Journal of Threatened Taxa | www.threatenedtaxa.org | 26 November 2025 | 17(11): 27806–27821

 

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print) 

https://doi.org/10.11609/jott.9660.17.11.27806-27821

#9660 | Received 02 February 2025 | Final received 06 September 2025 | Finally accepted 10 October 2025

 

 

An updated floral diversity of Tal Chhapar Wildlife Sanctuary, Rajasthan, India

 

Sneha Singh 1  & Orus Ilyas 2        

 

1,2 Department of Wildlife Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India.

 1 1010sneha@gmail.com (corresponding author), 2 orus16@gmail.com

 

 

Abstract: Tal Chhapar Wildlife Sanctuary, located on the eastern edge of the Thar Desert, supports higher floristic diversity and structural complexity compared to other arid zone ecosystems. A comprehensive floristic survey conducted from 2022 to 2024 recorded 211 angiosperm species belonging to 146 genera and 49 families, including one species from the magnoliids, 44 eudicots, and four monocots. Poaceae emerges as the dominant family with 49 species, followed by Asteraceae and Amaranthaceae, each contributing 17 species. Herbaceous plants were predominant, accounting for 40% of the flora, followed by grasses 23%, trees 12%, and shrubs 12%. Therophytes were the most common life form (105 species), followed by phanerophytes (55), hemicryptophytes (38), chamaephytes (11), and geophytes (2). The number of perennial plants (106 species) was almost equal to that of annuals (105 species), suggesting increased resilience to climate variability. Additionally, the survey identified one ‘Endangered’ species, Tecomella undulata, and one ‘Critically Endangered’ species, Commiphora wightii. Overall, this study provides a comprehensive floristic inventory of Tal Chhapar Wildlife Sanctuary, revealing its rich floral diversity and highlighting key species of conservation concern.

 

Keywords: Angiosperms, checklist, climatic variability, conservation, flora, floristic survey, inventory, life forms, plants, vegetation.

 

 

Editor: D.S. Rawat, G.B. Pant University of Agriculture & Technology, Pantnagar, India.    Date of publication: 26 November 2025 (online & print)

 

Citation: Singh, S. & O. Ilyas (2025). An updated floral diversity of Tal Chhapar Wildlife Sanctuary, Rajasthan, India. Journal of Threatened Taxa 17(11): 27806–27821. https://doi.org/10.11609/jott.9660.17.11.27806-27821

  

Copyright: © Singh & Ilyas 2025. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

 

Funding: This research is not funded by any agency/ organization.

 

Competing interests: The authors declare no competing interests.

 

Author details: Sneha Singh is a doctoral research fellow in the Department of Wildlife Sciences at Aligarh Muslim University, India. Her research focuses on the ecology of grassland raptor species in western Rajasthan. Dr. Orus Ilyas, professor of Biodiversity and Environmental Studies in the Department of Wildlife Sciences at Aligarh Muslim University, has been conducting research on mammals in India since 1995 and has over 27 years of extensive experience working in the high-altitude ecosystems of the Himalayas.

 

Author contributions: Concept and design: SS and OI; Data collection: SS; Analysis: SS and OI; Manuscript writing: SS; Supervision: OI. Manuscript review and comments: SS and OI

 

Acknowledgements: The authors express their gratitude to the Department of Forest, Rajasthan for granting permission to collect plant specimens and conduct the study within the sanctuary. They also extend thanks to Mr. Mahesh Charan, the field assistant for his invaluable assistance in the collection of the plant samples.

 

 

 

Introduction

 

Biodiversity refers to the variety and variability of biological organisms. It is a fundamental indicator of ecosystem health, directly reflecting its vitality, resilience, and stability (Byrnes et al. 2015; Wagg et al. 2022). The richness of plant diversity within an ecosystem not only enhances the aesthetic value of the landscape but also significantly contributes to the overall productivity of the ecosystem by providing essential resources such as food, medicine, fuel, and shelter that are crucial for the survival and well-being of both wildlife and humans (Singh et al. 2005). In arid and semi-arid regions, plant diversity is essential for regulating the water cycle, stabilizing soil, and combating desertification, thereby maintaining ecological balance (Ayangbenro & Babalola 2021). The loss of biodiversity in such fragile environments could lead to severe environmental degradation and disrupt ecosystem services that sustain local communities. Therefore, preserving plant diversity is essential for maintaining ecological balance and ensuring the long-term sustainability of human life in these regions. In recent years, increased anthropogenic activities, including mining, agricultural expansion, habitat fragmentation, and changes in land use, have been observed in these regions, underscoring the urgent need for conservation efforts (Islam & Rahmani 2011; Ram 2021).

Arid and semi-arid ecosystems exhibit pronounced spatiotemporal variability in vegetation composition due to changes in rainfall, temperature, and grazing pressure, making them highly vulnerable to climatic variability (Chapungu et al. 2020; Wu et al. 2023; Sur et al. 2024; Al-Mutairi 2025). These environmental factors strongly influence net primary productivity and ecosystem CO2 exchange, affecting vegetation dynamics across temporal scales (Knapp & Smith 2001; Huxman et al. 2004a,b). Continuous, systematic plant monitoring in such landscapes provides essential time-series data to track changes in community composition and species resilience (Bagchi et al. 2017; Reddy et al. 2020; Tiruvaimozhi 2024). Such periodic assessments also effectively capture ephemeral species limited to short favourable conditions and enable early detection of invasive species like Prosopis juliflora, facilitating timely management interventions in these ecosystems (Kumar et al. 2021; Burke 2023).

To date, numerous studies across western Rajasthan have significantly contributed towards understanding regional plant diversity, including notable works by Gupta & Sharma (1977), Singh et al. (1997), Sharma & Aggarwal (2008), Sharma & Purohit (2013), Parihar & Choudhary (2017), Meena & Khan (2023), and Sanadya et al. (2023). Moreover, in the past five years, three floristic surveys have been conducted in the Tal Chhapar Wildlife Sanctuary representing a significant shift in shrub and herbaceous plant diversity within the sanctuary from 2015 to 2023. These are Kaur et al. (2020) reporting 78 species, Bagoriya et al. (2021) 139 species, and Karel & Gena (2023) 132 species. These changes are likely driven by environmental factors (Wu et al. 2021, 2023) and adaptive management practices. Despite this evidence of ecological dynamism, long-term and repeated monitoring remains limited, constraining our understanding of species turnover, vegetation resilience, and ecosystem stability. The present study therefore aims to bridge this gap through a biennial floristic reassessment of Tal Chhapar, focusing on documenting current plant diversity, detecting species additions or losses relative to prior records, and revalidating taxonomic designations under the APG IV classification. This study aims to provide a comprehensive checklist of angiosperm diversity within the sanctuary, offering valuable insights to inform conservation efforts and management strategies that preserve biodiversity and promote the well-being of local communities.

