayan Vulture *Gyps himalayensis* Hume, 1869 (Aves: Accipitriformes: Accipitridae) in India: conservation and veterinary implications. *Journal of Threatened Taxa* 17(9): 27517-27522. <https://doi.org/10.11609/jott.9714.17.9.27517-27522>

Copyright: © Chakraborty et al. 2025. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: Ministry of Environment, Forest and Climate Change (MoEFCC), Government of India. West Bengal Forest Department, Government of West Bengal.

Competing interests: The authors declare no competing interests.

Author details & Author contributions: See end of this article.

Acknowledgments: This work was carried out under the Vulture Conservation Breeding Programme of West Bengal, funded by the Ministry of Environment, Forest and Climate Change (MoEFCC), Government of India, and the West Bengal Forest Department, Government of West Bengal. We extend our sincere gratitude to the Bombay Natural History Society, Mumbai for managing the project until March 2023 and to the West Bengal Zoo Authority for their active support in running the programme from April 2023 onwards. We are deeply grateful for their invaluable contributions to the conservation of vultures in the region.

INTRODUCTION

Vultures play a crucial ecological role as obligate scavengers, preventing the spread of diseases by efficiently disposing of animal carcasses. The Himalayan Vulture *Gyps himalayensis* (Hume, 1869) is a resident of the mountains of central Asia, the Himalaya, southern & eastern Tibet, and China (Ali & Ripley 1978). While breeding adults remain in their nesting territories for most of the year, juveniles, and sub-adults migrate to the plains of southern and southeastern Asia during the winter (Naoroji 2006; Rasmussen & Anderton 2012). This seasonal movement is primarily driven by reduced food availability at the high-altitude regions due to whiteout, leading to lesser chance of success in securing food in competition with dominant adults (BirdLife International 2024), and the need to conserve energy in harsh winter conditions. Additionally, young vultures, not yet engaged in breeding, exhibit dispersal behaviour as part of their survival strategy and future range expansion (Yong & Kasorndorkbua 2008). With the return of favourable conditions, they migrate back to their breeding grounds in summer.

As juveniles and sub-adults migrate to the plains of southern and southeastern Asia, they become exposed to anthropogenic threats, including veterinary drug residue in livestock carcasses, the primary food source. In contrast, breeding adults that remain in the high-altitude regions of the Himalaya are relatively shielded from this threat, as NSAID-laced carcasses are less common in these remote and sparsely populated regions. The indiscriminate use of NSAIDs in veterinary medicine has had catastrophic consequences for vulture populations worldwide. Diclofenac, in particular, has been linked to the catastrophic decline of several *Gyps* species in southern Asia (Oaks et al. 2004; Pain et al. 2008). Although diclofenac, along with three other NSAIDs (aceclofenac, ketoprofen, and nimesulide), are banned for veterinary use in India (Ministry of Health and Family Welfare, Government of India 2008, 2023, 2024), there are reports (Cuthbert et al. 2011; Down To Earth 2022) of continued illegal use of these NSAIDs meant for human use for veterinary purposes.

Flunixin, a potent NSAID, is commonly administered to livestock for pain management, and inflammation control. Flunixin, similar to diclofenac, aceclofenac, ketoprofen, and nimesulide, is suspected to induce renal failure in *Gyps* vultures, leading to fatal visceral gout (Zorilla et al. 2014). Although flunixin is legally approved for veterinary use in India, its toxicity to vultures is suspected, highlighting the need for experimental

testing of the drug's toxicity in vultures (Galligan et al. 2020). Until now, there has been no documented case of flunixin poisoning in Himalayan Vultures in India. The present case reports the necropsy and toxicological findings of the first documented instance of flunixin-associated mortality in a wild Himalayan Vulture in India, highlighting a significant conservation concern for this species, and an urgent need for comprehensive monitoring of the use of this NSAID in veterinary practice.

MATERIALS AND METHODS

Case details and clinical presentation

The Buxa Vulture Conservation Breeding Centre & Aviary, situated at Rajabhatkhawa of Alipurduar District of West Bengal in India, serves as a conservation breeding centre for three Critically Endangered *Gyps* species of vultures, including White-rumped Vulture *Gyps bengalensis*, Long-billed Vulture *Gyps indicus*, and Slender-billed Vulture *Gyps tenuirostris*. Additionally, the centre functions as a rescue, and rehabilitation facility for vultures in the region. Since its establishment in 2006, the centre has received 95 rescued Himalayan vultures, and successfully released 80 individuals back in their natural habitat after treatment (Chakraborty et al. 2024). On 19 December 2024, a juvenile Himalayan Vulture *Gyps himalayensis* was rescued in a weakened state in Jaldapara National Park, West Bengal. The bird was promptly transported to the centre for treatment and rehabilitation. The vulture exhibited symptoms of lethargy, dehydration, and anorexia, and was unable to fly. It was identified as a juvenile Himalayan Vulture based on its overall dark plumage (except for a whitish head), distinctly darker than juvenile Eurasian Griffons *Gyps fulvus*, and lacking their rufous tinge. The bird had a long, pointed buffy-brown ruff with pale shaft streaks, dark brown upperparts, and conspicuously streaked buff-white scapulars, and upper wing coverts. Its flight feathers and tail were blackish-brown, with a dark brown crop patch, and the underparts were heavily streaked buffy-white especially on the body. These plumage features are consistent with juvenile *Gyps himalayensis* as described by Naoroji (2006).

