

Open Access

Publisher

Wildlife Information Liaison Development Societywww.wild.zooreach.org

Host

Zoo Outreach Organizationwww.zooreach.org

Srivari Illam, No. 61, Karthik Nagar, 10th Street, Saravanampatti, Coimbatore, Tamil Nadu 641035, India
Registered Office: 3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore, Tamil Nadu 641006, India
Ph: +91 9385339863 | www.threatenedtaxa.org
Email: sanjay@threatenedtaxa.org

EDITORS

Founder & Chief Editor

Dr. Sanjay Molur

Wildlife Information Liaison Development (WILD) Society & Zoo Outreach Organization (ZOO), Coimbatore, Tamil Nadu 641006, India

Assistant Editor

Dr. Chaithra Shree J., WILD/ZOO, Coimbatore, Tamil Nadu 641006, India

Managing Editor

Mr. B. Ravichandran, WILD/ZOO, Coimbatore, Tamil Nadu 641006, India

Associate Editors

Dr. Mandar Paingankar, Government Science College Gadchiroli, Maharashtra 442605, India**Dr. Ulrike Streicher**, Wildlife Veterinarian, Eugene, Oregon, USA**Ms. Priyanka Iyer**, ZOO/WILD, Coimbatore, Tamil Nadu 641006, India

Board of Editors

Dr. Russel Mittermeier

Executive Vice Chair, Conservation International, Arlington, Virginia 22202, USA

Prof. Mewa Singh Ph.D., FASc, FNA, FNAsc, FNAPsy

Ramanna Fellow and Life-Long Distinguished Professor, Biopsychology Laboratory, and Institute of Excellence, University of Mysore, Mysuru, Karnataka 570006, India; Honorary Professor, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore; and Adjunct Professor, National Institute of Advanced Studies, Bangalore

Stephen D. Nash

Scientific Illustrator, Conservation International, Dept. of Anatomical Sciences, Health Sciences Center, T-8, Room 045, Stony Brook University, Stony Brook, NY 11794-8081, USA

Dr. Fred Pluthero

Toronto, Canada

Dr. Priya Davidar

Sigur Nature Trust, Chadapatti, Mavinhalla PO, Nilgiris, Tamil Nadu 643223, India

Dr. John Fellowes

Honorary Assistant Professor, The Kadoorie Institute, 8/F, T.T. Tsui Building, The University of Hong Kong, Pokfulam Road, Hong Kong

Prof. Dr. Mirco Solé

Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Vice-coordenador do Programa de Pós-Graduação em Zoologia, Rodovia Ilhéus/Itabuna, Km 16 (45662-000) Salobrinho, Ilhéus - Bahia - Brasil

Dr. Rajeev Raghavan

Professor of Taxonomy, Kerala University of Fisheries & Ocean Studies, Kochi, Kerala, India

English Editors**Mrs. Mira Bhojwani**, Pune, India**Dr. Fred Pluthero**, Toronto, Canada**Copy Editors****Ms. Usha Madgunki**, Zooreach, Coimbatore, India**Ms. Trisa Bhattacharjee**, Zooreach. Coimbatore, India**Ms. Paloma Noronha**, Daman & Diu, India**Web Development****Mrs. Latha G. Ravikumar**, ZOO/WILD, Coimbatore, India**Typesetting****Mrs. Radhika**, Zooreach, Coimbatore, India**Mrs. Geetha**, Zooreach, Coimbatore India**Fundraising/Communications****Mrs. Payal B. Molur**, Coimbatore, India**Subject Editors 2021–2023****Fungi****Dr. B. Shivaraju**, Bengaluru, Karnataka, India**Dr. R.K. Verma**, Tropical Forest Research Institute, Jabalpur, India**Dr. Vatsavaya S. Raju**, Kakatiya University, Warangal, Andhra Pradesh, India**Dr. M. Krishnappa**, Jnana Sahyadri, Kuvenpu University, Shimoga, Karnataka, India**Dr. K.R. Sridhar**, Mangalore University, Mangalagangotri, Mangalore, Karnataka, India**Dr. Gunjan Biswas**, Vidyasagar University, Midnapore, West Bengal, India**Dr. Kiran Ramchandra Ranadive**, Annaheb Magar Mahavidyalaya, Maharashtra, India**Plants****Dr. G.P. Sinha**, Botanical Survey of India, Allahabad, India**Dr. N.P. Balakrishnan**, Ret. Joint Director, BSI, Coimbatore, India**Dr. Shonil Bhagwat**, Open University and University of Oxford, UK**Prof. D.J. Bhat**, Retd. Professor, Goa University, Goa, India**Dr. Ferdinand Boero**, Università del Salento, Lecce, Italy**Dr. Dale R. Calder**, Royal Ontario Museum, Toronto, Ontario, Canada**Dr. Cleofas Cervancia**, Univ. of Philippines Los Baños College Laguna, Philippines**Dr. F.B. Vincent Florens**, University of Mauritius, Mauritius**Dr. Merlin Franco**, Curtin University, Malaysia**Dr. V. Irudayaraj**, St. Xavier's College, Palayamkottai, Tamil Nadu, India**Dr. B.S. Kholia**, Botanical Survey of India, Gangtok, Sikkim, India**Dr. Pankaj Kumar**, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, USA**Dr. V. Sampath Kumar**, Botanical Survey of India, Howrah, West Bengal, India**Dr. A.J. Solomon Raju**, Andhra University, Visakhapatnam, India**Dr. Vijayasankar Raman**, University of Mississippi, USA**Dr. B. Ravi Prasad Rao**, Sri Krishnadevaraya University, Anantapur, India**Dr. K. Ravikumar**, FRLHT, Bengaluru, Karnataka, India**Dr. Aparna Watve**, Pune, Maharashtra, India**Dr. Qiang Liu**, Xishuangbanna Tropical Botanical Garden, Yunnan, China**Dr. Noor Azhar Mohamed Shazili**, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia**Dr. M.K. Vasudeva Rao**, Shiv Ranjan Housing Society, Pune, Maharashtra, India**Prof. A.J. Solomon Raju**, Andhra University, Visakhapatnam, India**Dr. Manda Datar**, Agharkar Research Institute, Pune, Maharashtra, India**Dr. M.K. Janarthanam**, Goa University, Goa, India**Dr. K. Karthigeyan**, Botanical Survey of India, India**Dr. Errol Vela**, University of Montpellier, Montpellier, France**Dr. P. Lakshminarasiham**, Botanical Survey of India, Howrah, India**Dr. Larry R. Noblick**, Montgomery Botanical Center, Miami, USA**Dr. K. Haridasan**, Pallavur, Palakkad District, Kerala, India**Dr. Analinda Manila-Fajard**, University of the Philippines Los Banos, Laguna, Philippines**Dr. P.A. Siru**, Central University of Kerala, Kasaragod, Kerala, India**Dr. Afroz Alam**, Banasthali Vidyapith (accredited A grade by NAAC), Rajasthan, India**Dr. K.P. Rajesh**, Zamorin's Guruvayurappan College, GA College PO, Kozhikode, Kerala, India**Dr. David E. Boufford**, Harvard University Herbaria, Cambridge, MA 02138-2020, USA**Dr. Ritesh Kumar Choudhary**, Agharkar Research Institute, Pune, Maharashtra, India**Dr. A.G. Pandurangan**, Thiruvananthapuram, Kerala, India**Dr. Navendu Page**, Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India**Dr. Kannan C.S. Warrier**, Institute of Forest Genetics and Tree Breeding, Tamil Nadu, India**Invertebrates****Dr. R.K. Avasthi**, Rohtak University, Haryana, India**Dr. D.B. Bastawade**, Maharashtra, India**Dr. Partha Pratim Bhattacharjee**, Tripura University, Suryamaninagar, India**Dr. Kailash Chandra**, Zoological Survey of India, Jabalpur, Madhya Pradesh, India**Dr. Ansie Dippenaar-Schoeman**, University of Pretoria, Queenswood, South Africa**Dr. Rory Dow**, National Museum of natural History Naturalis, The Netherlands**Dr. Brian Fisher**, California Academy of Sciences, USA**Dr. Richard Gallon**, Ilandudno, North Wales, LL30 1UP**Dr. Hemanth V. Ghate**, Modern College, Pune, India**Dr. M. Monwar Hossain**, Jahangirnagar University, Dhaka, BangladeshFor Focus, Scope, Aims, and Policies, visit https://threatenedtaxa.org/index.php/JoTT/aims_scopeFor Article Submission Guidelines, visit <https://threatenedtaxa.org/index.php/JoTT/about/submissions>For Policies against Scientific Misconduct, visit https://threatenedtaxa.org/index.php/JoTT/policies_various