 

 

Materials and Methods

 

Study area

Tal Chhapar Wildlife Sanctuary (TWS) (27.840° N, 74.484° E), situated in Sujangarh Tehsil of Churu District in northwestern Rajasthan, covers an area of 719 ha, as shown in Figure 1. It is divided into two unequal halves by the Chhapar-Sujangarh state highway. Located within the 3-A Thar Desert (Rodger et al. 2002), the sanctuary experiences extreme temperatures, ranging from -1 °C in December–January to 50 °C in May–June, with 95% of its annual rainfall occurring during the monsoon season, July–September. According to Champion & Seth (1968), the vegetation of the study area is classified as “the desert thorn forest (6B/C1).” The sanctuary landscape features grass species such as Cenchrus setigerus, Cynodon dactylon, Desmostachya bipinnata, Dichanthium annulatum, Lasiurus scindicus, and Sporobolus marginatus, interspersed with tree species like Acacia nilotica, Azadirachta indica, Capparis decidua, Prosopis cineraria, Neltuma juliflora, Salvadora persica, and Ziziphus mauritiana creating a savannah-like ecosystem (Kaur et al. 2020).

 

Methods

The present study was conducted from August 2022–March 2024, spanning the post-monsoon, winter, and spring seasons, which are known for peak plant diversity in this region. This time frame was strategically chosen to capture maximum diversity, as species diversity is typically lowest during the summer, while evenness remains relatively stable throughout the year (Kaur et al. 2020). The sanctuary was surveyed every 15 days using a random search approach to collect plant samples. The researcher moved systematically through the study area without following predetermined routes or fixed sampling points, ensuring unbiased sampling across diverse microhabitats. The voucher specimens were tagged, prepared as herbarium specimens following the standard procedure (Rao & Sharma 1990), and deposited at the Herbarium of the Department of Wildlife Science, Aligarh Muslim University, Uttar Pradesh. Plant specimens were identified in the field using the existing Flora of Rajasthan and relevant published literature (Shetty & Singh 1987, 1991, 1993; Bhandari 1995; Peddi et al. 2014; Charan & Sharma 2016; Sanadya et al. 2023). The species nomenclature was updated according to the latest standards of the International Plant Name Index (IPNI), with binomial names and author citations sourced from trusted databases such as Plants of the World Online (POWO 2025) and World Flora Online (WFO 2025). Angiosperm classification followed the Angiosperm Phylogeny Group IV (2016) system, with plants categorized into magnoliids, monocots, and eudicots. To ensure clarity and ease of reference, families, their respective genera, and the species within each genus have been organized in alphabetical order in each angiosperm group. A comprehensive checklist of the flora in TWS Sanctuary was compiled, detailing species’ vernacular names, angiosperm types, growth habits, plant life forms as classified by Raunkiaer’s system (Raunkiaer 1934), and their distribution.

 

 

Results

 

Floristic diversity of TWS

Table 1 summarizes the findings from the floristic survey carried out in TWS, revealing a total of 211 identified species belonging to 49 families and 146 genera. Eudicots dominated the flora, with 44 families, 116 genera, and 154 species. Asteraceae emerges as the most diverse eudicot family, with 16 genera and 17 species, followed by Amaranthaceae (10 genera, 17 species), and Fabaceae (13 genera, 16 species). Monocots were represented by only four families, contributing significantly to the flora, with 29 genera and 56 species. Within monocots, Poaceae stands out as the dominant family, with 26 genera and 49 species, thereby enriching the sanctuary’s floristic diversity, as illustrated in Figure 2. In the present survey, the family Annonaceae was the sole representative of the magnoliids, comprising a single species.

Furthermore, Eragrostis was identified as the most diverse genus, comprising eight species, followed by Amaranthus, with six species, and Cyperus and Sporobolus, each with five species. These four genera together accounted for 11.37% of the total flora, highlighting the sanctuary’s ecological complexity and plant diversity across various genera, as shown in Table 1.

 

Classification of plants based on their growth habits and Raunkiaer’s Life forms

The composition and adaptation strategies of the sanctuary’s flora were analyzed using growth habits and Raunkiaer’s life form classification. Growth habit analysis revealed that herbaceous plants were the most dominant, accounting for 40% of the total flora (84 species), followed by grasses at 23% (49 species), trees 12% (26 species), and shrubs 12% (26 species) also contributed significantly, while climbers 5% (10 species), succulents 5% (11 species), and sedges 3% (two species) represented smaller proportions, as illustrated in Figure 3.

Similarly, Raunkiaer’s classification, based on the position of perennating organs, identified therophytes (annuals surviving as seed) as the most prevalent category, constituting 49.8% (105 species) of the flora. Phanerophytes (perennial trees and shrubs with buds located over 25 cm above ground) accounted for 18% (38 species), while hemicryptophytes (buds at or just above the soil surface) represented 16.59% (35 species). Chamaephytes (buds up to 25 cm above ground) and geophytes (plants with underground storage organs) collectively formed 16% of the flora, with 11 and two species, respectively, as shown in Figure 4.

 

Ecological importance and conservation priorities of the sanctuary

As outlined in Table 1, the sanctuary is home to 211 identified species, of which 72.51% (153 species) are native and 27.49% (58 species) are introduced. The species are nearly evenly distributed, with 49.76% (105 species) being annuals and 50.24% (106 species) perennials, as shown in Figure 5. Additionally, the sanctuary hosts two IUCN Red Listed species: Commiphora wightii, classified as ‘Critically Endangered’ (Ved et al. 2015), and Tecomella undulata, classified as ‘Endangered’ (Plummer 2021), also depicted in Images 1a&b.

 

Discussion and Conclusion

 

This study recorded 211 angiosperm species within the sanctuary, showing a significant increase compared to previous reports of 78 species (Kaur et. al. 2020), 139 species (Bagoriya et al. 2020), and 102 species (Karel & Gena 2023). Among these, 108 species were recorded for the first time in the sanctuary. This increase in the species’ number may be attributed to habitat changes influenced by management practices such as removing invasive species like Neltuma juliflora, maintaining waterholes during dry periods, implementing controlled burns, and regulating grazing. This warrants further investigation. This study also documented the absence of 51 species across 41 genera (Appendix I), comprising two aquatic plants, two ornamental plants, eight cultivated crops, and 40 wild species, which raises significant concern. This absence cannot be attributed to the exclusion of the summer season, as flowering and fruiting periods of these species overlapped with the study timeframe.  If these species (particularly wild species) had been present in the sanctuary, they would have been observed during the study. Moreover, such patterns of species absence are not unprecedented in the sanctuary. Previous studies have also reported similar findings. For instance, Kaur et al. (2020) failed to document two previously recorded species, while Bagoriya et al. (2020), despite reporting 139 species, missed 27 species listed in earlier records. More alarmingly, Karel & Gena (2023) noted an increase in missing species, reporting the absence of 59 species. We hypothesized that environmental factors, such as fluctuations in rainfall and temperature, which are key drivers of grassland ecosystems (Wu et al. 2023), along with the inherent climatic instability of the Thar Desert, a critical factor in the region’s ecology, have contributed to these variations in species compositions.