Symptomatic treatment was initiated to stabilise the bird's condition. The treatment regime included:

- 40 ml of Dextrose Normal Saline (DNS) intravenously (IV) for rehydration and electrolyte replenishment.

- 0.5 ml of Atropine Sulphate intravenously (IV) to alleviate respiratory distress and stabilise cardiac function.

- 100 mg of Intacef Tazo intravenously (IV) a combination antibiotic (Ceftriaxone and Tazobactam) to treat suspected bacterial infections.

- 1 ml of Tribivet intravenously (IV) is used as a supportive multivitamin injection to treat vitamin B-complex deficiencies and boost recovery of the vulture.

Condition of the bird progressively deteriorated despite administration of supportive care. It succumbed to its illness on 22 December 2024. A necropsy was subsequently conducted to determine the underlying cause of death.

Necropsy examination

A comprehensive necropsy examination was performed. The major findings of the necropsy examination included:

- Extensive deposition of uric acid crystals on visceral organs (visceral gout), indicating renal failure (Image 1).
- No evidence of external trauma or underlying diseases.
- An empty gastrointestinal tract, suggesting prolonged anorexia.

Tissue samples were collected for further toxicological analysis to determine the underlying cause of death.

Toxicological analysis

The tissue samples (liver, kidney, and stomach contents) from the carcass were collected, labelled, and frozen immediately for further analysis. The samples were then transported to the Salim Ali Centre for Ornithology and Natural History (SACON) at Coimbatore, India, for ecotoxicological screening. Liquid chromatography-mass spectrometry (LC-MS/MS) was used to detect any residue of NSAIDs. The samples were screened for residues of 14 NSAIDs, including diclofenac, aceclofenac, ketoprofen, ibuprofen, naproxen, paracetamol, mefenamic acid, meloxicam, nimesulide, piroxicam, tolfenamic acid, indomethiocin, flunixin, and carprofen. This comprehensive screening aimed to detect any potential NSAID contamination that may have contributed to the vulture's death.

RESULTS

Toxicological analysis revealed presence of notable levels of flunixin in the samples. Residues of other targeted NSAIDs were below detection limit in all the samples. The findings are summarised in Table 1.

Among the tissues analyzed, stomach contents showed the highest level of flunixin (903.9 ng/g), followed

Image 1. Presence of visceral gout characterised by extensive deposition of uric acid crystals on the liver of the rescued Himalayan Vulture's carcass.

by the kidney (214.3 ng/g), and liver (67.6 ng/g), which had the lowest concentration. The presence of uric acid crystal deposition in the viscera (Image 1), indicative of visceral gout, was also noted during the necropsy.

Although pharmacokinetics of flunixin in *Gyps* vultures are poorly documented, Ramzan et al. (2012) demonstrated flunixin meglumine toxicity in broiler chickens, with dose-dependent mortality (20–60%) and associated increases in serum uric acid, and creatinine. The study indicated that flunixin meglumine caused similar toxicity in birds as diclofenac. Previous studies have linked diclofenac residues (0.051–0.643¹ µg/g in kidneys) in *Gyps* vultures to renal failure and visceral gout (Oaks et al. 2004). During post-mortem examination, clear visceral gout, as extensive deposition of uric acid, was observed in the vulture. Further, toxicological analysis of tissue samples for 14 NSAIDs (table 1), only flunixin was detected at significant concentrations in the liver, and kidney. Therefore, it can be inferred that flunixin was one of the reasons for the death of the vulture in the present case.

Diclofenac, a non-steroidal anti-inflammatory drug inhibits cyclooxygenase (COX) enzymes. In vultures, COX inhibition impairs renal prostaglandin synthesis, reducing glomerular filtration, and uric acid excretion.

Table 1. Concentration of flunixin found in the tissues of the Himalayan Vulture.