continued on the back inside cover

Cover: The nine vultures of India, digital art made on Krita by Dupati Poojitha.

Leaf architecture of threatened *Aquilaria cumingiana* (Decne.) Ridley and *Aquilaria malaccensis* Lam. (Thymelaeales: Thymelaeaceae) using morphometrics analysis

Rhea Lou R. Germo¹ , Christian C. Estrologo² & Gindol Rey A. Limbaro³

¹ Forestry Department, College of Agriculture and Related Sciences, University of Southeastern Philippines Tagum – Mabini, Mabini Unit 8807, Davao de Oro, Philippines.

^{2,3} College of Forestry and Environmental Studies, Mindanao State University-Maguindanao, Dalican, Datu Odin Sinsuat 9601, Maguindanao del Norte, Philippines.

¹rlrgermo@usep.edu.ph, ²ccestrologo@msumaguindanao.edu.ph, ³galimbaro@msumaguindanao.edu.ph (corresponding author),

Abstract: Due to a very limited number of scientific studies on the morphology of the very closely related threatened species, *Aquilaria cumingiana* and *Aquilaria malaccensis*, it is very challenging to identify them thoroughly. The leaf architecture was studied in *A. cumingiana* and *A. malaccensis* of the family Thymelaeaceae. Quantitative and descriptive methods were used to assess 21 leaf-trait of *A. cumingiana* and *A. malaccensis*. The study indicated that 10 leaf traits, such as base shape, apex shape, secondary vein spacing, tertiary vein angle category, tertiary vein angle to primary, quaternary vein, venation pattern, laminar shape, base angle, and apex angle, are important for identifying, and distinguishing the leaf architecture of *A. cumingiana*, and *A. malaccensis*. This study highlights the importance of leaf morphology and venation patterns in identifying and differentiating *A. cumingiana* and *A. malaccensis*.

Keywords: Dendrogram, leaf apex, leaf base, leaf blade, leaf morphology, leaf shape, leaf venation, trichomes.

Editor: A.J. Solomon Raju, Andhra University, Visakhapatnam, India.

Date of publication: 26 September 2025 (online & print)

Citation: Germo, R.L.R., C.C. Estrologo & G.R.A. Limbaro (2025). Leaf architecture of threatened *Aquilaria cumingiana* (Decne.) Ridley and *Aquilaria malaccensis* Lam. (Thymelaeales: Thymelaeaceae) using morphometrics analysis. *Journal of Threatened Taxa* 17(9): 27488-27495. <https://doi.org/10.11609/jott.9625.17.9.27488-27495>

Copyright: © Germo et al. 2025. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: None.

Competing interests: The authors declare no competing interests.

Author details: RHEA LOU R. GERMO is affiliated with the University of Southeastern Philippines-Mabini Campus, Davao de Oro, Philippines. A PhD student in Forest Biological Sciences at University of the Philippines Los Baños. Her research focus is forest biology and resource conservation. CHRISTIAN C. ESTROLOGO is affiliated with Mindanao State University-Maguindanao, Maguindanao del Norte, Philippines. A PhD student in Forest Biological Sciences at University of the Philippines Los Baños. His research focuses on Forest Genetics and Natural Resources Conservation and Management. GINDOL REY A. LIMBARO is a licensed forester and affiliated with Mindanao State University-Maguindanao, Maguindanao del Norte, Philippines. A PhD student in Forest Industry Engineering at Kastamonu University, Türkiye. His studies primarily focus on Dendrology, Conservation Biology, and Sustainable Forest Products Utilization..

Author contributions: RLRG—research design, paper conceptualization, data collection, data analysis, writing and editing the manuscript. CCE— paper conceptualization, data analysis and writing the manuscript. GRAL—research design, paper conceptualization, data analysis, writing and editing the manuscript, and corresponding journal submission.

