

Building evidence for conservation globally

Journal of Threatened TAXA

10.11609/jott.2025.17.10.27551-27786

www.threatenedtaxa.org

26 October 2025 (Online & Print)

17(10): 27551-27786

ISSN 0974-7907 (Online)

ISSN 0974-7893 (Print)

Open Access

Publisher

Wildlife Information Liaison Development Society

www.wild.zooreach.org

Host

Zoo Outreach Organization

www.zooreach.org

Srivari Illam, No. 61, Karthik Nagar, 10th Street, Saravanampatti, Coimbatore, Tamil Nadu 641035, India
Registered Office: 3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore, Tamil Nadu 641006, India
Ph: +91 9385339863 | www.threatenedtaxa.org
Email: sanjay@threatenedtaxa.org

EDITORS

Founder & Chief Editor

Dr. Sanjay Molur

Wildlife Information Liaison Development (WILD) Society & Zoo Outreach Organization (ZOO), Coimbatore, Tamil Nadu 641006, India

Assistant Editor

Dr. Chaithra Shree J., WILD/ZOO, Coimbatore, Tamil Nadu 641006, India

Managing Editor

Mr. B. Ravichandran, WILD/ZOO, Coimbatore, Tamil Nadu 641006, India

Associate Editors

Dr. Mandar Paingankar, Government Science College Gadchiroli, Maharashtra 442605, India

Dr. Ulrike Streicher, Wildlife Veterinarian, Eugene, Oregon, USA

Ms. Priyanka Iyer, ZOO/WILD, Coimbatore, Tamil Nadu 641006, India

Board of Editors

Dr. Russel Mittermeier

Executive Vice Chair, Conservation International, Arlington, Virginia 22202, USA

Prof. Mewa Singh Ph.D., FASc, FNA, FNAsc, FNAPsy

Ramanna Fellow and Life-Long Distinguished Professor, Biopsychology Laboratory, and Institute of Excellence, University of Mysore, Mysuru, Karnataka 570006, India; Honorary Professor, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore; and Adjunct Professor, National Institute of Advanced Studies, Bangalore

Stephen D. Nash

Scientific Illustrator, Conservation International, Dept. of Anatomical Sciences, Health Sciences Center, T-8, Room 045, Stony Brook University, Stony Brook, NY 11794-8081, USA

Dr. Fred Pluthero

Toronto, Canada

Dr. Priya Davidar

Sigur Nature Trust, Chadapatti, Mavinhalla PO, Nilgiris, Tamil Nadu 643223, India

Dr. John Fellowes

Honorary Assistant Professor, The Kadoorie Institute, 8/F, T.T. Tsui Building, The University of Hong Kong, Pokfulam Road, Hong Kong

Prof. Dr. Mirco Solé

Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Vice-coordenador do Programa de Pós-Graduação em Zoologia, Rodovia Ilhéus/Itabuna, Km 16 (45662-000) Salobrinho, Ilhéus - Bahia - Brasil

Dr. Rajeev Raghavan

Professor of Taxonomy, Kerala University of Fisheries & Ocean Studies, Kochi, Kerala, India

English Editors

Mrs. Mira Bhojwani, Pune, India

Dr. Fred Pluthero, Toronto, Canada

Copy Editors

Ms. Usha Madgunki, Zooreach, Coimbatore, India

Ms. Trisa Bhattacharjee, Zooreach, Coimbatore, India

Ms. Paloma Noronha, Daman & Diu, India

Web Development

Mrs. Latha G. Ravikumar, ZOO/WILD, Coimbatore, India

Typesetting

Mrs. Radhika, Zooreach, Coimbatore, India

Mrs. Geetha, Zooreach, Coimbatore India

Fundraising/Communications

Mrs. Payal B. Molur, Coimbatore, India

Subject Editors 2021–2023

Fungi

Dr. B. Shivaraju, Bengaluru, Karnataka, India

Dr. R.K. Verma, Tropical Forest Research Institute, Jabalpur, India

Dr. Vatsavaya S. Raju, Kakatiya University, Warangal, Andhra Pradesh, India

Dr. M. Krishnappa, Jnana Sahyadri, Kuvenpu University, Shimoga, Karnataka, India

Dr. K.R. Sridhar, Mangalore University, Mangalagangotri, Mangalore, Karnataka, India

Dr. Gunjan Biswas, Vidyasagar University, Midnapore, West Bengal, India

Dr. Kiran Ramchandra Ranadive, Annaheb Magar Mahavidyalaya, Maharashtra, India

Plants

Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India

Dr. N.P. Balakrishnan, Ret. Joint Director, BSI, Coimbatore, India

Dr. Shonil Bhagwat, Open University and University of Oxford, UK

Prof. D.J. Bhat, Retd. Professor, Goa University, Goa, India

Dr. Ferdinand Boero, Università del Salento, Lecce, Italy

Dr. Dale R. Calder, Royal Ontario Museum, Toronto, Ontario, Canada

Dr. Cleofas Cervancia, Univ. of Philippines Los Baños College Laguna, Philippines

Dr. F.B. Vincent Florens, University of Mauritius, Mauritius

Dr. Merlin Franco, Curtin University, Malaysia

Dr. V. Irudayaraj, St. Xavier's College, Palayamkottai, Tamil Nadu, India

Dr. B.S. Kholia, Botanical Survey of India, Gangtok, Sikkim, India

Dr. Pankaj Kumar, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, USA.

Dr. V. Sampath Kumar, Botanical Survey of India, Howrah, West Bengal, India

Dr. A.J. Solomon Raju, Andhra University, Visakhapatnam, India

Dr. Vijayasankar Raman, University of Mississippi, USA

Dr. B. Ravi Prasad Rao, Sri Krishnadevaraya University, Anantapur, India

Dr. K. Ravikumar, FRLHT, Bengaluru, Karnataka, India

Dr. Aparna Watve, Pune, Maharashtra, India

Dr. Qiang Liu, Xishuangbanna Tropical Botanical Garden, Yunnan, China

Dr. Noor Azhar Mohamed Shazili, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia

Dr. M.K. Vasudeva Rao, Shiv Ranjan Housing Society, Pune, Maharashtra, India

Prof. A.J. Solomon Raju, Andhra University, Visakhapatnam, India

Dr. Manda Datar, Agharkar Research Institute, Pune, Maharashtra, India

Dr. M.K. Janarthanam, Goa University, Goa, India

Dr. K. Karthigeyan, Botanical Survey of India, India

Dr. Errol Vela, University of Montpellier, Montpellier, France

Dr. P. Lakshminarasiham, Botanical Survey of India, Howrah, India

Dr. Larry R. Noblick, Montgomery Botanical Center, Miami, USA

Dr. K. Haridasan, Pallavur, Palakkad District, Kerala, India

Dr. Analinda Manila-Fajard, University of the Philippines Los Baños, Laguna, Philippines