NSAIDs concentration in tissue samples					
Unit = ng/g					
	NSAIDs screened	Tissue samples			Stomach content
		Liver	Kidney		
1	Diclofenac	BDL	BDL		BDL
2	Aceclofenac	BDL	BDL		BDL
3	Ketoprofen	BDL	BDL		BDL
4	Ibuprofen	BDL	BDL		BDL
5	Naproxen	BDL	BDL		BDL
6	Paracetamol	BDL	BDL		BDL
7	Mefenamic acid	BDL	BDL		BDL
8	Meloxicam	BDL	BDL		BDL
9	Nimesulide	BDL	BDL		BDL
10	Piroxicam	BDL	BDL		BDL
11	Tolfenamic acid	BDL	BDL		BDL
12	Indomethiocin	BDL	BDL		BDL
13	Flunixin	67.6	214.3	903.9	
14	Carprofen	BDL	BDL		BDL

BDL—Below detection limit | Detection limit—20 ng/g

© BVCBC&A, Buxa Tiger Reserve

Image 2. Presence of uric acid crystals on the interior wall of the trachea of the Himalayan Vulture's carcass.

This leads to hyperuricemia, urate crystal deposition, and visceral gout (Oaks et al. 2004; Naidoo & Swan 2009). Oaks et al. (2004) reported the range of diclofenac residues in the kidneys of vultures that died of visceral gout from 0.051–0.643 µg/g. Flunixin is also a non-steroidal anti-inflammatory drug, and in the present case the concentration of flunixin has been detected 214.3 ng/g (equivalent to 0.2143 µg/g) in the kidney of the affected Himalayan Vulture. However, there is a lack of information on whether flunixin, like diclofenac, inhibits COX enzymes in vultures.

The detection of flunixin residues in the tissue samples, confirmation by the testing agency about the probable cause of death, and the observed symptoms of gout, lead us to conclude that flunixin poisoning was the most probable cause of death in this Himalayan Vulture.

DISCUSSION

Visceral gout is characterised by the extensive deposition of uric acid crystals on visceral organs, leading to inflammation, tissue damage, and organ dysfunction. In this present case, visceral gout was found on the liver surface (Image 1). Notably, uric acid crystals were also present on the inner wall of the trachea (Image 2), indicating a severe case that compromised the respiratory system. Uric acid crystals in the trachea can cause inflammation, blockage of the airways, and respiratory distress. The presence of visceral gout, coupled with uric acid crystals in the trachea, suggests that the vulture's death was likely caused by complications arising from kidney disease, and visceral gout developed on the liver as a consequence of flunixin poisoning. Cuthbert et al. (2007), also reported that flunixin has the potential to cause renal damage in birds. Therefore, in this case also, flunixin could be a precipitating factor. However, high flunixin residue in the stomach indicates a recent exposure. The Himalayan Vulture is currently listed as Near Threatened on the International Union for Conservation of Nature (IUCN) Red List. Their global population is estimated to be between 66,000–334,000 mature individuals (BirdLife International 2021), and is protected in India under Schedule-I of the Wild Life (Protection) Amendment Act, 2022 (Government of India 2022). This case underscores the pressing need to limit the veterinary use of flunixin along with other NSAIDs.

This study provides the first confirmed evidence of flunixin residue in a Himalayan Vulture *Gyps himalayensis* in India. The study could not identify the

source of exposure to flunixin, which could have been anywhere within its former range.

CONCLUSION

The Himalayan Vulture's ecological importance cannot be overstated, and the drastic decline in its population is alarming. As a scavenger, it plays a crucial role in maintaining the health and balance of ecosystems by disposing of dead animals, and preventing the spread of diseases. This first reported case of flunixin residue in a Himalayan Vulture in India highlights the urgent need for monitoring of flunixin usage in veterinary use. Further research on flunixin toxicity in scavenging raptors is required to establish safe veterinary drug policies and to ensure a steady supply of safe food sources, such as carcasses, to ensure their survival.