Acknowledgments: The authors acknowledge Dr. Nympha Branzuela the provider of *Aquilaria* species material for the various measurements in order to identify the different variations of the two genera of *Aquilaria*. The affiliated institutions: University of Southeastern Philippines Tagum-Mabini campus, and Mindanao State University, Maguindanao campus, are acknowledged for providing an avenue to do the research. The authors also acknowledge the emotional support from family, friends, and above all, the Almighty God for the strength and motivation to pursue this study.

INTRODUCTION

Agarwood-producing species, specifically the *Aquilaria* spp. in the Thymelaeaceae family, are primarily distributed in the Asian region (Li et al. 2023; Xie et al. 2024; Bora et al. 2025). The *Aquilaria* genus has 21 species, of which 13 species are reported to be agarwood producers (Lee & Mohamed 2016; Xie et al. 2024). They produce agarwood in their trunks and primary branches due to wounding by worms, lightning or wind-broken branches, natural microbial or fungal infections, or infections that are artificially induced by drilling holes, cutting the bark, and injecting chemicals (Jim 2015; Azren et al. 2019; Wang et al. 2020).

The infection court of the fungal infection of *Aquilaria* spp. is in the heartwood, where *Aquilaria* spp. would generate a high commercial value (Zhang et al. 2024). The increase in levels of trade over the past decade has resulted in overexploitation throughout the range of this species (Chowdhury et al. 2024; Xie et al. 2024). Despite the challenges, such as illegal harvesting in the wild, it is difficult to cultivate *A. malaccensis* due to its sensitivity index in terms of survival rate and environmental conditions where this species is compatible (Kharnaior & Thomas 2021; Latifah et al. 2024).

Aquilaria cumingiana and *A. malaccensis* are two closely related species of the family Thymelaeaceae. Globally, *A. malaccensis* was categorized as 'Critically Endangered' while *A. cumingiana* was categorized as 'Vulnerable' in the IUCN Red List (Harvey-Brown 2018). These *Aquilaria* sp. are considered as a problematic species in terms of species identification due to lack of scientific studies on species identification. Using leaf architecture is one way of baseline identification of the species (Mercado et al. 2024). Leaf architecture refers to the form and position of elements in leaf structure, including venation pattern, marginal configuration, and leaf shape. Maulia & Susandarini (2019) reported that venation patterns show significant differences in leaf architecture that distinguish the closely related species of *Aquilaria*.

In the present study, the leaf architecture in *Aquilaria cumingiana* and *A. malaccensis* was examined. This study aimed to evaluate the role of leaf architecture in species identification of *A. cumingiana* and *A. malaccensis* growing in Mindanao areas. To date, there is no published report on the characterization of leaf architecture of *A. cumingiana* and *A. malaccensis* as useful taxonomic evidence, especially for species identification.

MATERIALS AND METHODS

Study area: Samples of plant materials were obtained from two provinces in Mindanao, Philippines. *A. cumingiana* leaf samples were collected from Davao Oriental, while *A. malaccensis* leaf samples were collected from Agusan del Sur (Image 1). These two species were later propagated in a backyard nursery situated in Makar, Baloik, Toril, Davao City, Davao del Sur, Philippines (Figure 1). Laboratory analysis of collected leaf material was performed at the Forestry Laboratory of the University of Mindanao, Matina Campus, Davao City, Davao del Sur, Philippines (Image 2). Data were analyzed on 01 August 2022.

Material collection

Materials used in this study were leaves from seedlings of *A. cumingiana* and *A. malaccensis* collected from the two provinces, Davao Oriental, and Agusan del Sur. There were 30 juvenile leaves of each species of *A. cumingiana* and *A. malaccensis* collected for the statistical data analysis. Some of the leaves was added to the herbaria collection for the taxonomical evidence. The leaves of each species were collected from different provenances. Foresters and a local parataxonomist confirmed the identification of tree species. The herbaria were deposited in the Department of Forestry of the University of Southeastern Philippines – Mabini Campus.

Leaf architecture traits

There were 21 leaf architectural traits employed in this study, covering both general morphological traits and detailed venation features. Traits such as base shape, apex shape, laminar shape, and angles (base and apex) describe the overall form of the leaf, while traits like tooth apex, lobation, marginal development, and leaf margin account for edge modifications. Venation-related traits, including primary to quaternary vein categories, vein spacing, and venation pattern, provide critical information on vascular architecture, which is highly diagnostic in distinguishing species. Additionally, the areole and laminar blade contribute to identifying structural variations at finer scales. These traits follow the standardized classification of leaf architecture proposed by Hickey (1973) and further refined in the Manual of Leaf Architecture by Ellis et al. (2009).

Measurement

The leaf architecture data were recorded based on manual leaf architecture (Table 1) with modifications and