Dr. P.A. Siru, Central University of Kerala, Kasaragod, Kerala, India

Dr. Afroz Alam, Banasthali Vidyapith (accredited A grade by NAAC), Rajasthan, India

Dr. K.P. Rajesh, Zamorin's Guruvayurappan College, GA College PO, Kozhikode, Kerala, India

Dr. David E. Boufford, Harvard University Herbaria, Cambridge, MA 02138-2020, USA

Dr. Ritesh Kumar Choudhary, Agharkar Research Institute, Pune, Maharashtra, India

Dr. A.G. Pandurangan, Thiruvananthapuram, Kerala, India

Dr. Navendu Page, Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India

Dr. Kannan C.S. Warrier, Institute of Forest Genetics and Tree Breeding, Tamil Nadu, India

Invertebrates

Dr. R.K. Avasthi, Rohtak University, Haryana, India

Dr. D.B. Bastawade, Maharashtra, India

Dr. Partha Pratim Bhattacharjee, Tripura University, Suryamaninagar, India

Dr. Kailash Chandra, Zoological Survey of India, Jabalpur, Madhya Pradesh, India

Dr. Ansie Dippenaar-Schoeman, University of Pretoria, Queenswood, South Africa

Dr. Rory Dow, National Museum of natural History Naturalis, The Netherlands

Dr. Brian Fisher, California Academy of Sciences, USA

Dr. Richard Gallon, Ilandudno, North Wales, LL30 1UP

Dr. Hemant V. Ghate, Modern College, Pune, India

Dr. M. Monwar Hossain, Jahangirnagar University, Dhaka, Bangladesh

For Focus, Scope, Aims, and Policies, visit https://threatenedtaxa.org/index.php/JoTT/aims_scopeFor Article Submission Guidelines, visit <https://threatenedtaxa.org/index.php/JoTT/about/submissions>For Policies against Scientific Misconduct, visit https://threatenedtaxa.org/index.php/JoTT/policies_various

continued on the back inside cover

Cover: A Warty Hammer Orchid *Drakaea livida* gets pollinated by a male thynnine wasp through 'sexual deception' — a colour pencil reproduction of photos by ron_n_beths (flickr.com) and Rod Peakall; Water colour reproduction of Flame Lily *Gloriosa superba* — photo by Passakoran_14; and a bag worm and its architectural genius (source unknown). Art work by Pannagarsri G.

Habitat-specific distribution and density of fireflies (Coleoptera: Lampyridae): a comparative study between grassland and woodland habitats

Kushal Choudhury¹ , Firdus Ali² , Bishal Basumatary³ , Meghraj Barman⁴ , Papiya Das⁵ & Hilloljyoti Singha⁶

¹⁻⁶ Department of Zoology, Bodoland University, Kokrajhar, Bodoland Territorial Region (BTR), Assam 783370, India.

¹ kushal.c8@gmail.com (corresponding author), ² afirdus749@gmail.com, ³ bishalbasumatary829@gmail.com,

⁴ meghrajbarman2578@gmail.com, ⁵ papiyadas20000@gmail.com, ⁶ singha.hilloljyoti@gmail.com

Abstract: Habitat plays a crucial role in the survival of insect species, with many restricted to or thriving in particular environments. This study examines the population densities and flight heights of fireflies across different habitats. Firefly density was estimated using the point count method along randomly placed 100 m transects in two distinct habitats: grassland and woodland. Results revealed that the average density of *Abscondita chinensis* and *Asymmetricata circumdata* was significantly higher in grassland than in woodland. Firefly vertical distribution also varied by flight height, with a greater density observed below 1.5 m in grassland ($z = 13.90$, $n_1 = 99$, $n_2 = 99$, $p < 0.05$), while in woodland, higher densities were found above 1.5 m ($z = 2.29$, $n_1 = 38$, $n_2 = 38$, $p < 0.05$). These findings emphasize habitat-specific preferences & behaviours, highlighting the need for targeted conservation & management strategies to preserve firefly populations, and their diverse environments.

Keywords: *Abscondita chinensis*, *Asymmetricata circumdata*, conservation, glowworms, transects, vertical distribution.

The Neotropics and the Asian south-east harbour the highest diversity of fireflies within the family Lampyridae (Lawrence & Newton 1995; Hu & Fu 2018; Lewis et al. 2021; Poukin et al. 2023). According to Lloyd (2008), the Lampyridae family is renowned for its bioluminescent courtship signalling traits. Research suggests that the flashing behaviour observed in male fireflies serves

purposes such as mate choice and predation (Buck & Buck 1968; Lewis & Cratsley 2008).

Abscondita chinensis (Kiesenwetter, 1874) and *Asymmetricata circumdata* (Motschulsky, 1854) are two firefly species with distinct but overlapping distributions in Asia. *Abscondita chinensis* is primarily found across eastern and southeastern Asia, with documented occurrences in countries such as India, China, Japan, Taiwan, Vietnam, and Thailand (Wattanachaiyingcharoen et al. 2011; Ballantyne et al. 2013; Chatragadda 2020; Chaiwongsen et al. 2024). In India, its distribution includes Assam, Uttarakhand, Doon Valley, and western Himalaya (Ballantyne et al. 2009; Ghosh et al. 2023; Rana et al. 2024). The bioluminescent behaviour of *Abscondita chinensis* fireflies is well-studied in northeastern India (Rabha et al. 2017). This species thrives in moist, lowland habitats, including rice paddies, wetlands, and forested areas (Fu et al. 2012). On the other hand, *Asymmetricata circumdata* has a broader distribution across the Oriental region, reported from southeastern Asia, including India, Sri Lanka, Myanmar, Thailand, parts of China (Lloyd et al. 1989; Ballantyne & Lambkin 2009), and in Assam India (Rabha & Barua 2016).

Editor: Srinjana Ghosh, Bethune College, Kolkata, India.

Date of publication: 26 October 2025 (online & print)

Citation: Choudhury, K., F. Ali, B. Basumatary, M. Barman, P. Das & H. Singha (2025). Habitat-specific distribution and density of fireflies (Coleoptera: Lampyridae): a comparative study between grassland and woodland habitats. *Journal of Threatened Taxa* 17(10): 27761-27765. <https://doi.org/10.11609/jott.9656.17.10.27761-27765>

Copyright: © Choudhury et al. 2025. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: This research did not receive any specific grant from funding agencies.

Competing interests: The authors declare no competing interests.

Acknowledgments: We express our sincere gratitude to the head of the Department of Zoology, Bodoland University, for granting me permission and providing the necessary support to carry out the present study.