In this study, Poaceae with 26 genera and 49 species emerged as the most dominant family, followed by Asteraceae (16 genera, 17 species) and Amaranthaceae (10 genera, 17 species). These findings were consistent with those of Kaur et al. (2020), who identified these families as the most diverse and highlighted their functional role in shaping the sanctuary’s ecological structure. It was observed that perennial species were equal to annuals in the sanctuary, with herbaceous plants dominating and grass species thriving in the semi-arid climate. This highlights the sanctuary’s ability to support both short-term resilience and long-term ecosystem stability, which are fundamental to the sustained growth and health of the ecosystem (Gou et al. 2023). This may also account for the sanctuary’s high proportion of native species, over 70%. Additionally, the sanctuary’s high ecological resilience is evident from the presence of 49.76% therophytes—plants that endure unfavourable conditions, such as droughts and extreme temperatures, by surviving in seed form. The occurrence of introduced species, including cultivated crops and ornamental plants, merits attention. These species are mainly the result of anthropogenic influences, driven by the proximity of agricultural fields and human settlements to the sanctuary. In addition, forest management practices have contributed to their presence, with ornamental plants being deliberately introduced along boundaries and near rest houses to enhance the aesthetic appeal for visitors. Given their potential influence on native flora, these species have also been included in the sanctuary’s plant checklist.

In conclusion, the sanctuary’s floral diversity, featuring both native and non-native species, is thriving, providing support to wildlife and local communities, while reflecting the sanctuary’s strong ecological resilience. The absence of certain species suggests the need for further investigation. To sustain this growth and ensure the long-term stability of the ecosystem, ongoing conservation efforts by the forest department are essential.

 

 

Table 1. Updated floristic diversity of Tal Chhapar Wildlife Sanctuary, Churu in Rajasthan.

 

Name of species with its first publication year

Vernacular names

Angiosperm types

Nature

Growth

habits

Life forms

Distribution

1. Annonaceae  

 

Monoon longifolium (Sonn.) B.Xue & R.M.K.Saunders (2012) *

Ashok

Ma

P

T

Ph

N

2. Asphodelaceae  

 

Aloe vera (L.) Burm.f. (1768)

Guarpatta

M

P

Su

Ch

I

3. Commelinaceae  

 

Commelina benghalensis L. (1753)

Moriyabati, Bakhana

M

A

H

Th

N

4. Cyperaceae  

 

Cyperus bulbosus Vahl (1805)

Mothh

M

P

Se

Ge

N

 

Cyperus compressus L. (1753)

Mothio

M

A

Se

Th

N

 

Cyperus flavidus Retz. (1788)

Peeli-mutha

M

A

Se

Th

N

 

Cyperus iria L. (1753)

Moth

M

A

Se

Th

N

 

Cyperus rotundus L. (1753)

Motha

M

P

Se

Ge

N

5. Poaceae 

 

Acrachne racemosa (B.Heyne ex Roth) Ohwi (1947)

Jaran, Chinki

M

A

G

Th

N

 

Aristida adscensionis L. (1753)

Lampro

M

A

G

Th

N

 

Aristida funiculata Trin. &Rupr. (1842)

Lamp

M

A

G

Th

N

 

Aristida mutabilis Trin. & Rupr. (1842)

-

M

A

G

Th

N

 

Aristida setacea Retz. (1786)

Danta

M

A

G

Th

N

 

Bothriochloa pertusa (L.) A.Camus (1931)

Chhoti-jergi

M

P

G

He

N

 

Cenchrus biflorus Roxb. (1820)

Bhurut

M

A

G

Th

N

 

Cenchrus ciliaris L. (1771)

Dhaman, Anjan

M

P

G

He

N

 

Cenchrus prieurii (Kunth) Maire (1931)

Lambio-bhurut

M

P

G

He

N

 

Cenchrus setigerus Vahl (1806)

Kala Dhaman

M

P

G

He

N

 

Chloris barbata Sw. (1797)

Boj-patra

M

A

G

Th

N

 

Chloris flagellifera (Nees) P.M.Peterson (2015)

Ganthil Ghas

M

P

G

He

N

 

Chloris virgata Sw. (1797)

Gharniaghas

M

P

G

He

I

 

Cynodon dactylon (L.) Pers. (1805)

Doob

M

P

G

He

N

 

Dactyloctenium aegyptium (L.) Willd. (1809)

Makaro

M

A

G

Th

N

 

Dactyloctenium scindicum Boiss. (1859)

Mansa

M

P

G

He

N

 

Desmostachya bipinnata (L.) Stapf (1900)

Dab

M

P

G

He

N

 

Dichanthium annulatum (Forssk.) Stapf (1917)

Karad

M

P

G

He

N

 

Dichanthium aristatum (Poir.) C.E.Hubb. (1940)

-

M

P

G

He

N

 

Digitaria bicornis (Lam.) Roem. & Schult. (1817)

Jheranio

M

A

G

Th

N

 

Digitaria sanguinalis (L.) Scop. (1771)

Baans Ghas

M

A

G

Th

N

 

Echinochloa colonum (L.) Link (1833)

Soma, Phunkia

M

A

G

Th

N

 

Eleusine indica (L.) Gaertn. (1788)

Ghoda-doob

M

A

G

Th

N

 

Eleusine tristachya (Lam.) Lam. (1792)

-

M

A

G

Th

I

 

Enteropogon monostachyos (Vahl) K.Schum. (1894)

-

M

P

G

He

N

 

Eragrostis cilianensis (All.) Vignolo ex Janch. (1907)

-

M

A

G

Th

N

 

Eragrostis ciliaris (L.) R.Br.(1818)

Burbudi

M

A

G

Th

N

 

Eragrostis japonica (Thunb.) Trin. (1830)

-

M

A

G

Th

N

 

Eragrostis minor Host (1827)

Poongyo

M

A

G

Th

N

 

Eragrostis multiflora Trin. (1830)

Chuvalio

M

A

G

Th

N

 

Eragrostis pilosa (L.) P.Beauv. (1812)

Chidi-pinkhia

M

A

G

Th

N

 

Eragrostis tenella (L.) P.Beauv. ex Roem. & Schult. (1817)

Bharburo

M

A

G

Th

N

 

Eragrostis unioloides (Retz.) Nees ex Steud. (1854)

-

M

A

G

Th

N

 

Lasiurus scindicus Henrard (1941)

Sevan

M

P

G

He

N

 

Melanocenchris jacquemontii Jaub. & Spach (1851)

-

M

A

G

Th

N

 

Panicum turgidum Forssk. (1775)

Murantio Ghas

M

P

G

He

N

 

Perotis indica (L.) Kuntze (1891)

Lonki-puncho

M

A

G

Th

N

 

Polypogon viridis (Gouan) Breistr. (1966)