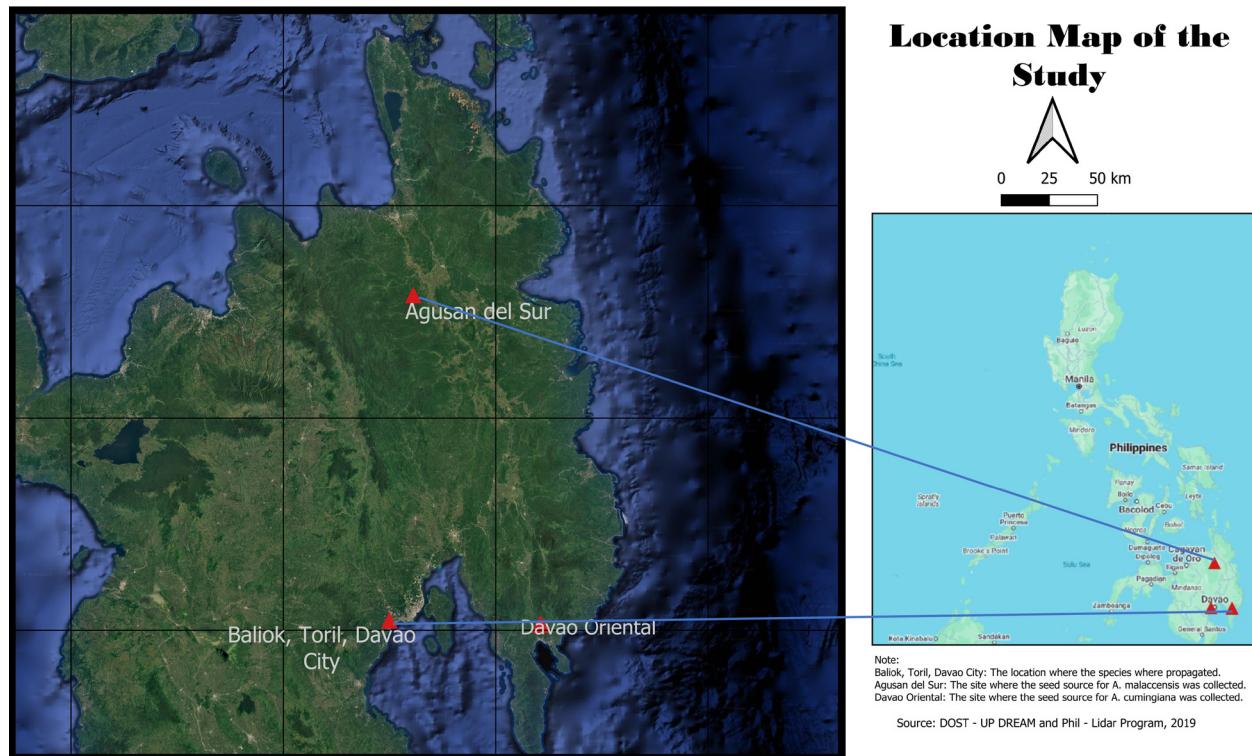


Image 1. The location map shows where the *Aquilaria* species propagated and the areas where the species were collected.

several additional traits developed by the Smithsonian Institution (1999). The general morphological traits (laminar shape, base, apex, margin, lobation, leaf size, and area) of *A. cumingiana* and *A. malaccensis* were measured using ruler, calipers, and image analysis (Hickey 1979). Venation traits were examined under compound OptiLab microscope camera for digital image capturing.

Analysis: Evaluating the leaf architecture in *A. cumingiana* and *A. malaccensis* was analyzed to cluster analysis using the PAST (Paleontological Statistics) software version 3.23 to determine the hierarchical relationships among the different species variations.

RESULTS AND DISCUSSION

Leaf architecture of *Aquilaria cumingiana*

Leaves of *A. cumingiana* were alternate and simple in terms of leaf attachments (Image 3a). Laminar shape was lanceolate, with laminar size varying 754–5,600 mm (Image 3b). The leaves are symmetrical, glabrous, cuneate, entire, acute both in leaf shape, base angle, apex shape, and apex angle (Image 3a–e). The leaf texture was smooth and shiny, light green in colour, while the leaf margin was untoothed, and no distinguished

lobation (Image 3). The leaf venation was pinnate, weak in primary vein size, regular polygonal reticulate, vein spacing increasing towards the base (Image 3). The primary venation is straight to slightly curved (Image 3f–g,i), the secondary venation is festooned semi-crasspedodromous, secondary vein angle uniform (Image 3g), and the tertiary venation is opposite percurrent (Image 3h–m). The areolation and the quaternary venation were not observed. The marginal development was arranged in a looped formation (Image 3i). There were variations in midrib width, marginal vein width, and the blade class. Trichomes in the laminar area were observed, but strong evidence is required (Image 3i–j).

Leaf architecture of *Aquilaria malaccensis*

Aquilaria malaccensis displays its variation in terms of leaf architecture as compared to *A. cumingiana*. The leaves of *A. malaccensis* were alternate, simple, lanceolate, symmetrical, acute, obtuse, acuminate, entire, glabrous, untoothed, and no lobation (Image 4a–e). The venation characteristics of *A. malaccensis* are pinnate, weak, reticulodromous, straight to slightly curved for the primary vein course, with irregular venation spacing (Image 4f). The secondary vein category is semi-crasspedodromous, the tertiary vein is categorized as random, while the quaternary vein is dichotomizing

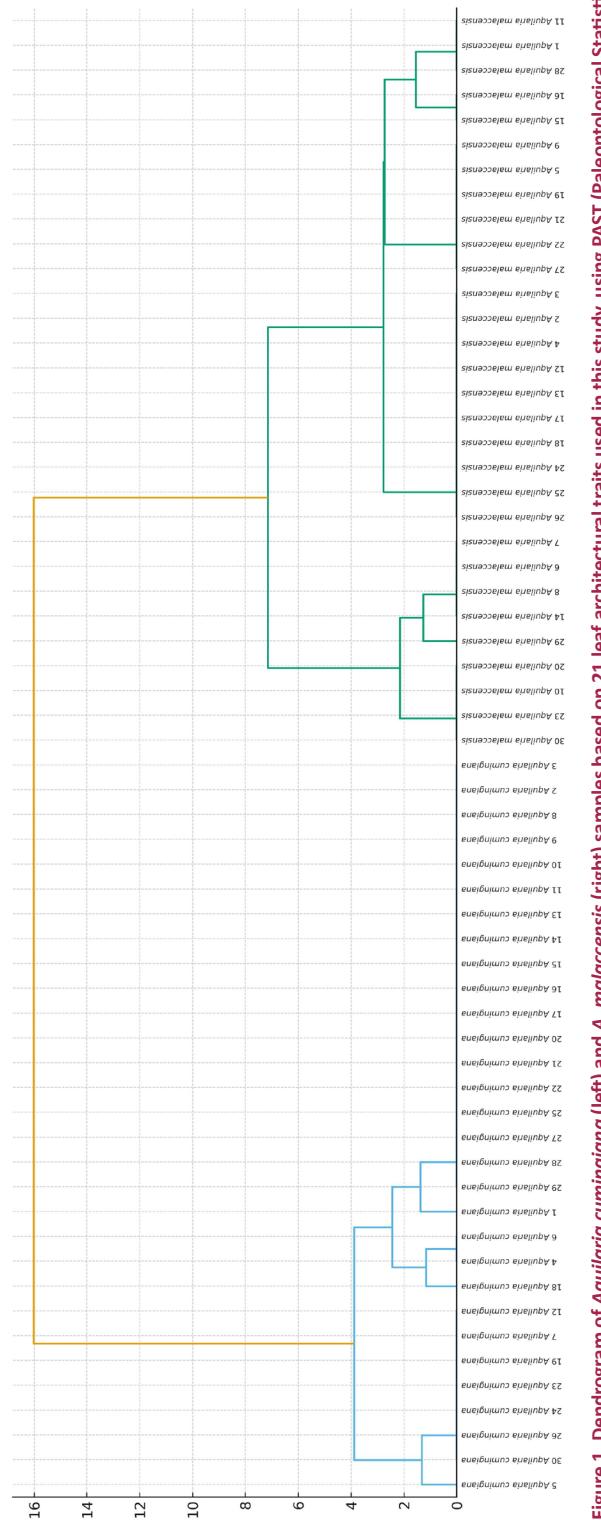


Figure 1. Dendrogram of *Aquilaria cumingiana* (left) and *A. malaccensis* (right) samples based on 21 leaf architectural traits used in this study, using PAST (Paleontological statistics) software version 3.23.