Despite extensive research on firefly diversity, bioluminescence, and ecological roles, the significance of flight height in relation to their behaviour, and habitat preferences remains understudied. Most previous research has focused on flashing behaviour for mate selection, but little is known about how flight height impacts firefly behaviour, and survival across habitats. As human-induced threats such as habitat loss and light pollution increase, understanding factors like flight height, and density is essential for conservation (Shen et al. 2022). This study addresses the gap by investigating the density and flight height of two firefly species in grassland, and woodland habitats in & around Bodoland University.

MATERIALS AND METHODS

We conducted the research in the Bodoland University Campus, Assam, India (26.469° N, 90.294° E,

100 m), covering an area of 49.6 acres for six consecutive months from January through June 2022 (Figure 1). We studied in two primary habitats: predominantly grassland and woodland, interspersed with perennial and deciduous plants. The closest water source, the Gaurang River, flows along the easternmost boundary of the campus. The density of fireflies was assessed by point count method, separated by 20 m distance between two successive points along stratified, randomly placed 100 m transects in both grassland, and woodland habitat. We counted fireflies within a 20 m radius during 1930 – 2100 h. Prior to the data collection, we had done a pilot study, and observed that during this period, the activity of the fireflies was more. We surveyed 99 points in the grassland habitat and 34 points in the woodland habitat. In comparison to the grassland habitat, in the study area, the woodland was smaller, and hence, the number of points surveyed was less, following a stratified random

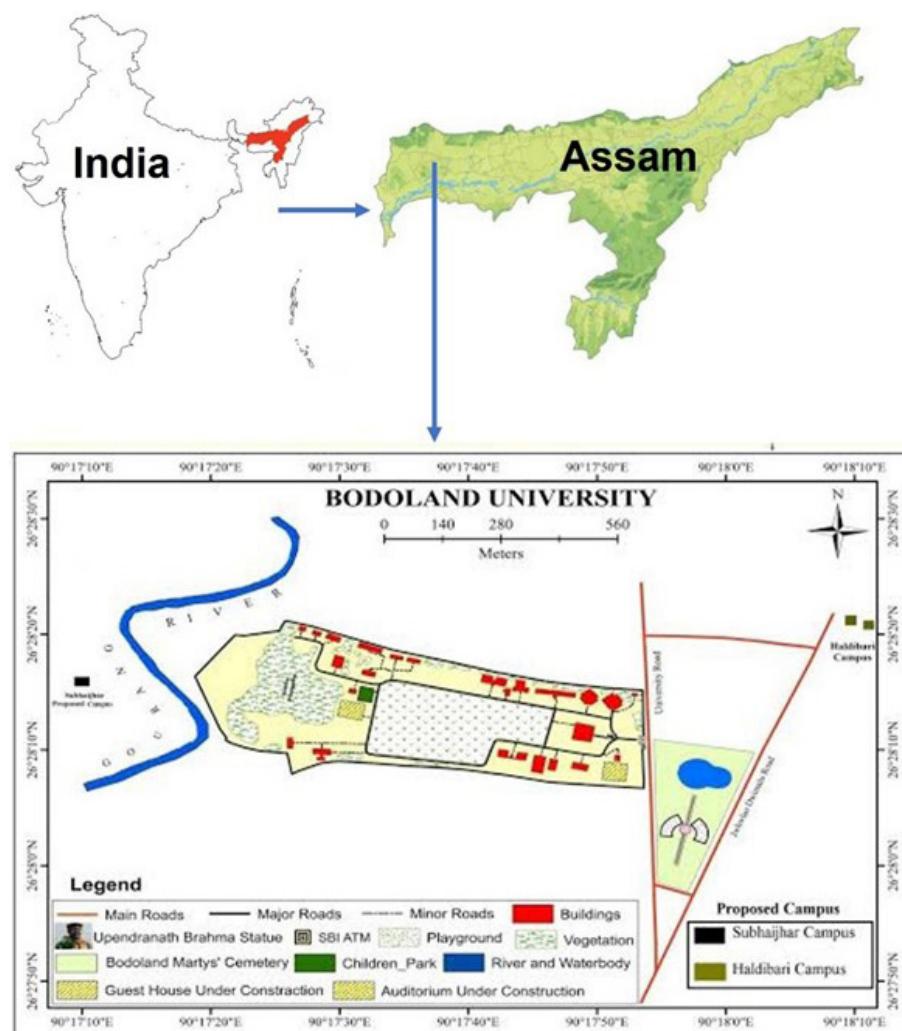


Figure 1. Study area map of Bodoland University campus, Assam, India, showing grassland and woodland habitats.

sampling. The flight height of the fireflies is categorised into two categories: up to 1.5 m from the ground and above 1.5 m, based on the height of the observer, i.e., up to eye level and above. All data were analyzed using Microsoft Excel 2007 and PAST statistical software (version 4.03). To compare firefly densities between the grassland and woodland habitats, a z-test was conducted at a significance level of 0.05.

RESULTS

A total of 556 individuals of two species of fireflies, namely, *Abscondita chinensis* (Kiesenwetter, 1874), and *Asymmetricata circumdata* (Motschulsky, 1854) (Image 1), were recorded from the study area. The average density of fireflies was significantly higher (0.0051 ± 0.004 , $n = 99$) in the grassland habitat than in the woodland habitat (0.0031 ± 0.0030 , $n = 38$) ($z = 3.17$, $n_1 = 99$, $n_2 = 38$, $p < 0.05$) below mid height (BMH) and above mid height (AMH) (Figure 1). The average densities of fireflies were recorded as $0.0000041 /m^2$ in the grassland and $0.0000024 /m^2$ in the woodland.

The density of *Abscondita chinensis* was higher in the grassland habitat ($0.0034 /m^2$) than in the woodland habitat ($0.0018 /m^2$). In contrast, the density of *Asymmetricata circumdata* was also higher in the grassland ($0.0017 /m^2$) than in the woodland habitat ($0.0010 /m^2$).

Firefly density was notably higher below 1.5 m from the ground in the grassland habitat ($z = 13.90$, $n_1 = 99$, $n_2 = 99$, $p < 0.05$) (Figure 2), whereas in woodland habitats, it was more concentrated above 1.5 m ($z = 2.29$, $n_1 = 38$, $n_2 = 38$, $p < 0.05$) (Figure 3).

DISCUSSION

Firefly density varies across different habitats, likely due to slight variations in environmental factors between the two habitats. Moreover, the presence of vegetation is crucial for fireflies, serving as copulation and resting sites, as documented in *Luciola cruciata* (Yuma & Hori 1990; Wattanachaiyingcharoen et al. 2016). During the night, temperatures typically remain relatively higher in open areas compared to forested areas due to the canopy coverage. Additionally, there may be greater availability of nectar plants in grasslands than in woodlands because the exposure to sunlight in the open grassland habitat results in a higher density of flowering plants compared to the woodland habitat. Another factor contributing to the low density of fireflies in woodland is the scarcity of nectar sources. Asri et al. (2020) found that firefly abundance exhibited a significant correlation with temperature and humidity. Specifically, they observed

a positive relationship between firefly abundance and temperature, while noting a negative correlation with humidity. Jusoh (2015) observed that firefly species tend to inhabit a range of environments and may coexist with multiple other species. Their study particularly highlights the coexistence of *Abscondita chinensis* and *Asymmetricata circumdata* in shared habitats, a finding that aligns with our study as well.