-

M

A

G

Th

N

 

Saccharum spontaneum L. (1771)

Kans

M

P

G

He

N

 

Schoenefeldia gracilis Kunth (1830)

Tarwaria

M

A

G

Th

N

 

Sporobolus airoides (Torr.) Torr. (1853)

-

M

P

G

He

I

 

Sporobolus coromandelianus (Retz.) Kunth (1829)

-

M

P

G

He

N

 

Sporobolus diandrus (Retz.) P.Beauv. (1812)

Chiria ka Dana

M

P

G

He

N

 

Sporobolus indicus (L.) R.Br. (1810)

-

M

P

G

He

I

 

Sporobolus ioclados (Nees ex Trin.) Nees (1841)

Poolongi

M

P

G

He

N

 

Tetrapogon tenellus (J.Koenig ex Roxb.) Chiov. (1907)

Lampada

M

A

G

Th

N

 

Tragus berteronianus Schult. (1824)

-

M

A

G

Th

I

 

Tripidium bengalense (Retz.) H.Scholz (2006)

Munja

M

P

G

He

N

 

Urochloa ramosa (L.) T.Q.Nguyen (1966)

Muret

M

A

G

Th

N

6. Acanthaceae 

 

Andrographis paniculata (Burm.f.) Wall. ex Nees (1832)

Kalpnath

E

A

H

Th

N

 

Dicliptera paniculata (Forssk.) I.Darbysh. (2007)

Kagjangha

E

A

H

Th

N

7. Aizoaceae

 

Trianthema portulacastrum L. (1753)

Sato

E

A

Su

Th

N

 

Trianthema triquetrum Willd. ex-Spreng. (1825)

Dhedosanto

E

A

Su

Th

N

8. Amaranthaceae 

 

Achyranthes aspera L. (1753)

Chirchita

E

P

H

He

N

 

Aerva javanica (Burm.f.) Juss. ex-Schult. (1819)

Safed Bui

E

P

H

Ch

N

 

Aerva tomentosa Forssk. (1775)

Buari

E

P

H

Ch

N

 

Amaranthus blitum L. (1753) **

Lal Bhaji

E

A

H

Th

I

 

Amaranthus blitoides S.Watson (1877)

Chaulai

E

A

H

Th

I

 

Amaranthus hybridus L. (1753) **

Chaulai

E

A

H

Th

I

 

Amaranthus polygonoides L. (1759)

Kairee, Sevari

E

A

H

Th

I

 

Amaranthus spinosus L. (1753)

Chandelo

E

A

H

Th

I

 

Amaranthus viridis L. (1763)

Jangali Chaulai

E

A

H

Th

I

 

Atriplex halimus L. (1753)

-

E

P

Su

He

I

 

Chenopodiastrum murale (L.) S.Fuentes, Uotila & Borsch (2012)

Khartua

E

A

H

Th

N

 

Chenopodium album L. (1753)

Bathua

E

A

H

Th

N

 

Dysphania pumilio (R.Br.) Mosyakin & Clemants (2002)

-

E

A

H

Th

I

 

Haloxylon salicornicum (Moq.) Bunge ex Boiss. (1879)

Lana

E

P

S

Ph

N

 

Soda stocksii (Boiss.) Akhani (2020)

-

E

A

H

Th

N

 

Suaeda fruticosa Forssk. ex J.F.Gmel. (1776)

Lani

E

P

H

Ch

N

 

Suaeda monoica Forssk. ex J.F.Gmel. (1776)

-

E

P

S

Ch

N

9. Apocynaceae

 

Calotropis gigantea (L.) W.T.Aiton (1811)

Safed Aak

E

P

S

Ph

N

 

Calotropis procera (Aiton) W.T.Aiton (1811)

Aakado

E

P

Su

Ph

N

 

Carissa carandas L. (1767) *

Karonda

E

P

S

Ph

N

 

Cascabela thevetia (L.) Lippold (1980) *

Peeli Kaner

E

P

T

Ph

I

 

Leptadenia pyrotechnica (Forssk.) Decne. (1838)

Khimp

E

P

S

Ph

N

 

Nerium oleander L. (1753) *

Kaner

E

P

T

Ph

N

 

Tabernaemontana divaricata (L.) R.Br. ex Roem. & Schult. (1819) *

Chandini

E

P

S

Ph

N

10. Asteraceae

 

Blumea lacera (Burm.f.) DC. (1834)

Kukrondha

E

A

H

Th

N

 

Cyanthillium cinereum (L.) H.Rob. (1990)

Sahadevi

E

A

H

Th

N

 

Echinops echinatus Roxb. (1832)

Unt-kantalo

E

P

H

He

N

 

Eclipta prostrata (L.) L. (1771)

Jal Bhangro

E

A

H

Th

I

 

Erigeron bonariensis L. (1753)

-

E

A

H

Th

I

 

Helianthus annuus L. (1753)

Surajmukhi

E

A

H

Th

I

 

Lactuca serriola L. (1756)

-

E

A

H

Th

I

 

Launaea procumbens (Roxb.) Ramayya & Rajagopal (1969)

Janlee Gobi

E

P

H

He

N

 

Parthenium hysterophorus L. (1753)

Gajar Ghas

E

A

H

Th

I

 

Pluchea lanceolata (DC.) C.B.Clarke (1876)

Rasna

E

P

H

He

N

 

Pseudoconyza viscosa (Mill.) D'Arcy (1973)

Gandhana

E

A

H

Th

N

 

Pulicaria undulata (L.) C.A.Mey. (1831)

Sohanfali

E

A

H

Th

N

 

Pulicaria wightiana (DC.) C.B.Clarke (1876)

-

E

P

H

He

N

 

Tridax procumbens L. (1753)

Jayanti

E

A

H

Th

I

 

Sonchus oleraceus L. (1753)

Aakadio

E

A

H

Th

I

 

Verbesina encelioides (Cav.) Benth. & Hook.f. ex A.Gray (1876)

Jangali pSurajmukhi

E

A

H

Th

I

 

Xanthium strumarium L. (1753)

Aandheeda

E

A

H

Th

N

11. Bignoniaceae

 

Tecoma fulva (Cav.) G.Don (1837) *

-

E

P

S

Ph

I

 

Tecomella undulata (Sm.) Seem. (1862)

Rohida

E

P

T

Ph

N

12. Boraginaceae

 

Cordia dichotoma G.Forst. (1786) *

Goonda

E

P

T

Ph

N

 

Euploca marifolia (J.Koenig ex Retz.) Ancy &P.Javad (2020)

Choti Santari

E

P

H

He

N

 

Euploca ovalifolia (Forssk.) Diane & Hilger (2003)

Kunden

E

P

H

He

N

 

Euploca strigosa (Willd.) Diane & Hilger (2003)

Kamediya

E

A

H

Th

N

 

Heliotropium europaeum L. (1753)

-

E

A

H

Th

N

 