(Image 4). The areolation was not observed, while the marginal development was looped (Image 4h–k). There was a notable occurrence of trichomes in the below leaf surface (Image 4i). This result has a similarity assessment to the study of Maulia & Susandarini (2019) on the leaf architecture of *A. malaccensis*.

Variations between *Aquilaria cumingiana* and *Aquilaria cumingiana*

The dendrogram (Figure 1) clearly distinguishes *A. cumingiana* from *A. malaccensis* based on 21 leaf architectural characteristics, with *A. cumingiana* forming a compact cluster that reflects its morphological uniformity, while *A. malaccensis* displays broader sub-clustering, indicative of greater intraspecific variation. The correlation (Figure 2) further shows that only 10 traits strongly influenced this clustering, particularly base shape, apex shape, and venation-related traits such as secondary, tertiary, and quaternary vein categories, while other traits like leaf margin, lobation, and tooth apex contributed little to species identification. These results highlight that venation and lamina form are the most reliable diagnostic features for separating the two *Aquilaria* sp.

Summary of key findings

The comparative study of leaf architecture in *A. cumingiana* and *A. malaccensis* is important for their morphological and taxonomic identification. These species have smooth texture and pinnate venation that includes festooned semi-craspedodromous secondary veins, and a symmetrical, and lanceolate lamina. The stable morphological profile suggested by the invariant features in the sample over different times could be the result of the adaptation to an ecological niche.

Aquilaria malaccensis has higher leaf variability. The secondary venation, mostly dichotomous, but there is also random tertiary venation with possible irregular spacing, arc venation, and other morphological plasticity, is a testament to its greater morphological plasticity. The presence of trichomes under the *A. malaccensis* leaves (as opposed to the smooth surface of *A. cumingiana*) could also be an adaptation to different environmental pressures.

Cluster analysis of 21 traits of leaf form revealed clear taxonomic separation between *A. cumngiana* and *A. malaccensis*. From this, it could be concluded that the variation in *A. malaccensis* is driven to a greater extent, suggesting that genetics or environment has a greater effect on the morphology of these specimens. These findings underscore the importance of leaf architecture

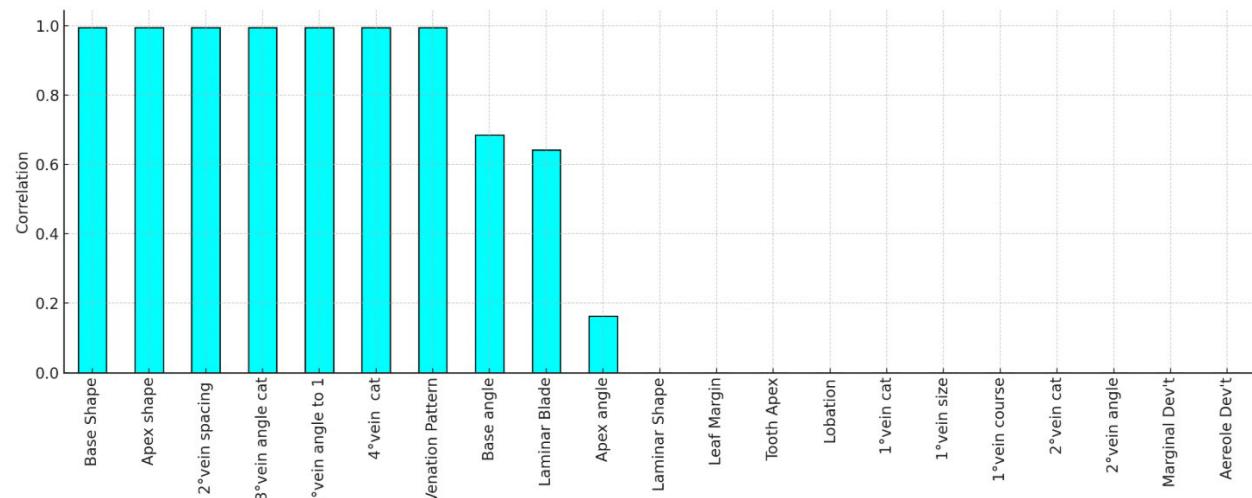
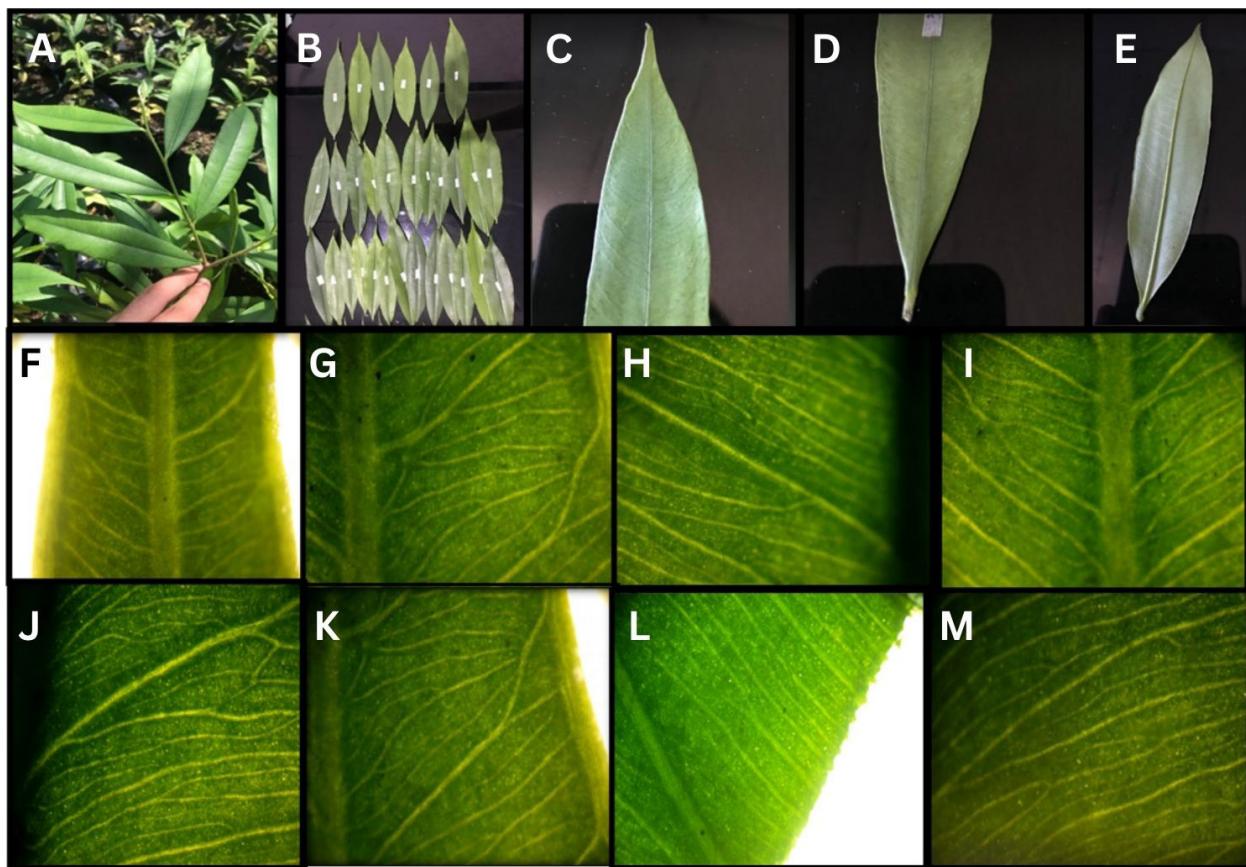