In contrast, fireflies may exhibit a preference for higher flight altitudes in woodland habitats for several reasons. Within this habitat, despite still relying on bioluminescence for mating, flying at elevated heights enhances the visibility of their light signals amidst the dense foliage. This heightened visibility extends the range over which potential mates can detect their signals, fostering increased mating opportunities (Lloyd 2008). Furthermore, woodland often harbours intricate vegetation and various obstacles nearer to the ground, such as tree trunks, and branches. By soaring at higher heights, fireflies mitigate the risk of collisions with these obstacles, facilitating better navigation through the forest canopy (Shen 2022). Additionally, given that many

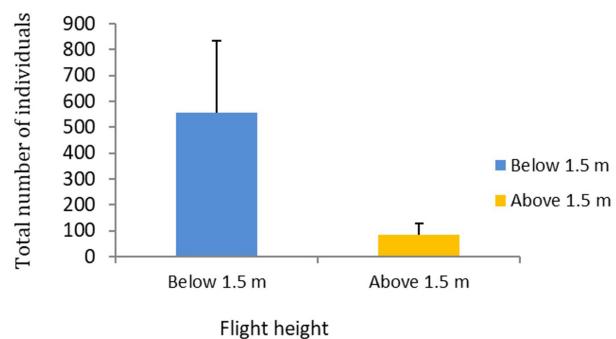


Figure 2. Firefly density distribution in grassland habitat, with significantly higher densities observed below 1.5 m.

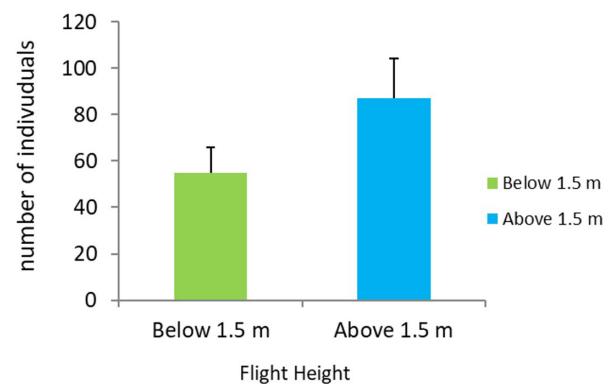
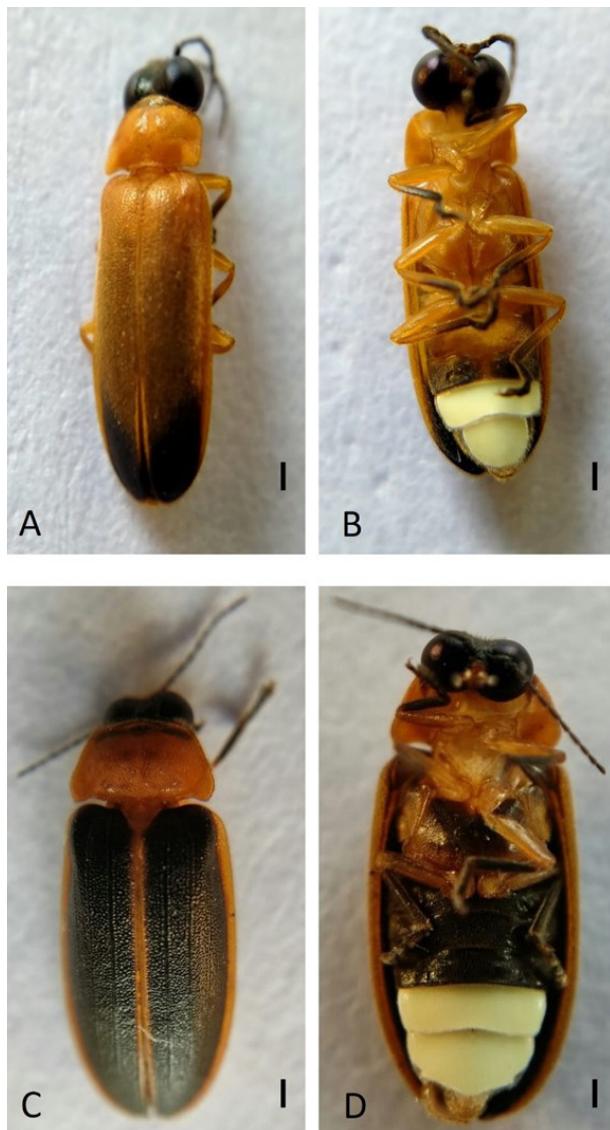



Figure 3. Firefly density distribution in woodland habitat, with significantly higher densities observed above 1.5 m.

Image 1. Morphological views of two firefly species: A—dorsal view (male) | B—ventral view of *Abscondita chinensis* | C—dorsal view (male) | D—ventral view of *Asymmetricata circumdata*. (Scale bar 2 mm). © Kushal Choudhury.

firefly species seek refuge and forage for sustenance in the canopy during daylight hours, elevated flight allows easier access to these critical resources, and habitats during their active periods. While this behavior may expose fireflies to aerial predators like bats, the advantage lies in the enhanced visibility of oncoming threats, enabling more effective evasion strategies compared to lower-altitude flights where ambushes by predators within dense vegetation pose a greater risk (Barbosa & Castellanos 2005). In addition, some specific features of plant leaves, for example, broader leaves, may be a crucial factor in enabling fireflies to escape the attention of predators.

CONCLUSION

From a conservation perspective, understanding habitat preferences and flight height is crucial for firefly survival, as these factors directly impact their ecological roles, reproductive success, and vulnerability to threats. Habitat type influences food availability, larval development, and mating behaviours, while flight height can affect how fireflies interact with their environment, find mates, and avoid predators. Fireflies that fly close to the ground may be more vulnerable to habitat disturbance, such as land-use changes or pesticide exposure, whereas, those flying at higher altitudes could be more affected by artificial lighting (Costin & Boulton 2016). Since light pollution interferes with their bioluminescent signalling (Owens et al. 2022), critical for mating, knowing flight height can inform strategies to minimize artificial light at key levels in specific habitats. The present research explicitly highlights how these objectives are addressed from both behavioural and ecological perspectives. Thus, conservation efforts must integrate both habitat protection and an understanding of species-specific flight heights to ensure effective firefly preservation amidst growing environmental threats.