Heliotropium zeylanicum (Burm.f.) Lam. (1789)

-

E

A

H

Th

N

13. Brassicaceae

 

Brassica juncea (L.) Czern. (1859) **

Rai

E

A

H

Th

I

 

Farsetia stylosa R.Br. (1826)

Hiran-chabo

E

A

H

Th

N

14. Burseraceae

 

Commiphora wightii (Arn.) Bhandari (1965)

Guggal

E

P

S

Ph

N

15. Cactaceae

 

Opuntia elatior Mill. (1768)

Nag-phani

E

P

Su

Ph

I

16. Capparaceae

 

Capparis decidua (Forssk.) Edgew. (1862)

Kair

E

P

S

Ph

N

17. Caricaceae 

 

Carica papaya L. (1753) *

Papito

E

P

T

Ph

I

18. Celastraceae 

 

Gymnosporia senegalensis (Lam.) Loes. (1893) *

Kakero

E

P

T

Ph

N

19. Cleomaceae 

 

Cleome viscosa L. (1753)

Bagro

E

A

H

Th

N

20. Combretaceae

 

Combretum indicum (L.) DeFilipps (1998)

Madhumati

E

P

C

Ph

N

21. Convolvulaceae

 

Cressa cretica L. (1753)

Rudravanti

E

P

H

He

N

22. Cucurbitaceae

 

Citrullus colocynthis (L.) Schrad. (1838) **

Tumba

E

A

C

Th

N

 

Citrullus lanatus (Thunb.) Matsum. & Nakai (1910) **

Matiro

E

A

C

Th

I

 

Cucumis melo L. (1753) **

Kaachri

E

A

C

Th

N

 

Cucumis prophetarum L. (1755)

Khat-khachro

E

P

C

Ch

N

23. Euphorbiaceae

 

Acalypha indica L. (1753)

Khokali

E

A

H

Th

N

 

Croton bonplandianus Baill. (1864)

Kapur-kur

E

A

H

Th

I

 

Euphorbia caducifolia Haines (1914) *

Danda-thor

E

P

Su

Ph

N

 

Euphorbia hirta L. (1753)

Bara-dudhi

E

A

H

Th

I

 

Euphorbia prostrata Aiton (1789)

Dudhi

E

A

Su

Th

I

 

Euphorbia thymifolia L. (1753)

Choti-dudhi

E

A

H

Th

I

 

Jatropha gossypiifolia L. (1753)

Ratanjoti

E

P

S

Ph

I

 

Ricinus communis L. (1753)

Arandio

E

P

S

Ph

I

24. Fabaceae 

 

Clitoria ternatea L. (1753)

Koyalri

E

A

C

Th

I

 

Dalbergia sissoo Roxb. ex-DC. (1825) *

Sheesham

E

P

T

Ph

N

 

Medicago polymorpha L. (1753)

Ghasar

E

P

H

He

I

 

Neltuma juliflora (Sw.) Raf. (1838) *

VilaytiKikar

E

P

T

Ph

I

 

Parkinsonia aculeata L. (1753)

Rambaval

E

P

T

Ph

I

 

Pongamia pinnata (L.) Pierre (1898) *

Karanj

E

P

T

Ph

N

 

Prosopis cineraria (L.) Druce (1914)

Khejri

E

P

T

Ph

N

 

Tephrosia purpurea (L.) Pers. (1807)

Dhamasa

E

A

H

Th

N

 

Trifolium repens L. (1753)

Barseem

E

P

H

He

N

 

Senegalia senegal (L.) Britton (1930)

Kumta

E

P

T

Ph

N

 

Senna tora (L.) Roxb. (1832)

Phunwad

E

A

H

Th

I

 

Vachellia jacquemontii (Benth.) Ali (2014)

Bu-banwali

E

P

T

Ph

N

 

Vachellia leucophloea (Roxb.) Maslin, Seigler & Ebinger (2013)

Roonjh, Urajio

E

P

T

Ph

N

 

Vachellia nilotica (L.) P.J.H.Hurter & Mabb. (2008)

Banwal

E

P

T

Ph

N

 

Vachellia tortilis (Forssk.) Galasso & Banfi (2008)

Israeli Babool

E

P

T

Ph

I

 

Vigna trilobata (L.) Verdc. (1968)

Jangali Moth

E

A

C

Th

N

25. Geraniaceae

 

Geranium rotundifolium L. (1753)

-

E

A

H

Th

N

26. Lamiaceae

 

Leucas aspera (Willd.) Link (1822)

Thumbai

E

A

H

Th

N

 

Leucas martinicensis (Jacq.) R.Br. (1811)

Dargal

E

A

H

Th

N

 

Ocimum americanum L. (1755)

Bapchi

E

A

H

Th

N

 

Ocimum tenuiflorum L. (1753)

Ram Tulsi

E

P

H

Ph

N

 

Premna resinosa (Hochst.) Schauer (1847)

Ghitti

E

P

S

Ph

N

27. Malvaceae 

 

Abutilon indicum (L.) Sweet (1826)

Kanghi

E

P

S

Ch

N

 

Abutilon pannosum (G.Forst.) Schltdl. (1851)

Khareti

E

P

H

Ch

N

 

Abutilon ramosum (Cav.) Guill. & Perr. (1831)

Ramo-saag

E

P

H

Ph

N

 

Corchorus depressus (L.) Peterm. (1845)

Chamghas

E

A

H

Th

N

 

Corchorus tridens L. (1771)

Kagnasha

E

A

H

Th

N

 

Corchorus trilocularis L. (1767)

Kagaroti

E

A

H

Th

N

 

Gossypium arboreum L. (1753) *

Dharira

E

P

S

Ph

N

 

Grewia tenax (Forssk.) Fiori (1912)

Gangeran

E

P

S

Ph

N

 

Hibiscus × rosa-sinensis L. (1753) *

Gudhal

E

P

S

Ph

I

 

Malvastrum coromandelianum (L.) Garcke (1857)

Khariniti

E

A

H

Th

I

 

Sida cordifolia L. (1753)

Bal, Khariniti

E

P

H

Ch

N

28. Meliaceae

 

Azadirachta indica A.Juss. (1831)

Neem

E

P

T

Ph

I

29. Molluginaceae

 

Hypertelis cerviana L. (2016)

Chirmori

E

A

H

Th

N

30. Moraceae

 

Ficus benghalensis L. (1753) *

Bar

E

P

T

Ph

N

 

Ficus religiosa L. (1753)

Pipal

E

P

T

Ph

N

31. Nyctaginaceae

 

Boerhavia diffusa L. (1753)

Chinawari, Santhi

E

P

H

He

N

 

Boerhavia erecta L. (1753)

Saanth

E

P

H

He

I

 

Bougainvillea glabra Choisy (1849) *

Bogan Bel

E

P

C

Ph

I

 

Commicarpus plumbagineus (Cav.) Standl. (1916)

Lal Sakhari

E

P

C

He

N

32. Orobanchaceae

 