REFERENCES

- Ali, S., & S.D. Ripley (1978). *Handbook of the birds of India and Pakistan: Together with those of Bangladesh, Nepal, Bhutan and Sri Lanka*, Vol. 1. Oxford University Press, London, New York, 382pp.
- BirdLife International (2021). *Gyps himalayensis*. In: IUCN 2021. 2021 IUCN Red List of Threatened Species. e.T22695215A204643889. Accessed on 24.ii.2025. <https://doi.org/10.2305/IUCN.UK.2021-3.RLTS.T22695215A204643889.en>.
- BirdLife International (2024). *Species factsheet: Himalayan Griffon Gyps himalayensis*. In: BirdLife 2024. Accessed on 24.ii.2025. <https://datazone.birdlife.org/species/factsheet/himalayan-griffon-gyps-himalayensis>
- Chakraborty, S.S., D. Ray, A. Sen, P.J. Harikrishnan, N.K. Jha & R. Ghosh (2024). Indian Leopard predation on the sub-adult Himalayan Griffon Vulture. *Journal of Threatened Taxa* 16(11): 26104–26109. <https://doi.org/10.11609/jott.9255.16.11.26104-26109>
- Cuthbert, R., J. Parry-Jones, R.E. Green & D.J. Pain (2007). NSAIDs and scavenging birds: Potential impacts beyond Asia's critically endangered vultures. *Biology Letters* 3(1): 91–94. <https://doi.org/10.1098/rsbl.2006.0554>
- Cuthbert, R.J., R. Dave, S.S. Chakraborty, S. Kumar, S. Prakash, S.P. Ranade & V. Prakash (2011). Assessing the ongoing threat from veterinary non-steroidal anti-inflammatory drugs to Critically Endangered Gyps vultures in India. *Oryx* 45(3): 328–333. <https://doi.org/10.1017/S0030605311000135>
- Down To Earth (2022). Tamil Nadu prosecutes 104 manufacturers, sellers of multi-dose diclofenac linked with vulture deaths. *Down To Earth*, 19 April 2022. <https://www.downtoearth.org.in/wildlife-biodiversity/tamil-nadu-prosecutes-104-manufacturers-sellers-of-multi-dose-diclofenac-linked-with-vulture-deaths-82455>.
- Galligan, T.H., J.W. Mallord, V.M. Prakash, K.P. Bhusal, A.S. Alam & F.M. Anthony (2020). Trends in the availability of the vulture-toxic drug, diclofenac, and other NSAIDs in South Asia, as revealed by covert pharmacy surveys. *Bird Conservation International* 31(3): 337–353. <https://doi.org/10.1017/S0959270920000477>
- Government of India (2022). The Wild Life (Protection) Amendment Act, 2022. In: The Gazette of India. Ministry of Law and Justice (Legislative Department). Accessed on 24.ii.2025. <https://www.indiacode.nic.in/handle/123456789/1726>
- Ministry of Health and Family Welfare, Government of India (2008).

Prohibition of manufacture, sale and distribution of Diclofenac and its formulations for animal use. *The Gazette of India: Extraordinary, Part II—Section 3(ii), Sub-section (i)*, G.S.R. 499(E), 4 July 2008.

Ministry of Health and Family Welfare, Government of India (2023).

Prohibition of manufacture, sale and distribution of Ketoprofen and Aceclofenac and their formulations for animal use. *The Gazette of India: Extraordinary, Part II—Section 3, Sub-section (ii), S.O. 3448(E)*, 31 July 2023. [F. No. X.11035/65/2023-DRS].

Ministry of Health and Family Welfare, Government of India (2024).

Prohibition of manufacture, sale and distribution of Nimesulide and its formulations for animal use. *The Gazette of India: Extraordinary, Part II—Section 3(ii), S.O. 5633(E)*, 30 December. [F. No. X.11035/100/2024-DRS].

Naoroji, R. (2006). *Birds of Prey of the Indian Subcontinent*. Om Books International, New Delhi, 692 pp.

Naidoo, V. & G.E. Swan (2009). Diclofenac toxicity in *Gyps* vultures is associated with decreased uric acid excretion and not renal portal vasoconstriction. *Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology* 149(3): 269–274. <https://doi.org/10.1016/j.cbpc.2008.07.014>

Oaks J.L., M. Gilbert, M.Z. Virani, R.T. Watson, C.U. Meteyer, B.A. Rideout, H.L. Shivaprasad, S. Ahmed, M.J.I. Chaudhry, M. Arshad & S. Mahmood (2004). Diclofenac residues as the cause of vulture population decline in Pakistan. *Nature* 427(6975): 630–633. <https://doi.org/10.1038/nature02317>

Pain, D.J., A.A. Cunningham, P.F. Donald, J.W. Duckworth, D.C. Houston, T. Katzner, J. Parry-Jones, C. Poole, V. Prakash, P. Round & R. Timmins (2008). The race to prevent the extinction of South Asian vultures. *Bird Conservation International* 18(S1): S30–S48. <https://doi.org/10.1017/S0959270908000324>

Rasmussen, P.C. & J.C. Anderton (2012). *Birds of South Asia: The Ripley Guide, 2nd edition, Vol. 1 & 2*. Smithsonian Institution, Michigan State University & Lynx Editions, Washington, DC, Michigan & Barcelona, pp. 1–378 & pp. 1–683.

Ramzan, M., M. Ashraf & K.T. Mahmood (2012). Toxicity of flunixin meglumine in broiler chickens. *Journal of Pharmaceutical Sciences and Research* 4: 1748–1754.

Yong, D.L. & C. Kasorndorkbua (2008). The status of the Himalayan Griffon *Gyps himalayensis* in South-East Asia. *Forktail* 24: 57–62.