REFERENCES

Asri, L.N., N.A. Abdullah, A. Sulaiman, M.H.M. Asri, N. Sulaiman, E.M.F. Satiman & N.D.A. Darbis (2020). Abundance and species composition of synchronous flashing firefly at Sungai Rembau, Negeri Sembilan, Malaysia. *International Journal of Tropical Insect Science* 41(2): 1095–1106. <https://doi.org/10.1007/s42690-020-00295-5>

Ballantyne, L.A. & C. Lambkin (2009). Systematics of Indo-Pacific fireflies with a redefinition of Australasian *Atypella* Olliff, Madagascan *Photuroluciola* Pic, and description of seven new genera from the Luciolinae (Coleoptera: Lampyridae). *Zootaxa* 1997(1): 1–188. <https://doi.org/10.11646/zootaxa.1997.1.1>

Ballantyne, L.A. & C.L. Lambkin (2013). Systematics and phylogenetics of Indo-Pacific Luciolinae fireflies (Coleoptera: Lampyridae) and the description of new genera. *Zootaxa* 3653(1): 1–162. <https://doi.org/10.11646/zootaxa.3653.1.1>

Barbosa, P. & I. Castellanos (2005). *Ecology of Predator-Prey Interactions*. Oxford University Press, Oxford and New York, xvii + 394 pp.

Buck, J. & E. Buck (1968). Mechanism of rhythmic synchronous flashing of fireflies: fireflies of Southeast Asia may use anticipatory time-measuring in synchronizing their flashing. *Science* 159(3821): 1319–1327. <https://doi.org/10.1126/science.159.3821.131>

Chaiwongsaen, P., S. Pinmongkhonkul, A. Nuntakwang, B. Boonsuk, M. Titayavan, W. Boonriam & S. Nak-eiam (2024). Spatial Distribution of Fireflies (Coleoptera: Lampyridae) A Case Study of Kwan Phayao Area, Phayao Province, Thailand, pp. 1–5. In: 2024 *Geoinformatics for Spatial-Infrastructure Development in Earth and Allied Sciences (GIS-IDEAS)*. IEEE. <https://doi.org/10.1109/gis-ideas63212.2024.10990917>

Chatragadda, R. (2020). Decline of luminous firefly *Abscondita chinensis* population in Barrankula, Andhra Pradesh, India. *International Journal of Tropical Insect Science* 40(2): 461–465. <https://doi.org/10.1007/s42690-019-00078-7>

Costin, K.J. & A.M. Boulton (2016). A field experiment on the effect

of introduced light pollution on fireflies (Coleoptera: Lampyridae) in the Piedmont Region of Maryland. *The Coleopterists Bulletin* 70(1): 84–86. <https://doi.org/10.1649/072.070.0110>

Fu, X.H., L.A. Ballantyne & C. Lambkin (2012). *Emeia* gen. nov., a new genus of Luciolinae fireflies from China (Coleoptera: Lampyridae) with an unusual trilobite-like larva, and a redescription of the genus *Curtos* Motschulsky. *Zootaxa* 3403(1): 1–53. <https://doi.org/10.11646/zootaxa.3403.1.1>

Ghosh S., S.K. Sarkar & S. Chakraborty (2023). New distributional records of fireflies (Coleoptera, Lampyridae, Luciolinae) from two eastern states of India with notes on their biology and an updated Indian checklist. *Biodiversity Data Journal* 11: e98948. <https://doi.org/10.3897/BDJ.11.e98948>

Hu, J. & X. Fu (2018). The complete mitochondrial genome of the firefly, *Abscondita anceyi* (Olivier) (Coleoptera: Lampyridae). *Mitochondrial DNA Part B* 3(1): 442–443. <https://doi.org/10.1080/23802359.2018.1456373>

Jusoh, W.F.A. (2015). Taxonomy and molecular phylogenetic analysis of bent-winged fireflies (Coleoptera: Lampyridae: Pteroptyx) in Peninsular Malaysia and Sarawak. Doctoral dissertation, Universiti Putra Malaysia. Universiti Putra Malaysia Institutional Repository.

Lawrence, J.F. & A.F. Newton (1995). Families and subfamilies of Coleoptera (with selected genera, notes, references and data on family-group names), pp. 779–1006. In: Pakaluk, J. & S.A. Ślipiński (eds.). *Biology, Phylogeny and Classification of Coleoptera: Papers Celebrating the 80th Birthday of Roy A. Crowson, Volume 1*. Muzeum i Institut Zologii PAN, Warszawa, 1092 pp.

Lewis, S.M., A. Thancharoen, C.H. Wong, T. López-Palafox, P.V. Santos, C. Wu & J.M. Reed (2021). Firefly tourism: Advancing a global phenomenon toward a brighter future. *Conservation Science and Practice* 3(5): e391. <https://doi.org/10.1111/csp2.391>

Lewis, S.M. & C.K. Cratsley (2008). Flash signal evolution, mate choice, and predation in fireflies. *Annual Review of Entomology* 53: 293–321. <https://doi.org/10.1146/annurev.ento.53.103106.093346>

Lloyd, J.E. (2008). Fireflies (Coleoptera: Lampyridae), pp. 1429–1452. In: Capinera, J.L. (ed.). *Encyclopedia of Entomology*. Springer, Dordrecht. https://doi.org/10.1007/978-1-4614-3811-1_1429

Lloyd, J.E., S.R. Wing & T. Hongtrakul (1989). Flash behavior and ecology of Thai *Luciola* fireflies (Coleoptera: Lampyridae). *Florida Entomologist* 72(1): 80–85.

Owens, A.C., M. van den Broeck, R. de Cock & S.M. Lewis (2022). Behavioral responses of bioluminescent fireflies to artificial light at night. *Frontiers in Ecology and Evolution* 10: 946640. <https://doi.org/10.3389/fevo.2022.946640>

Poukin, E., M.D. Mahadimenakbar & M. Mohamed (2023). The seasonal monsoon variations and the climatic effects on the abundance of fireflies (Coleoptera: Lampyridae) at Klias River, Beaufort, Sabah, East Malaysia. *Serangga* 28(2): 78–97.

Rabha, M.M. & A.G. Barua (2016). Bioluminescence emissions of female fireflies of the species *Asymmetricata circumdata*. *Asian Journal of Physics* 25(11): 1415–1420.