Lindenbergia indica (L.) Vatke (1875)

-

E

P

H

Ph

N

33. Papaveraceae

 

Argemone mexicana L. (1753)

Satyanashi

E

A

H

Th

I

 

Argemone ochroleuca Sweet (1828)

-

E

A

H

Th

I

 

Fumaria indica (Hausskn.) Pugsley (1919)

Pitpapro

E

A

H

Th

N

34. Pedaliaceae

 

Sesamum indicum L. (1753) **

Jagali Til

E

A

H

Th

N

 

Pedalium murex L. (1759)

DakhaniGokhr

E

A

H

Th

N

35. Plantaginaceae

 

Bacopa monnieri (L.) Wettst. (1891)

Brahmi

E

P

H

He

N

36. Polygonaceae

 

Calligonum polygonoides L. (1753)

Phog

E

P

S

Ph

N

 

Polygonum plebeium R.Br. (1810)

Rakht-shankh Pushp

E

A

H

Th

N

37. Polygalaceae

 

Polygala erioptera DC. (1824)

Johjhru, Boyasan

E

A

H

Th

N

38. Portulacaceae 

 

Portulaca pilosa L. (1753)

Lunkia

E

A

Su

Th

I

39. Phyllanthaceae

 

Phyllanthus amarus Schumach. & Thonn. (1827)

-

E

A

H

Th

I

 

Phyllanthus urinaria L. (1753)

-

E

A

H

Th

N

40. Rhamnaceae

 

Ziziphus glabrata (B.Heyne ex Schult.) B.Heyne ex Wight & Arn (1834)

-

E

P

T

Ph

N

 

Ziziphus mauritiana Lam. (1789)

Ber

E

P

T

Ph

N

 

Ziziphus nummularia (Burm.f.) Wight & Arn. (1833)

JhadBor

E

P

S

Ph

N

 

Ziziphus oenopolia (L.) Mill. (1768)

Eramdi

E

P

S

Ph

N

41. Rubiaceae

 

Hamelia patens Jacq. (1760)

-

E

P

S

Ph

I

 

Spermacoce articularis L.f. (1782)

Agio

E

A

H

Th

N

42. Rutaceae

 

Bergera koenigii L. (1767) *

Kadhi Patta

E

P

T

Ph

N

 

Citrus × aurantiifolia (Christm.) Swingle (1913) *

Nimboo

E

P

S

Ph

I

43. Salvadoraceae

 

Salvadora oleoides Decne. (1844)

Kharo-jhaal

E

P

T

Ph

N

 

Salvadora persica L. (1753)

Peelu

E

P

T

Ph

N

44. Sapindaceae

 

Cardiospermum halicacabum L. (1753)

Kanphuti

E

A

C

Th

N

45. Scrophulariaceae

 

Anticharis senegalensis (Walp.) Bhandari (1965)

Dharno Ghas

E

A

H

Th

N

 

Verbascum coromandelianum (Vahl) HubMor. (1973)

-

E

A

H

Th

N

46. Solanaceae

 

Datura innoxia Mill. (1768)

Daturo

E

A

S

Th

I

 

Datura stramonium L. (1753)

Bada Dhaturo

E

A

H

Th

I

 

Lycium barbarum L. (1753)

Morali

E

A

S

Th

I

 

Physalis angulata L. (1753)

Chipoti

E

A

H

Th

I

 

Solanum nigrum L. (1753)

Makoi

E

A

H

Th

N

 

Solanum virginianum L. (1753)

Adhkuntali

E

P

H

He

N

 

Withania somnifera (L.) Dunal (1852)

Asgandha

E

P

S

Ch

N

47. Talinaceae

 

Talinum fruticosum (L.) Juss. (1789)

-

E

P

Su

He

I

48. Tamaricaceae

 

Tamarix dioica Roxb. ex. Roth (1820)

Lai

E

P

S

Ph

N

49. Zygophyllaceae

 

Balanites aegyptiaca (L.) Delile (1813)

Hingota

E

P

S

Ph

I

 

Balanites roxburghii Planch. (1854)

Ingoriyo

E

P

T

Ph

N

 

Zygophyllum creticum (L.) Christenh. & Byng (2018)

Dhamaso

E

P

Su

Ch

I

Angiosperm Type: M—monocot | E—eudicot | Ma—magnoliids

Nature of Plant    : A—annual | P—perennial

Growth Habit      : T—tree | S—shrub | H—herb | G—grass | C—climber | Su—succulent | Se—Sedge

Life forms            : Th—therophyte | Ph—phanerophyte | He—hemicryptophyte | Ch—chamaetophyte | Ge—Geophyte                                                                           

Distribution        : N—native | I—introduced or non-native

Note: (*)—Planted by Forest Department near Forest Rest House and along the sanctuary’s boundaries.

Note: (**)—Cultivated crops

 

 

For figures and images - - click here for full PDF

 

References

 

Al-Mutairi, K.A. (2025). From desert margins to global insights: floristic diversity and conservation strategies in the arid regions of Tabuk and Khulais, Saudi Arabia – a bibliometric and ecological synthesis. Frontiers in Forests and Global Change 8: 1669742. https://doi.org/10.3389/ffgc.2025.1669742

Ayangbenro, A.S. & O.O. Babalola (2021). Reclamation of arid and semi-arid soils: The role of plant growth-promoting archaea and bacteria. Current Plant Biology 25: 100173. https://doi.org/10.1016/j.cpb.2020.100173

Bagchi, S., N.J. Singh, D.D. Briske, B.T. Bestelmeyer, M.P. McClaran & K. Murthy (2017). Quantifying long-term plant community dynamics with movement models: implications for ecological resilience. Ecological Applications 27(5): 1514–1528. https://doi.org/10.1002/eap.1544

Bagoriya, J.K., G. Barupal & B. Kapoor (2020). Floristic studies of Tal Chhapar Wildlife Sanctuary of Rajasthan, India. Journal of Phytological Research 33(1): 33–39.

Bhandari, M.M. (1990). Flora of the Indian Desert. Scientific Publishers, Jodhpur, 435 pp.

Burke, A. (2023). Vegetation changes on mine sites in the most arid part of the Succulent Karoo Biome and their implications for mine closure. Journal of Arid Environments 214: 105090. https://doi.org/10.1016/j.jaridenv.2023.105090

Byrnes, J.E.K., L. Gamfeldt, F. Isbell, J.S. Lefcheck, J.N. Griffin, A. Hector, B.J. Cardinale, D.U. Hooper, L.E. Dee & J.E. Duffy (2014). Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods in Ecology and Evolution 5(2): 111–124. https://doi.org/10.1111/2041-210X.12143

Champion, S.H. & S.K. Seth (1968). A Revised Survey of the Forest Types of India. Government of India Press, New Delhi, 404 pp.