Zorrilla, I., R. Martinez, M.A. Taggart & N. Richards (2014). Suspected flunixin poisoning of a wild Eurasian Griffon Vulture from Spain. *Conservation Biology* 29(2): 587–592. <https://doi.org/10.1111/cobi.12417>

Author details: SOUMYA SUNDAR CHAKRABORTY: works as a biologist for the last 16 years, looking after the Buxa Vulture Conservation Breeding Centre and Aviary for the conservation breeding of three Critically Endangered *Gyps* species of vultures and the reintroduction of vultures in West Bengal. He is currently a PhD scholar at the Wildlife Institute of India (WII), Dehradun, affiliated with the Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India. DEBAL RAY, IFS: He is an Indian Forest Service (IFS) officer, presently holding the charge of the principal secretary, Forest Department, Govt. of West Bengal and the principal chief conservator of forests & head of forest forces, West Bengal. He is passionate about biodiversity conservation. He has contributed significantly to forest and climate change, biodiversity management and policy making. APURBA SEN, IFS: currently serves as the chief conservator of forests and field director of the Buxa Tiger Reserve. Deeply committed to wildlife conservation, he has special interest in the field of Gangetic Dolphin. Additionally, he is passionate about documenting the diverse butterfly species found within the Buxa Tiger Reserve. DR. HARIKRISHNAN P.J., IFS: belonging to Indian Forest Service, West Bengal cadre. Currently serving as ex-officio director, Buxa Conservation Breeding Centre and Aviary, Rajabhatkhawa and deputy field director, Buxa Tiger Reserve (West) Division. DR. NABI KANTA JHA, WBFS: He is working as assistant field director of Buxa Tiger Reserve West, Government of West Bengal. He did his Ph.D. in environmental science and worked in research projects in the field of environment and ecology. His work experience includes alpine ecology, forestry, and wildlife. ROUFAQ GHOSH: works as a biologist for last nine years involves in conservation breeding and release of vultures from Buxa Vulture Conservation Breeding Centre and Aviary, Rajabhatkhawa, West Bengal.

Author contributions: SSC: conceptualization, methodology, investigation, writing- original draft. DR: project administration, writing-review and editing. AS: project administration, writing-review and editing. HPI: project administration, writing-review and editing. NKJ: writing, literature review and editing. Roufaq Ghosh: investigation and data collection.

Mr. Jatishwor Singh Irungbam, Biology Centre CAS, Branišovská, Czech Republic.
Dr. Ian J. Kitching, Natural History Museum, Cromwell Road, UK
Dr. George Mathew, Kerala Forest Research Institute, Peechi, India
Dr. John Noyes, Natural History Museum, London, UK
Dr. Albert G. Orr, Griffith University, Nathan, Australia
Dr. Sameer Padhye, Katholieke Universiteit Leuven, Belgium
Dr. Nancy van der Poorten, Toronto, Canada
Dr. Karen Schnabel, NIWA, Wellington, New Zealand
Dr. R.M. Sharma, (Retd.) Scientist, Zoological Survey of India, Pune, India
Dr. Manju Siliwal, WILD, Coimbatore, Tamil Nadu, India
Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India
Dr. K.A. Subramanian, Zoological Survey of India, New Alipore, Kolkata, India
Dr. P.M. Sureshan, Zoological Survey of India, Kozhikode, Kerala, India
Dr. R. Varatharajan, Manipur University, Imphal, Manipur, India
Dr. Eduard Vives, Museu de Ciències Naturals de Barcelona, Terrassa, Spain
Dr. James Young, Hong Kong Lepidopterists' Society, Hong Kong
Dr. R. Sundararaj, Institute of Wood Science & Technology, Bengaluru, India
Dr. M. Nithyanandan, Environmental Department, La Al Kuwait Real Estate. Co. K.S.C., Kuwait
Dr. Himender Bharti, Punjabi University, Punjab, India
Mr. Purnendu Roy, London, UK
Mr. Saito Motoki, The Butterfly Society of Japan, Tokyo, Japan
Dr. Sanjay Sondhi, TITLI TRUST, Kalpavriksh, Dehradun, India
Dr. Nguyen Thi Phuong Lien, Vietnam Academy of Science and Technology, Hanoi, Vietnam
Dr. Nitin Kulkarni, Tropical Research Institute, Jabalpur, India
Dr. Robin Wen Jiang Ngiam, National Parks Board, Singapore
Dr. Lional Monod, Natural History Museum of Geneva, Genève, Switzerland.
Dr. Asheesh Shivam, Nehru Gram Bharti University, Allahabad, India
Dr. Rosana Moreira da Rocha, Universidade Federal do Paraná, Curitiba, Brasil
Dr. Kurt R. Arnold, North Dakota State University, Saxony, Germany
Dr. James M. Carpenter, American Museum of Natural History, New York, USA
Dr. David M. Claborn, Missouri State University, Springfield, USA
Dr. Karen Schnabel, Marine Biologist, Wellington, New Zealand
Dr. Amazonas Chagas Júnior, Universidade Federal de Mato Grosso, Cuiabá, Brasil
Mr. Monsoon Jyoti Gogoi, Assam University, Silchar, Assam, India
Dr. Heo Chong Chin, Universiti Teknologi MARA (UiTM), Selangor, Malaysia
Dr. R.J. Shiel, University of Adelaide, SA 5005, Australia
Dr. Siddharth Kulkarni, The George Washington University, Washington, USA
Dr. Priyadarshan Dharma Rajan, ATREE, Bengaluru, India
Dr. Phil Alderslade, CSIRO Marine And Atmospheric Research, Hobart, Australia
Dr. John E.N. Veron, Coral Reef Research, Townsville, Australia
Dr. Daniel Whitmore, State Museum of Natural History Stuttgart, Rosenstein, Germany.
Dr. Yu-Feng Hsu, National Taiwan Normal University, Taipei City, Taiwan
Dr. Keith V. Wolfe, Antioch, California, USA
Dr. Siddharth Kulkarni, The Hormiga Lab, The George Washington University, Washington, D.C., USA
Dr. Tomas Ditrich, Faculty of Education, University of South Bohemia in Ceske Budejovice, Czech Republic
Dr. Mihaly Foldvari, Natural History Museum, University of Oslo, Norway
Dr. V.P. Uniyal, Wildlife Institute of India, Dehradun, Uttarakhand 248001, India
Dr. John T.D. Caleb, Zoological Survey of India, Kolkata, West Bengal, India
Dr. Priyadarshan Dharma Rajan, Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Bangalore, Karnataka, India