Figure 2. Correlation variation in *Aquilaria cumingiana* and *A. malaccensis*, using PAST (Paleontological Statistics) software version 3.23.


Image 2. Examination of venation pattern using photo microscope (Olympus CH40). © RL Germo.

in distinguishing closely related species, particularly where morphological similarities blur taxonomic boundaries.

The fixed differences were observed in 10 characteristics, including laminar blade, base angle, and apex angle between both species. These dissimilarities suggest that these characteristics could serve as diagnostic markers for taxa identification. While the fixed nature of other traits reinforces the genealogical relationship among these species, morphological divergence may result from ecological divergence but may reflect genetic divergence.

CONCLUSION

This study underscores the relevance of a comprehensive leaf architectural study toward the identification of closely related species in the genus *Aquilaria*. The study suggests that *A. malaccensis* is more morphologically variable compared to *A. cumingiana* and is likely to have a broader ecological amplitude or population genetic diversity. In contrast, the stable morphology observed in *A. cumingiana* suggests a stable taxonomic relationship that may be dictated by particular environmental demands. These findings serve as original data for taxonomic identification and for the conservation and sustainable management of these economically valuable agarwood-producing species.

Image 3. *Aquilaria cumingiana*: a—leaf composition | b—leaf shape | c—leaf apex | d—leaf base | e—leaf margin and leaf surface coverings | f—primary vein | g—secondary vein | h—tertiary vein | i—vein spacing | j—leaf venation | k—marginal leaf venation | l—trichomes | m—basal venation arrangement. © RL Germo.

These morphological differences should be further explored in terms of their ecological and genetic basis using more molecular approaches and by sampling more habitat types in the future. Indeed, exploring the environment where trichome and venation patterns develop could also help in deciphering the adaptive strategies of these species.

REFERENCES

Azren, P. D., S. Y. Lee, D. Emang, & R Mohamed (2019). History and perspectives of induction technology for agarwood production from cultivated *Aquilaria* in Asia: a review. *Journal of Forestry Research* 30(1): 1–11. <https://doi.org/10.1007/s11676-018-0627-4>

Bora, S.S., R. Ronghang, P. Das, R.S. Naorem, D.J. Hazarika, R. Gogoi & M. Barooah (2025). Endophytic microbial community structure and dynamics influence agarwood formation in *Aquilaria malaccensis* Lam. *Current Microbiology* 82(2): 66. <https://doi.org/10.1007/s00284-024-04048-2>

Chowdhury, B.D., A. Bhattacharjee & B. Debnath (2024). Endophytic microbes in agarwood oil production from *Aquilaria malaccensis* Lam. Engendering bio-resources for socioeconomic development, pp. 168–195. In: *Advanced Green Technology for Environmental Sustainability and Circular Economy*. CRC Press, 278 pp. https://doi.org/10.1007/978-1-030-27488-2_10

Ellis, B., D.C. Daly, L.J. Hickey, K.R. Johnson, J.D. Mitchell, P. Wilf & S.L. Wing (2009). *Manual of Leaf Architecture*. Cornell University Press, 201 pp.

Harvey-Brown, Y. (2018). *Aquilaria cumingiana*. The IUCN Red List of Threatened Species 2018: e.T38068A88301841. en. Accessed on 11.i.2025. <https://doi.org/10.2305/IUCN.UK.2018-1.RLTS.T38068A88301841>

Harvey-Brown, Y. (2018). *Aquilaria malaccensis*. The IUCN Red List of Threatened Species 2018: e.T32056A2810130. en. Accessed on 11.i.2025. <https://doi.org/10.2305/IUCN.UK.2018-1.RLTS.T32056A2810130>

Hickey, L.J. (1979). A revised classification of the architecture of dicotyledonous leaves, pp. 25–39. In: Metcalfe, C.R. & L. Chalk (eds.). *Anatomy of the Dicotyledons—Volume 1*. Clarendon Press, 800 pp.