Rabha, M.M., U. Sharma, A. Goswami & A.G. Barua (2017). Bioluminescence emissions of female fireflies of the species *Luciola praeusta*. *Journal of Photochemistry and Photobiology B: Biology* 170: 134–139. <https://doi.org/10.1016/j.jphotobiol.2017.03.028>

Rana, N., R. Rayal, V.P. Uniyal & P. Bahuguna (2024). First record of *abscondita chinensis* (Linnaeus) (Lampyridae, Luciolinae) from Uttarakhand. *Indian Journal of Entomology* 87(1): 145–147. <https://doi.org/10.55446/IJE.2024.1983>

Shen, M., Z. Qing & S. Lin (2022). The impact of environment situation on fireflies and the contribution of fireflies on environment situation. *The 2nd International Conference on Biological Engineering and Medical Science (Theoretical and Natural Science)* 4: 391–396. <https://doi.org/10.54254/2753-8818/4/20220604>

Wattanachaiyingcharoen, W., S. Nak-eiam & A. Thancharoen (2011). Distribution and habitat of the firefly, *Asymmetricata circumdata* (Motsch.) (Coleoptera: Lampyridae: Luciolinae) in the North of Thailand. *NU. International Journal of Science* 8(2): 12–18.

Wattanachaiyingcharoen, W., S. Nak-eiam, W. Phanmuangma, S. Booninkiaew & N. Nimlob (2016). Species diversity of firefly (Coleoptera: Lampyridae) in the highlands of Northern Thailand. *NU International Journal of Science* 13(2): 24–32.

Yuma, M. & M. Hori (1990). Seasonal and age-related changes in the behavior of the Genji firefly, *Luciola cruciata* (Coleoptera: Lampyridae). *Japanese Journal of Entomology* 58(4): 863–870.

Mr. Jatishwor Singh Irungbam, Biology Centre CAS, Branišovská, Czech Republic.
Dr. Ian J. Kitching, Natural History Museum, Cromwell Road, UK
Dr. George Mathew, Kerala Forest Research Institute, Peechi, India
Dr. John Noyes, Natural History Museum, London, UK
Dr. Albert G. Orr, Griffith University, Nathan, Australia
Dr. Sameer Padhye, Katholieke Universiteit Leuven, Belgium
Dr. Nancy van der Poorten, Toronto, Canada
Dr. Karen Schnabel, NIWA, Wellington, New Zealand
Dr. R.M. Sharma, (Retd.) Scientist, Zoological Survey of India, Pune, India
Dr. Manju Siliwal, WILD, Coimbatore, Tamil Nadu, India
Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India
Dr. K.A. Subramanian, Zoological Survey of India, New Alipore, Kolkata, India
Dr. P.M. Sureshan, Zoological Survey of India, Kozhikode, Kerala, India
Dr. R. Varatharajan, Manipur University, Imphal, Manipur, India
Dr. Eduard Vives, Museu de Ciències Naturals de Barcelona, Terrassa, Spain
Dr. James Young, Hong Kong Lepidopterists' Society, Hong Kong
Dr. R. Sundararaj, Institute of Wood Science & Technology, Bengaluru, India
Dr. M. Nithyanandan, Environmental Department, La Al Kuwait Real Estate. Co. K.S.C., Kuwait
Dr. Himender Bharti, Punjabi University, Punjab, India
Mr. Purnendu Roy, London, UK
Mr. Saito Motoki, The Butterfly Society of Japan, Tokyo, Japan
Dr. Sanjay Sondhi, TITLI TRUST, Kalpavriksh, Dehradun, India
Dr. Nguyen Thi Phuong Lien, Vietnam Academy of Science and Technology, Hanoi, Vietnam
Dr. Nitin Kulkarni, Tropical Research Institute, Jabalpur, India
Dr. Robin Wen Jiang Ngiam, National Parks Board, Singapore
Dr. Lional Monod, Natural History Museum of Geneva, Genève, Switzerland.
Dr. Asheesh Shivam, Nehru Gram Bharti University, Allahabad, India
Dr. Rosana Moreira da Rocha, Universidade Federal do Paraná, Curitiba, Brasil
Dr. Kurt R. Arnold, North Dakota State University, Saxony, Germany
Dr. James M. Carpenter, American Museum of Natural History, New York, USA
Dr. David M. Claborn, Missouri State University, Springfield, USA
Dr. Karen Schnabel, Marine Biologist, Wellington, New Zealand
Dr. Amazonas Chagas Júnior, Universidade Federal de Mato Grosso, Cuiabá, Brasil
Mr. Monsoon Jyoti Gogoi, Assam University, Silchar, Assam, India
Dr. Heo Chong Chin, Universiti Teknologi MARA (UiTM), Selangor, Malaysia
Dr. R.J. Shiel, University of Adelaide, SA 5005, Australia
Dr. Siddharth Kulkarni, The George Washington University, Washington, USA
Dr. Priyadarshan Dharma Rajan, ATREE, Bengaluru, India
Dr. Phil Alderslade, CSIRO Marine And Atmospheric Research, Hobart, Australia
Dr. John E.N. Veron, Coral Reef Research, Townsville, Australia
Dr. Daniel Whitmore, State Museum of Natural History Stuttgart, Rosenstein, Germany.
Dr. Yu-Feng Hsu, National Taiwan Normal University, Taipei City, Taiwan
Dr. Keith V. Wolfe, Antioch, California, USA
Dr. Siddharth Kulkarni, The Hormiga Lab, The George Washington University, Washington, D.C., USA
Dr. Tomas Ditrich, Faculty of Education, University of South Bohemia in Ceske Budejovice, Czech Republic
Dr. Mihaly Foldvari, Natural History Museum, University of Oslo, Norway
Dr. V.P. Uniyal, Wildlife Institute of India, Dehradun, Uttarakhand 248001, India
Dr. John T.D. Caleb, Zoological Survey of India, Kolkata, West Bengal, India
Dr. Priyadarshan Dharma Rajan, Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Bangalore, Karnataka, India

Fishes

Dr. Topiltzin Contreras MacBeath, Universidad Autónoma del estado de Morelos, México
Dr. Heok Hee Ng, National University of Singapore, Science Drive, Singapore
Dr. Rajeev Raghavan, St. Albert's College, Kochi, Kerala, India
Dr. Robert D. Sluka, Chiltern Gateway Project, A Rocha UK, Southall, Middlesex, UK
Dr. E. Vivekanandan, Central Marine Fisheries Research Institute, Chennai, India
Dr. Davor Zanella, University of Zagreb, Zagreb, Croatia
Dr. A. Biju Kumar, University of Kerala, Thiruvananthapuram, Kerala, India
Dr. Akhilesh KV, ICAR-Central Marine Fisheries Research Institute, Mumbai Research Centre, Mumbai, Maharashtra, India
Dr. J.A. Johnson, Wildlife Institute of India, Dehradun, Uttarakhand, India
Dr. R. Ravinesh, Gujarat Institute of Desert Ecology, Gujarat, India

Amphibians

Dr. Sushil K. Dutta, Indian Institute of Science, Bengaluru, Karnataka, India
Dr. Annemarie Ohler, Muséum national d'Histoire naturelle, Paris, France

Reptiles

Dr. Gernot Vogel, Heidelberg, Germany
Dr. Raja Vyas, Vadodara, Gujarat, India
Dr. Pritpal S. Soorae, Environment Agency, Abu Dhabi, UAE.
Prof. Dr. Wayne J. Fuller, Near East University, Mersin, Turkey
Prof. Chandrashekher U. Rironker, Goa University, Taleigao Plateau, Goa, India
Dr. S.R. Ganesh, Chennai Snake Park, Chennai, Tamil Nadu, India
Dr. Himansu Sekhar Das, Terrestrial & Marine Biodiversity, Abu Dhabi, UAE

Journal of Threatened Taxa is indexed/abstracted in Bibliography of Systematic Mycology, Biological Abstracts, BIOSIS Previews, CAB Abstracts, EBSCO, Google Scholar, Index Copernicus, Index Fungorum, JournalSeek, National Academy of Agricultural Sciences, NewJour, OCLC WorldCat, SCOPUS, Stanford University Libraries, Virtual Library of Biology, Zoological Records.