Fishes

Dr. Topiltzin Contreras MacBeath, Universidad Autónoma del estado de Morelos, México
Dr. Heok Hee Ng, National University of Singapore, Science Drive, Singapore
Dr. Rajeev Raghavan, St. Albert's College, Kochi, Kerala, India
Dr. Robert D. Sluka, Chiltern Gateway Project, A Rocha UK, Southall, Middlesex, UK
Dr. E. Vivekanandan, Central Marine Fisheries Research Institute, Chennai, India
Dr. Davor Zanella, University of Zagreb, Zagreb, Croatia
Dr. A. Biju Kumar, University of Kerala, Thiruvananthapuram, Kerala, India
Dr. Akhilesh KV, ICAR-Central Marine Fisheries Research Institute, Mumbai Research Centre, Mumbai, Maharashtra, India
Dr. J.A. Johnson, Wildlife Institute of India, Dehradun, Uttarakhand, India
Dr. R. Ravinesh, Gujarat Institute of Desert Ecology, Gujarat, India

Amphibians

Dr. Sushil K. Dutta, Indian Institute of Science, Bengaluru, Karnataka, India
Dr. Annemarie Ohler, Muséum national d'Histoire naturelle, Paris, France

Reptiles

Dr. Gernot Vogel, Heidelberg, Germany
Dr. Raja Vyas, Vadodara, Gujarat, India
Dr. Pritpal S. Soorae, Environment Agency, Abu Dhabi, UAE.
Prof. Dr. Wayne J. Fuller, Near East University, Mersin, Turkey
Prof. Chandrashekher U. Rironker, Goa University, Taleigao Plateau, Goa, India
Dr. S.R. Ganesh, Chennai Snake Park, Chennai, Tamil Nadu, India
Dr. Himansu Sekhar Das, Terrestrial & Marine Biodiversity, Abu Dhabi, UAE

Journal of Threatened Taxa is indexed/abstracted in Bibliography of Systematic Mycology, Biological Abstracts, BIOSIS Previews, CAB Abstracts, EBSCO, Google Scholar, Index Copernicus, Index Fungorum, JournalSeek, National Academy of Agricultural Sciences, NewJour, OCLC WorldCat, SCOPUS, Stanford University Libraries, Virtual Library of Biology, Zoological Records.