Jim, C. Y. (2015). Cross-border itinerant poaching of agarwood in Hong Kong's peri-urban forests. *Urban Forestry & Urban Greening* 14(2): 420–431. <https://doi.org/10.1016/j.ufug.2015.04.007>

Kharnaor, S. & S.C. Thomas (2021). A review of *Aquilaria malaccensis* propagation and production of the secondary metabolite from callus. *Grassroots Journal of Natural Resources* 4(4): 85–94. <https://doi.org/10.33002/nr2581.6853.040407>

Latifah, S., A.L. Codilan, O.H. Syahputra, A. Kustanti, G.R.N.B. Sembiring, T.C. Ningrum & N.I.M. Daulay (2024). Study of the existence of cultivated agarwood plants *Aquilaria malaccensis* as an effort to preserve the environment around the forest. In: E3S Web of Conferences, Volume 519, 2024. 5th Talenta Conference on Engineering, Science and Technology (TALENTA CEST-5 2024). Article

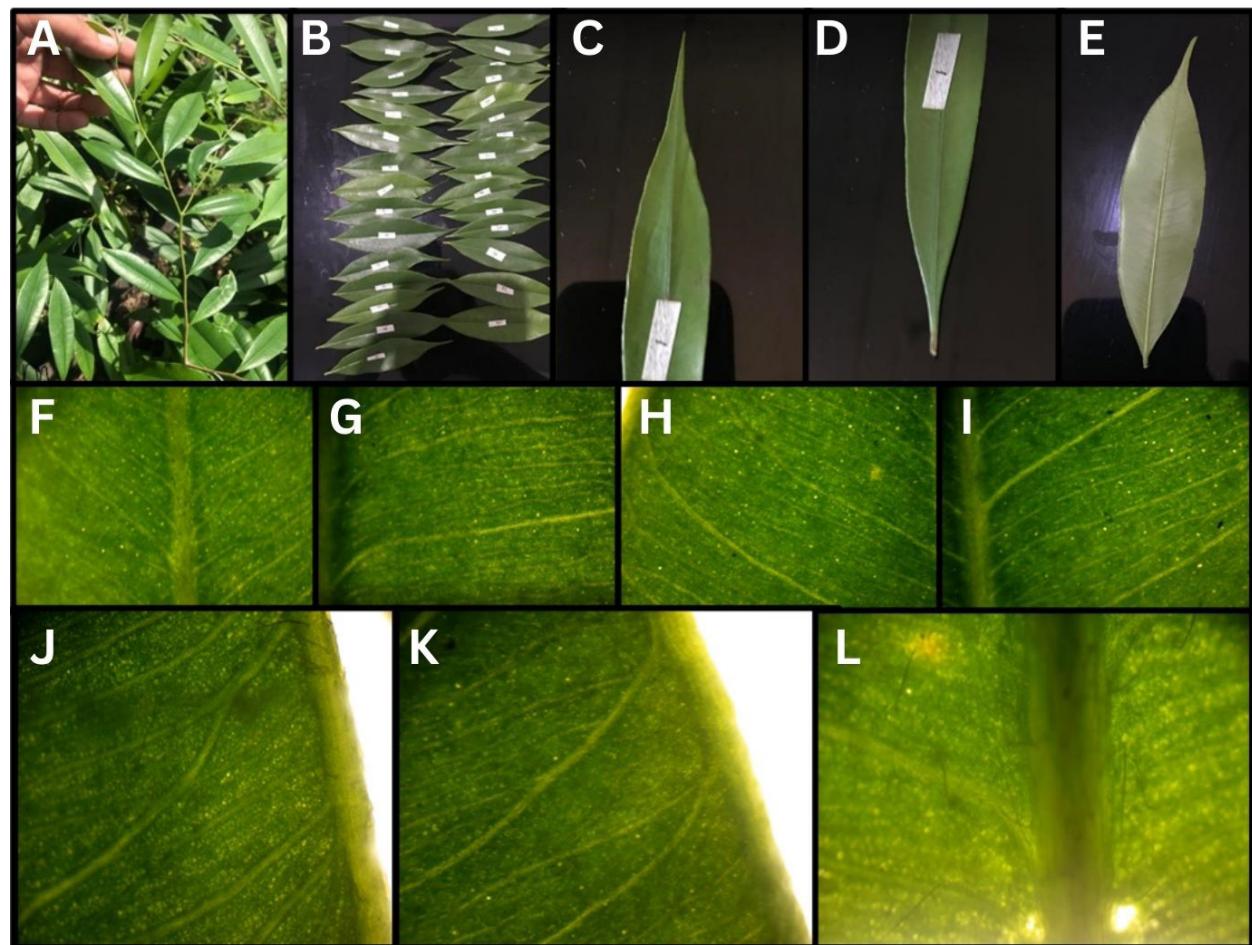


Image 4. *Aquilaria malaccensis*: a—leaf composition | b—leaf Shape | c—leaf Apex | d—leaf Base | e—leaf margin and leaf surface coverings | f—primary vein | g—secondary vein | h—tertiary & quaternary vein | i—vein spacing | j—pattern of leaf venation | k—marginal leaf characteristics | l—trichomes. © RL Germo.

Image 5. Seeds of: a—*Aquilaria cumingiana* | b—*Aquilaria malaccensis*. © First Pirico Farmers Association Inc.

number - 03003. <https://doi.org/10.1051/e3sconf/202451903003>

Lee, S.Y. & R. Mohamed (2016). The origin and domestication of *Aquilaria*, an important agarwood-producing genus, pp. 1–20. In: Mohamed, R. (ed.). *Agarwood: Science Behind the Fragrance*. Springer, Singapore, 167 pp. https://doi.org/10.1007/978-981-10-0833-7_1

Li, T., Z. Qiu, S.Y. Lee, X. Li, J. Gao, C. Jiang & J. Liu (2023). Biodiversity and application prospects of fungal endophytes in the agarwood-producing genera, *Aquilaria* and *Gyrinops* (Thymelaeaceae): a review. *Arabian Journal of Chemistry* 16(1): 104435. <https://doi.org/10.1016/j.arabjc.2022.104435>

Maulia, Z. & R. Susandarini (2019). Role of Leaf Architecture for the Identification of agarwood — producing species *Aquilaria malaccensis* Lam. and *Gyrinops versteegii* (Gilg.) Domke at Vegetative Stage. *Journal of Biological Sciences* 19(6): 396–406. <https://doi.org/10.3923/jbs.2019.396.406>