NAAS rating (India) 5.64

Birds

Dr. Hem Sagar Baral, Charles Sturt University, NSW Australia
Mr. H. Biju, Coimbatore, Tamil Nadu, India
Dr. Chris Bowden, Royal Society for the Protection of Birds, Sandy, UK
Dr. Priya Davidar, Pondicherry University, Kalapet, Puducherry, India
Dr. J.W. Duckworth, IUCN SSC, Bath, UK
Dr. Rajah Jayopal, SACON, Coimbatore, Tamil Nadu, India
Dr. Rajiv S. Kalsi, M.L.N. College, Yamuna Nagar, Haryana, India
Dr. V. Santharam, Rishi Valley Education Centre, Chittoor Dt., Andhra Pradesh, India
Dr. S. Balachandran, Bombay Natural History Society, Mumbai, India
Mr. J. Praveen, Bengaluru, India
Dr. C. Srinivasulu, Osmania University, Hyderabad, India
Dr. K.S. Gopi Sundar, International Crane Foundation, Baraboo, USA
Dr. Gombobaatar Sundev, Professor of Ornithology, Ulaanbaatar, Mongolia
Prof. Reuven Yosef, International Birding & Research Centre, Eilat, Israel
Dr. Taej Mundkur, Wetlands International, Wageningen, The Netherlands
Dr. Carol Inskip, Bishop Auckland Co., Durham, UK
Dr. Tim Inskip, Bishop Auckland Co., Durham, UK
Dr. V. Gokula, National College, Tiruchirappalli, Tamil Nadu, India
Dr. Arkady Lelej, Russian Academy of Sciences, Vladivostok, Russia
Dr. Simon Dowell, Science Director, Chester Zoo, UK
Dr. Mário Gabriel Santiago dos Santos, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, Vila Real, Portugal
Dr. Grant Connette, Smithsonian Institution, Royal, VA, USA
Dr. P.A. Azeez, Coimbatore, Tamil Nadu, India

Mammals

Dr. Giovanni Amori, CNR - Institute of Ecosystem Studies, Rome, Italy
Dr. Anwaruddin Chowdhury, Guwahati, India
Dr. David Mallon, Zoological Society of London, UK
Dr. Shomita Mukherjee, SACON, Coimbatore, Tamil Nadu, India
Dr. Angie Appel, Wild Cat Network, Germany
Dr. P.O. Nameer, Kerala Agricultural University, Thrissur, Kerala, India
Dr. Ian Redmond, UNEP Convention on Migratory Species, Lansdown, UK
Dr. Heidi S. Riddle, Riddle's Elephant and Wildlife Sanctuary, Arkansas, USA
Dr. Karin Schwartz, George Mason University, Fairfax, Virginia.
Dr. Lala A.K. Singh, Bhubaneswar, Orissa, India
Dr. Mewa Singh, Mysore University, Mysore, India
Dr. Paul Racey, University of Exeter, Devon, UK
Dr. Honnavalli N. Kumara, SACON, Anaikatty P.O., Coimbatore, Tamil Nadu, India
Dr. Nishith Dharaiya, HNG University, Patan, Gujarat, India
Dr. Spartaco Gippoliti, Socio Onorario Società Italiana per la Storia della Fauna "Giuseppe Altobello", Rome, Italy
Dr. Justus Joshua, Green Future Foundation, Tiruchirappalli, Tamil Nadu, India
Dr. H. Raghuram, The American College, Madurai, Tamil Nadu, India
Dr. Paul Bates, Harison Institute, Kent, UK
Dr. Jim Sanderson, Small Wild Cat Conservation Foundation, Hartford, USA
Dr. Dan Challender, University of Kent, Canterbury, UK
Dr. David Mallon, Manchester Metropolitan University, Derbyshire, UK
Dr. Brian L. Cypher, California State University-Stanislaus, Bakersfield, CA
Dr. S.S. Talmale, Zoological Survey of India, Pune, Maharashtra, India
Prof. Karan Bahadur Shah, Budhanilkantha Municipality, Kathmandu, Nepal
Dr. Susan Cheyne, Borneo Nature Foundation International, Palangkaraya, Indonesia
Dr. Hemanta Kafley, Wildlife Sciences, Tarleton State University, Texas, USA

Other Disciplines

Dr. Aniruddha Belsare, Columbia MO 65203, USA (Veterinary)
Dr. Mandar S. Paingankar, University of Pune, Pune, Maharashtra, India (Molecular)
Dr. Jack Tordoff, Critical Ecosystem Partnership Fund, Arlington, USA (Communities)
Dr. Ulrike Streicher, University of Oregon, Eugene, USA (Veterinary)
Dr. Hari Balasubramanian, EcoAdvisors, Nova Scotia, Canada (Communities)
Dr. Rayanna Helleni Santos Bezerra, Universidade Federal de Sergipe, São Cristóvão, Brazil
Dr. Jamie R. Wood, Landcare Research, Canterbury, New Zealand
Dr. Wendy Collinson-Jonker, Endangered Wildlife Trust, Gauteng, South Africa
Dr. Rajeshkumar G. Jani, Anand Agricultural University, Anand, Gujarat, India
Dr. O.N. Tiwari, Senior Scientist, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
Dr. L.D. Singla, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
Dr. Rupika S. Rajakaruna, University of Peradeniya, Peradeniya, Sri Lanka
Dr. Bharat Baviskar, Wild-CER, Nagpur, Maharashtra 440013, India

Reviewers 2021–2023

Due to paucity of space, the list of reviewers for 2021–2023 is available online.

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.