NAAS rating (India) 5.64

Birds

Dr. Hem Sagar Baral, Charles Sturt University, NSW Australia
Mr. H. Biju, Coimbatore, Tamil Nadu, India
Dr. Chris Bowden, Royal Society for the Protection of Birds, Sandy, UK
Dr. Priya Davidar, Pondicherry University, Kalapet, Puducherry, India
Dr. J.W. Duckworth, IUCN SSC, Bath, UK
Dr. Rajah Jayopal, SACON, Coimbatore, Tamil Nadu, India
Dr. Rajiv S. Kalsi, M.L.N. College, Yamuna Nagar, Haryana, India
Dr. V. Santharam, Rishi Valley Education Centre, Chittoor Dt., Andhra Pradesh, India
Dr. S. Balachandran, Bombay Natural History Society, Mumbai, India
Mr. J. Praveen, Bengaluru, India
Dr. C. Srinivasulu, Osmania University, Hyderabad, India
Dr. K.S. Gopi Sundar, International Crane Foundation, Baraboo, USA
Dr. Gombobaatar Sundev, Professor of Ornithology, Ulaanbaatar, Mongolia
Prof. Reuven Yosef, International Birding & Research Centre, Eilat, Israel
Dr. Taej Mundkur, Wetlands International, Wageningen, The Netherlands
Dr. Carol Inskip, Bishop Auckland Co., Durham, UK
Dr. Tim Inskip, Bishop Auckland Co., Durham, UK
Dr. V. Gokula, National College, Tiruchirappalli, Tamil Nadu, India
Dr. Arkady Lelej, Russian Academy of Sciences, Vladivostok, Russia
Dr. Simon Dowell, Science Director, Chester Zoo, UK
Dr. Mário Gabriel Santiago dos Santos, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, Vila Real, Portugal
Dr. Grant Connette, Smithsonian Institution, Royal, VA, USA
Dr. P.A. Azeez, Coimbatore, Tamil Nadu, India

Mammals

Dr. Giovanni Amori, CNR - Institute of Ecosystem Studies, Rome, Italy
Dr. Anwaruddin Chowdhury, Guwahati, India
Dr. David Mallon, Zoological Society of London, UK
Dr. Shomita Mukherjee, SACON, Coimbatore, Tamil Nadu, India
Dr. Angie Appel, Wild Cat Network, Germany
Dr. P.O. Nameer, Kerala Agricultural University, Thrissur, Kerala, India
Dr. Ian Redmond, UNEP Convention on Migratory Species, Lansdown, UK
Dr. Heidi S. Riddle, Riddle's Elephant and Wildlife Sanctuary, Arkansas, USA
Dr. Karin Schwartz, George Mason University, Fairfax, Virginia.
Dr. Lala A.K. Singh, Bhubaneswar, Orissa, India
Dr. Mewa Singh, Mysore University, Mysore, India
Dr. Paul Racey, University of Exeter, Devon, UK
Dr. Honnavalli N. Kumara, SACON, Anaikatty P.O., Coimbatore, Tamil Nadu, India
Dr. Nishith Dharaiya, HNG University, Patan, Gujarat, India
Dr. Spartaco Gippoliti, Socio Onorario Società Italiana per la Storia della Fauna "Giuseppe Altobello", Rome, Italy
Dr. Justus Joshua, Green Future Foundation, Tiruchirappalli, Tamil Nadu, India
Dr. H. Raghuram, The American College, Madurai, Tamil Nadu, India
Dr. Paul Bates, Harison Institute, Kent, UK
Dr. Jim Sanderson, Small Wild Cat Conservation Foundation, Hartford, USA
Dr. Dan Challender, University of Kent, Canterbury, UK
Dr. David Mallon, Manchester Metropolitan University, Derbyshire, UK
Dr. Brian L. Cypher, California State University-Stanislaus, Bakersfield, CA
Dr. S.S. Talmale, Zoological Survey of India, Pune, Maharashtra, India
Prof. Karan Bahadur Shah, Budhanilkantha Municipality, Kathmandu, Nepal
Dr. Susan Cheyne, Borneo Nature Foundation International, Palangkaraya, Indonesia
Dr. Hemanta Kafley, Wildlife Sciences, Tarleton State University, Texas, USA

Other Disciplines

Dr. Aniruddha Belsare, Columbia MO 65203, USA (Veterinary)
Dr. Mandar S. Paingankar, University of Pune, Pune, Maharashtra, India (Molecular)
Dr. Jack Tordoff, Critical Ecosystem Partnership Fund, Arlington, USA (Communities)
Dr. Ulrike Streicher, University of Oregon, Eugene, USA (Veterinary)
Dr. Hari Balasubramanian, EcoAdvisors, Nova Scotia, Canada (Communities)
Dr. Rayanna Helleni Santos Bezerra, Universidade Federal de Sergipe, São Cristóvão, Brazil
Dr. Jamie R. Wood, Landcare Research, Canterbury, New Zealand
Dr. Wendy Collinson-Jonker, Endangered Wildlife Trust, Gauteng, South Africa
Dr. Rajeshkumar G. Jani, Anand Agricultural University, Anand, Gujarat, India
Dr. O.N. Tiwari, Senior Scientist, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
Dr. L.D. Singla, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
Dr. Rupika S. Rajakaruna, University of Peradeniya, Peradeniya, Sri Lanka
Dr. Bharat Baviskar, Wild-CER, Nagpur, Maharashtra 440013, India

Reviewers 2021–2023

Due to paucity of space, the list of reviewers for 2021–2023 is available online.