Chapungu, L., L. Nhamo, R.C. Gatti & M. Chitakira (2020). Quantifying changes in plant species diversity in a savanna ecosystem through observed and remotely sensed data. Sustainability 12(6): 2345. https://doi.org/10.3390/su12062345

Charan, P. & K.C. Sharma (2016). Floral diversity of Thar Desert of Western Rajasthan, India. Journal of Phytological Research 29(1&2): 55–71.

Guo, H., X. Zhou, Y. Tao, J. Yin, L. Zhang, X. Guo, C. Liu & Y. Zhang (2023). Perennial herb diversity contributes more than annual herb diversity to multifunctionality in dryland ecosystems of north-western China. Frontiers in Plant Science 14: 1099110. https://doi.org/10.3389/fpls.2023.1099110

Gupta, R.K. & S.K. Sharma (1977). Grasses of the rangeland in arid Rajasthan. Journal of Agricultural and Taxonomic Botany and Applications 18(1–3): 50–99.

Huxman, T.E., J.M. Cable, D.D. Ignace, J.A. Eilts, N.B. English, J. Weltzin & D.G. Williams (2004a). Response of net ecosystem gas exchange to a simulated precipitation pulse in semi-arid grassland: the role of native versus non-native grasses and soil texture. Oecologia 141: 295–305. https://doi.org/10.1007/s00442-003-1389-y

Huxman, T.E., K.A. Snyder, D. Tissue, A. Joshua Leffler, K. Ogle, W.T. Pockman, D.R. Sandquist, D.L. Potts & S. Schwinning (2004b). Precipitation pulses and carbon fluxes in semiarid and arid ecosystems. Oecologia 141: 254–268. https://doi.org/10.1007/s00442-004-1682-4

IPNI (2025). International Plant Names Index. The Royal Botanic Gardens, Kew, Harvard University Herbaria & Libraries, and Australian National Herbarium.  http://www.ipni.org. Retrieved on 17.i.2025

Islam, M.Z. & A.R. Rahmani (2011). Thar Desert, Rajasthan, India: Anthropogenic influence on biodiversity and grasslands. Biodiversity 12(2): 75–89. https://doi.org/10.1080/14888386.2011.585931

Karel, A. & D. Gena (2023). A checklist of the angiosperms of Tal Chhapar Wildlife Sanctuary, Rajasthan, India. Journal of Phytological Research 36(1): 45–68.

Kaur, M., P. Joshi, K. Sarma & S.K. Das (2020). Assessment of plant community structure in Tal Chhapar Wildlife Sanctuary, Rajasthan, India. Species 21: 126–139.

Knapp, A.K. & M.D. Smith (2001). Variation among biomes in temporal dynamics of aboveground primary production. Science 291: 481–484. https://doi.org/10.1126/science.291.5503.481

Kumar, T., A.J. Bishwas, P.K. Khare, N. Garg & Taxonomy Laboratory (2021). Invasive alien flora of tropical dry deciduous forest of Nauradehi Wildlife Sanctuary, Central India. Indian Journal of Ecology 48(1): 219–225.

Meena, M.K. & J.B. Khan (2023). Floristic diversity and ecological characteristics of flora of Ratannagar and Dabla Beed, Churu (Rajasthan). Periodic Research 11(3): 56–74.

Parihar, R. & R. Choudhary (2017). Phytosociological study and species diversity of desert vegetation at Bikaner district north-western Rajasthan, India. Periodic Research 6(6): 68–77.

Peddi, H.K., S.R. Chintala, S. Meena & S.S. Katewa (2014). Pattern of plant species diversity in grasslands of Rajasthan, India. Taiwania 59: 111–118. https://doi.org/10.6165/tai.2014.59.111

Plummer, J. (2021). Tecomella undulata. The IUCN Red List of Threatened Species 2021: e.T137731325A169300279. https://doi.org/10.2305/IUCN.UK.2021-2.RLTS.T137731325A169300279.en. Accessed on 21.xi.2025.

POWO (2025). Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Published on the Internet. https://powo.science.kew.org. Accessed on 17.i.2025

Ram, B. (2021). Impact of human activities on natural resources in arid Western Rajasthan. Proceedings of Indian National Cartographic Association International Congress 39: 394–402.

Rao, R.R. & B.D. Sharma (1990). A Manual for Herbarium Collections. Botanical Survey of India, Kolkata, 123 pp.

Raunkiaer, C. (1934). The Life Forms of Plants and Statistical Plant Geography. Clarendon Press, Oxford, 632 pp.

Reddy, G.P., N. Kumar, N. Sahu, G.P.O. Reddy, N. Kumar, N. Sahu, R. Srivastava, S.K. Singh, L.G.K. Naidu, G.R. Chary, C.M. Biradar, M.K. Gumma, B.S. Reddy & J.N. Kumar (2020). Assessment of spatio-temporal vegetation dynamics in tropical arid ecosystem of India using MODIS time-series vegetation indices. Arabian Journal of Geosciences 13: 704. https://doi.org/10.1007/s12517-020-05611-4

Rodgers, W.A., H.S. Panwar & V.B. Mathur (2002). Wildlife Protected Area Network in India: A Review. Executive Summary. Wildlife Institute of India, Dehradun, 44 pp.

Sanadya, S., Shekhawat, S. Sahoo & M. Bhinda (2023). Range and cultivated grasses and legumes in arid region of western Rajasthan, pp. 163–176. In: Sustainable Interventions for Resource Conservation and Natural Farming. Edition: 1 Chapter: 21. Academy of Natural Resource Conservation and Management, Lucknow

Sharma, S.C. & R.K. Aggarwal (2008). Study of phytodiversity of Nagaur district in Rajasthan. Journal of Economic and Taxonomic Botany 32(2): 359–373.

Sharma, S.C. & C.S. Purohit (2013). Grasses of North West Rajasthan. Madhu Publications, Bikaner, 278 pp.

Shetty, B.V. & V. Singh (1987). Flora of Rajasthan, Volume I. Botanical Survey of India, Kolkata, 543 pp.

Shetty, B.V. & V. Singh (1991). Flora of Rajasthan, Volume II. Botanical Survey of India, Kolkata, 534 pp.

Shetty, B.V. & V. Singh (1993). Flora of Rajasthan, Volume III. Botanical Survey of India, Kolkata, 505 pp.

Singh, B.P., P. Kalra & H.S. Romana (1997). An analysis of the flora of Churu (north Rajasthan). Journal of Economic and Taxonomic Botany 2(3): 697–701.

Singh, S.P., P. Sah, V. Tyagi & B.S. Jina (2005). Species diversity contributes to productivity: Evidence from natural grassland communities of the Himalayas. Current Science 89(3): 548–552.