Print copies of the Journal are available at cost. Write to:
The Managing Editor, JoTT,
c/o Wildlife Information Liaison Development Society,
3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore,
Tamil Nadu 641006, India
ravi@threatenedtaxa.org & ravi@zooreach.org

Articles

Fruit bat (Pteropodidae) composition and diversity in the montane forests of Mt. Kampalili, Davao De Oro, Philippines

– Ilamay Joy A. Yangurin, Marion John Michael M. Achondo, Aaron Froilan M. Raganas, Aileen Grace D. Delima, Cyrose Suzie Silvosa-Millado, Dolens James B. Iñigo, Shiela Mae E. Cabrera, Sheryl Moana Marie R. Ollamina, Jayson C. Ibañez & Lief Erikson D. Gamalo, Pp. 27551–27562

The impact of anthropogenic activities on *Manis javanica* Desmarest, 1822 (Mammalia: Pholidota: Manidae) in Sepanggar Hill, Malaysia

– Nurasyiqin Awang Shairi, Julius Kodoh, Normah Binti Awang Besar & Jephte Sompud, Pp. 27563–27575

Preliminary notes on a coastal population of Striped Hyena *Hyaena hyaena* (Linnaeus, 1758) from Chilika lagoon, India

– Partha Dey, Tiasa Adhya, Gottumukkala Himaja Varma & Supriya Nandy, Pp. 27576–27583

Wildlife management and conservation implications for Blackbuck corresponding with Tal Chhapar Wildlife Sanctuary, Rajasthan, India

– Ulhas Gondhali, Yogendra Singh Rathore, Sandeep Kumar Gupta & Kanti Prakash Sharma, Pp. 27584–27593

Amphibians and reptiles of Chitwan National Park, Nepal: an updated checklist and conservation issues

– Santosh Bhattarai, Bivek Gautam, Chiranjibi Prasad Pokhrel & Ram Chandra Kandel, Pp. 27594–27610

Butterfly diversity in Nagarahole (Rajiv Gandhi) National Park of Karnataka, India: an updated checklist

– S. Santhosh, V. Gopi Krishna, G.K. Amulya, S. Sheily, M. Nithesh & S. Basavarajappa, Pp. 27611–27636

Floral traits, pollination syndromes, and nectar resources in tropical plants of Western Ghats

– Ankur Patwardhan, Medhavi Tadwalkar, Amruta Joglekar, Mrunalini Sonne, Vivek Pawar, Pratiksha Mestry, Shivani Kulkarni, Akanksha Kashikar & Tejaswini Pachpor, Pp. 27637–27650

Ecological status, distribution, and conservation strategies of *Terminalia coronata* in the community forests of southern Haryana, India

– K.C. Meena, Neetu Singh, M.S. Bhandoria, Pradeep Bansal & S.S. Yadav, Pp. 27651–27660

Pterocarpus santalinus L.f. (Magnoliopsida: Fabaceae) associated arboreal diversity in Seshachalam Biosphere Reserve, Eastern Ghats of Andhra Pradesh, India

– Buchanapalli Sunil Kumar, Araveeti Madhusudhana Reddy, Chennuru Nagendra, Madha Venkata Suresh Babu, Nandimanadalam Rajasekhar Reddy, Veeramasu Jyosthna Sailaja Rani & Salkapuram Sunitha, Pp. 27661–27674

Potential distribution, habitat composition, preference and threats to Spikenard *Nardostachys jatamansi* (D.Don) DC. in Sakteng Wildlife Sanctuary, Trashigang, Bhutan

– Dorji Phuntsho, Namgay Shacha, Pema Rinzin & Tshewang Tenzin, Pp. 27675–27687

Checklist of floristic diversity of Mahadare Conservation Reserve, Satara, Maharashtra, India

– Sunil H. Bhoite, Shweta R. Sutar, Jaykumar J. Chavan & Swapnaja M. Deshpande, Pp. 27688–27704

Communication

Assessing fish diversity in the Ujani reservoir: an updated overview after one decade

– Ganesh Markad, Ranjit More, Vinod Kakade & Jiwan Sarwade, Pp. 27705–27719

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print)

October 2025 | Vol. 17 | No. 10 | Pages: 27551–27786

Date of Publication: 26 October 2025 (Online & Print)

DOI: [10.11609/jott.2025.17.10.27551-27786](https://doi.org/10.11609/jott.2025.17.10.27551-27786)

Reviews

A review of 21st century studies on lizards (Reptilia: Squamata: Sauria) in northeastern India with an updated regional checklist

– Manmath Bharali, Manab Jyoti Kalita, Narayan Sharma & Ananda Ram Boro, Pp. 27720–27733

Understanding the ethnozoological drivers and socioeconomic patterns of bird hunting in the Indian subcontinent

– Anish Banerjee, Pp. 27734–27747

Short Communications

Recent records of endemic bird White-faced Partridge *Arborophila orientalis* (Horsfield, 1821) in Meru Betiri National Park, Indonesia

– Arif Mohammad Siddiq & Nur Kholiq, Pp. 27748–27753

Exploring carapace phenotypic variation in female Fiddler Crab *Austruca annulipes* (H. Milne Edwards, 1837): insights into adaptive strategies and ecological significance

– Vaishnavi Bharti, Sagar Naik & Nitin Sawant, Pp. 27754–27760

Habitat-specific distribution and density of fireflies (Coleoptera: Lampyridae): a comparative study between grassland and woodland habitats

– Kushal Choudhury, Firdaus Ali, Bishal Basumatary, Meghraj Barman, Papiya Das & Hilloljyoti Singha, Pp. 27761–27765

Hygrophila phlomoides Nees (Acanthaceae), a new record to the flora of northern India from Suhelwa Wildlife Sanctuary, Uttar Pradesh

– Pankaj Bharti, Baleshwar Meena, T.S. Rana & K.M. Prabhukumar, Pp. 27766–27770

The rediscovery of *Strobilanthes parryorum* C.E.C.Fisch., 1928 (Asterids: Lamiales: Acanthaceae) in Mizoram, India

– Lucy Lalawmpuii, Renthlei Lalnunfeli, Paulraj Selva Singh Richard, Pochamoni Bharath Simha Yadav, Subbiah Karuppusamy & Kholring Lalchandama, Pp. 27771–27776

New report of *Biophytum nervifolium* Thwaites (Oxalidaceae) from Gujarat, India

– Kishan Ishwarlal Prajapati, Siddharth Dangar, Santhosh Kumar Ettickal Sukumaran, Vivek Chauhan & Ekta Joshi, Pp. 27777–27781

Note

Water Monitor *Varanus salvator* predation on a Hog Deer *Axis porcinus* fawn at Kaziranga National Park, Assam, India

– Saurav Kumar Boruah, Luku Ranjan Nath, Shisukanta Nath & Nilutpal Mahanta, Pp. 27782–27784

Book Review

A book review of moths from the Eastern Ghats: Moths of Agastya

– Sanjay Sondhi, Pp. 27785–27786

Publisher & Host

Threatened Taxa