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.

Print copies of the Journal are available at cost. Write to:
The Managing Editor, JoTT,
c/o Wildlife Information Liaison Development Society,
3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore,
Tamil Nadu 641006, India
ravi@threatenedtaxa.org & ravi@zooreach.org

Articles

Floral inventory and habitat significance of riparian ecosystem along the banks of Chithari River, Kasaragod, Kerala, India

– Sreehari K. Mohan, Shyamkumar Puravankara & P. Biju, Pp. 27407–27425

Propagation through stem cutting and air layering of a Critically Endangered tree *Humboldtia unijuga* Bedd. var. *trijuga* J.Joseph & V.Chandras. (Magnoliopsida: Fabales: Fabaceae)

– Scaria Shintu & P.S. Jothish, Pp. 27426–27432

Niche characterization and distribution of Sikkim Himalayan *Begonia* (Begoniaceae), India: a niche modeling approach

– Aditya Pradhan, Dibyendu Adhikari & Arun Chettri, Pp. 27433–27443

Diversity of snakes (Reptilia: Serpentes) in the Tezpur University Campus, Assam, India

– Mahari Jiumin Basumatary, Anubhav Bhuyan & Robin Doley, Pp. 27444–27455

Diversity and status of shorebirds in the estuaries of Algiers, northern Algeria

– Imad Eddine Rezouani, Belkacem Aimene Boulaouad, Selmane Chabani, Khalil Draidi & Badis Bakhouche, Pp. 27456–27463

Communities attitudes and conservation strategies for flying foxes *Pteropus* spp. (Mammalia: Chiroptera: Pteropodidae): a case study from Sabah, Malaysia Borneo

– Lawrence Alan Bansa, Marcela Pimid, Liesbeth Frias, Sergio Guerrero-Sánchez & Noor Haliza Hasan, Pp. 27464–27487

Communications

Leaf architecture of threatened *Aquilaria cumingiana* (Decne.) Ridley and *Aquilaria malaccensis* Lam. (Thymelaeales: Thymelaeaceae) using morphometrics analysis

– Rhea Lou R. Germo, Christian C. Estrologo & Gindol Rey A. Limbaro, Pp. 27488–27495

First record of *Euclimacia nodosa* (Westwood, 1847) and two species of the genus *Mantispilla* Enderlein, 1910 (Neuroptera: Mantispidae) from the sub-Himalayan foothills of West Bengal, India

– Abhirup Saha, Ratnadeep Sarkar, Subhajit Das, Prapti Das & Dhiraj Saha, Pp. 27496–27505

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print)

September 2025 | Vol. 17 | No. 9 | Pages: 27407–27550

Date of Publication: 26 September 2025 (Online & Print)

DOI: [10.11609/jott.2025.17.9.27407-27550](https://doi.org/10.11609/jott.2025.17.9.27407-27550)

Butterfly diversity in Jitpur Simara Sub-metropolitan City, Bara District, Nepal: a preliminary checklist

– Alisha Mulmi, Prakriti Chataut & Mahamad Sayab Miya, Pp. 27506–27516

First documented case of flunixin residue in a Himalayan Vulture *Gyps himalayensis* Hume, 1869 (Aves: Accipitridae: Accipitridae) in India: conservation and veterinary implications

– Soumya Sundar Chakraborty, Debal Ray, Apurba Sen, P.J. Harikrishnan, Nabi Kanta Jha & Rounaq Ghosh, Pp. 27517–27522

Review

MaxENT tool for species modelling in India: an overview

– S. Suresh Ramanan, A. Arunachalam, U.K. Sahoo & Kalidas Upadhyaya, Pp. 27523–27534

Short Communications

Vocalisations of Rusty-spotted Cats *Prionailurus rubiginosus* (I. Geoffroy Saint-Hilaire, 1831) (Mammalia: Carnivora: Felidae) in Frankfurt Zoo

– Vera Pfannerstill, Johannes Köhler & Sabrina Linn, Pp. 27535–27539

Effect of schistosomiasis on captive elephants in Madhya Pradesh, India

– Onkar Anchal & K.P. Singh, Pp. 27540–27543

Notes

Recent additions and taxonomic changes in the liverwort and hornwort flora of India

– Shuvadeep Majumdar & Monalisa Dey, Pp. 27544–27547

First photographic record of the Smooth-coated Otter *Lutra perspicillata* in Polavaram Forest Range, Andhra Pradesh, India

– Arun Kumar Gorati, Ritesh Vishwakarma, Anukul Nath & Parag Nigam, Pp. 27548–27550

Publisher & Host

Threatened Taxa