Sur, K., V.K. Verma, P. Panwar, G. Shukla, S. Chakravarty & A.J. Nath (2024). Monitoring vegetation degradation using remote sensing and machine learning over India – a multi-sensor, multi-temporal and multi-scale approach. Frontiers in Forests and Global Change 7: 1382557. https://doi.org/10.3389/ffgc.2024.1382557

The Angiosperm Phylogeny Group, M.W. Chase, M.J.M. Christenhusz, M.F. Fay, J.W. Byng, W.S. Judd, D.E. Soltis, D.J. Mabberley, A.N. Sennikov, P.S. Soltis & P.F. Stevens (2016). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 181(1): 1–20. https://doi.org/10.1111/boj.12385

Ved, D., D. Saha, K. Ravikumar & K. Haridasan (2015). Commiphora wightii. The IUCN Red List of Threatened Species 2015: e.T31231A50131117. https://doi.org/10.2305/IUCN.UK.2015-2.RLTS.T31231A50131117.en. Accessed on 21.xi.2025.

Wagg, C., C. Roscher, A. Weigelt, A. Vogel, A. Ebeling, E. de Luca, A. Roeder, C. Kleinspehn, V.M. Temperton, S.T. Meyer, M. Scherer-Lorenzen, N. Buchmann, M. Fischer, W.W. Weisser, N. Eisenhauer & B. Schmid (2022). Biodiversity–stability relationships strengthen over time in a long-term grassland experiment. Nature Communications 13(1): 7752. https://doi.org/10.1038/s41467-022-35189-2

WFO (2025). World Flora Online. http://www.worldfloraonline.org. Accessed on 17.i.2025.

Wu, G. L., Z. Cheng, J. Alatalo, J. Zhao & Y. Liu (2021). Climate warming consistently reduces grassland ecosystem productivity. Earth’s Future 9: e2020EF001837. https://doi.org/10.1029/2020EF001837

Wu, W., R. Sun, L. Liu, X. Liu, H. Yu, Q. Ma, M. Qi, L. Li, Y. Li, G. Zhou & Z. Xu (2023). Precipitation consistently promotes, but temperature inversely drives, biomass production in temperate vs. alpine grasslands. Agricultural and Forest Meteorology 329: 109277. https://doi.org/10.1016/j.agrformet.2022.109277

 

 

 

 

Appendix I. List of previously recorded plant species not encountered in surveys.

 

Kaur et al. 2020

Bagoriya et al. 2020

Kare & Gena 2023

Present survey

1

Portulaca oleracea

Balanites roxburghii

Ailanthus excelsa

Ailanthus excelsa (W)

2

Portulaca quadrifida

Blumea spp.

Albizia lebbeck

Albizia lebbeck (W)

3

 

Boerhavia elegans

Amaranthus spinosus

Arnebia hispidissima (W)

4

 

Celosia argentea

Anticharis senegalensis

Bergia odorata (W)

5

 

Cleome gracilis

Aristsida funiculata

Boerhavia elegans (W)

6

 

Cleome gynandra

Arnebia hispidissima

Celosia argentea (O)

7

 

Cleome viscosa

Bergia odorata

Cicer arietinum (C)

8

 

Commicapus verticillatus

Urochloa ramosa

Cistanche tubulosa (W)

9

 

Cressa cretica

Cassia tora

Citrullus fistulosus (C)

10

 

Crotalaria medicaginea

Cenchrus prieurii

Cleome gracilis (W)

11

 

Croton bonplandianus

Chenopodium album

Cleome gynandra (W)

12

 

Dactyloctenium scindicum

Chenopodiastrum murale

Commicarpus verticillatus (W)

13

 

Euphorbia prostrata

Cicer arietinum

Convolvulus arvensis (W)

14

 

Gnaphalium spp.

Cistanche tubulosa

Crotalaria burhia(W)

15

 

Heliotropium marifolium

Citrullus fistulosus

Crotalaria medicaginea (W)

16

 

Indigofera linnaei

Citrullus lanatus

Cuscuta hyaline (W)

17

 

Opuntia elatior

Clerodendrum phlomidis

Cuscuta reflexa (W)

18

 

Parthenium hysterophorus

Commicapus verticillatus

Cyamopsis tetragonoloba (C)

19

 

Portulaca pilosa

Convolvulus arvensis

Cyperus arenarius (W)

20

 

Pulicaria wightiana

Cucumis melo

Cyperus niveus (W)

21

 

Sporobolus marginatus

Cuscusta hyalina

Cyperus triceps (W)

22

 

Suaeda nudiflora

Cyamopsis tetragonoloba

Digera muricata (W)

23

 

Tamarix spp.

Cynodon dactylon

Gisekia pharnaceoides (W)

24

 

Trianthema triquetra

Cyperus iria

Gnaphalium sp. (W)

25

 

Tribulus terrestris

Dactyloctenium aegyptium

Grangea sp. (W)

26

 

Verbesina enceioloides

Dalbergia sissoo

Heliotropium curassavicum (W)

27

 

Zaleya govindia

Digera muricata

Heteropogon contortus (W)

28

 

 

Eleusine compressa

Hydrilla verticillata (A)

29

 

 

Eragrostis ciliaris

Imperata cylindrica (W)

30

 

 

Eragrostis tremula

Indigofera cordifolia (W)

31

 

 

Euphorbia hirta

Indigofera linnaei (W)

32

 

 

Euphorbia microphylla

Ipomoea purpurea (O)

33

 

 

Heliotropium curassavicum

Momordica balsamina (W)

34

 

 

Heliotropium ellipticum

Nymphaea nouchali (A)

35

 

 

Heteropogon contortus

Orobanche cernua (W)

36

 

 

Imperata cylindrica

Panicum antidotale (W)

37

 

 

Indigofera cordifolia

Pennisetum typhoideum (C)

38

 

 

Ipomoea purpurea

Phyllanthus niruri (W)

39

 

 

Maytenus emarginata

Polycarpaea corymbosa (W)

40

 

 

Nerium indicum

Salsola baryosma (W)

41

 

 

Nymphaea nouchali

Sonchus asper (W)

42

 

 

Orobanche cernua

Sorghum halepense (C)

43

 

 

Panicum antidotale

Striga angustifolia (W)

44

 

 

Panicum turgidum

Striga gesnerioides (W)

45

 

 

Parkinsonia aculeata

Tribulus pentandrus (W)

46

 

 

Parthenium hysterophorus

Tribulus terrestris (W)

47

 

 

Pennisetum typhoideum

Urginea indica (W)

48

 

 

Phyllanthus niruri

Vigna aconitifolia (C)

49

 

 

Polycarpaea corymbosa

Vigna radiata (C)

50

 

 

Portulca oleracea

Vigna unguiculata (C)

51

 

 

Saccharum spontaneum

Zaleya govindia (W)

52

 

 

Sesamum indicum

 

53

 

 

Sonchus asper

 

54

 

 

Sorghum halepense

 

55

 

 

Tridax procumbens

 

56

 

 

Vigna aconitifolia

 

57

 

 

Vigna radiata

 

58

 

 

Vigna unquiculata

 

59

 

 

Zaleya govindia

 

Aaquatic plants | Ccultivated crops | Oornamental plants | Wwild plants.