Mercado, M.I., M.D.H.S. Matías, C.M. Jimenez, M.S.B. Sampietro, M.A. Sgariglia, J.R. Soberón & D.A. Sampietro (2024). Comparative Analysis of Leaf Architecture and Histochemistry in *Schinus fasciculatus* and *S. gracilipes* (Anacardiaceae). *Brazilian Archives of Biology and Technology* 67: e24230088. <https://doi.org/10.1590/1678-4324-2024230088>

Wang, Z.F., H.L. Cao, C.X. Cai & Z.M. Wang (2020). Using genetic markers to identify the origin of illegally traded agarwood producing *Aquilaria sinensis* trees. *Global Ecology and Conservation* 22: e00958. <https://doi.org/10.1016/j.gecco.2020.e00958>

Xie, Z.Q., J.Y. Xu, M. Rafiq & C.S. Cheng (2024). An analysis of agarwood trade patterns, historical perspectives, and species identification challenges: repercussions for importing nations. *TMR Modern Herbal Medicine* 7(1): 1–10. <https://doi.org/10.53388/MHM2024001>

Zhang, X., L.X. Wang, R. Hao, J.J. Huang, M. Zargar, M.X. Chen & H.F. Dai (2024). Sesquiterpenoids in agarwood: biosynthesis, microbial induction, and pharmacological activities. *Journal of Agricultural and Food Chemistry* 72(42): 23039–23052. <https://doi.org/10.1021/acs.jafc.4c06383>

Mr. Jatishwor Singh Irungbam, Biology Centre CAS, Branišovská, Czech Republic.
Dr. Ian J. Kitching, Natural History Museum, Cromwell Road, UK
Dr. George Mathew, Kerala Forest Research Institute, Peechi, India
Dr. John Noyes, Natural History Museum, London, UK
Dr. Albert G. Orr, Griffith University, Nathan, Australia
Dr. Sameer Padhye, Katholieke Universiteit Leuven, Belgium
Dr. Nancy van der Poorten, Toronto, Canada
Dr. Karen Schnabel, NIWA, Wellington, New Zealand
Dr. R.M. Sharma, (Retd.) Scientist, Zoological Survey of India, Pune, India
Dr. Manju Siliwal, WILD, Coimbatore, Tamil Nadu, India
Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India
Dr. K.A. Subramanian, Zoological Survey of India, New Alipore, Kolkata, India
Dr. P.M. Sureshan, Zoological Survey of India, Kozhikode, Kerala, India
Dr. R. Varatharajan, Manipur University, Imphal, Manipur, India
Dr. Eduard Vives, Museu de Ciències Naturals de Barcelona, Terrassa, Spain
Dr. James Young, Hong Kong Lepidopterists' Society, Hong Kong
Dr. R. Sundararaj, Institute of Wood Science & Technology, Bengaluru, India
Dr. M. Nithyanandan, Environmental Department, La Al Kuwait Real Estate. Co. K.S.C., Kuwait
Dr. Himender Bharti, Punjabi University, Punjab, India
Mr. Purnendu Roy, London, UK
Mr. Saito Motoki, The Butterfly Society of Japan, Tokyo, Japan
Dr. Sanjay Sondhi, TITLI TRUST, Kalpavriksh, Dehradun, India
Dr. Nguyen Thi Phuong Lien, Vietnam Academy of Science and Technology, Hanoi, Vietnam
Dr. Nitin Kulkarni, Tropical Research Institute, Jabalpur, India
Dr. Robin Wen Jiang Ngiam, National Parks Board, Singapore
Dr. Lional Monod, Natural History Museum of Geneva, Genève, Switzerland.
Dr. Asheesh Shivam, Nehru Gram Bharti University, Allahabad, India
Dr. Rosana Moreira da Rocha, Universidade Federal do Paraná, Curitiba, Brasil
Dr. Kurt R. Arnold, North Dakota State University, Saxony, Germany
Dr. James M. Carpenter, American Museum of Natural History, New York, USA
Dr. David M. Claborn, Missouri State University, Springfield, USA
Dr. Karen Schnabel, Marine Biologist, Wellington, New Zealand
Dr. Amazonas Chagas Júnior, Universidade Federal de Mato Grosso, Cuiabá, Brasil
Mr. Monsoon Jyoti Gogoi, Assam University, Silchar, Assam, India
Dr. Heo Chong Chin, Universiti Teknologi MARA (UiTM), Selangor, Malaysia
Dr. R.J. Shiel, University of Adelaide, SA 5005, Australia
Dr. Siddharth Kulkarni, The George Washington University, Washington, USA
Dr. Priyadarshan Dharma Rajan, ATREE, Bengaluru, India
Dr. Phil Alderslade, CSIRO Marine And Atmospheric Research, Hobart, Australia
Dr. John E.N. Veron, Coral Reef Research, Townsville, Australia
Dr. Daniel Whitmore, State Museum of Natural History Stuttgart, Rosenstein, Germany.
Dr. Yu-Feng Hsu, National Taiwan Normal University, Taipei City, Taiwan
Dr. Keith V. Wolfe, Antioch, California, USA
Dr. Siddharth Kulkarni, The Hormiga Lab, The George Washington University, Washington, D.C., USA
Dr. Tomas Ditrich, Faculty of Education, University of South Bohemia in Ceske Budejovice, Czech Republic
Dr. Mihaly Foldvari, Natural History Museum, University of Oslo, Norway
Dr. V.P. Uniyal, Wildlife Institute of India, Dehradun, Uttarakhand 248001, India
Dr. John T.D. Caleb, Zoological Survey of India, Kolkata, West Bengal, India
Dr. Priyadarshan Dharma Rajan, Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Bangalore, Karnataka, India

Fishes

Dr. Topiltzin Contreras MacBeath, Universidad Autónoma del estado de Morelos, México
Dr. Heok Hee Ng, National University of Singapore, Science Drive, Singapore
Dr. Rajeev Raghavan, St. Albert's College, Kochi, Kerala, India
Dr. Robert D. Sluka, Chiltern Gateway Project, A Rocha UK, Southall, Middlesex, UK
Dr. E. Vivekanandan, Central Marine Fisheries Research Institute, Chennai, India
Dr. Davor Zanella, University of Zagreb, Zagreb, Croatia
Dr. A. Biju Kumar, University of Kerala, Thiruvananthapuram, Kerala, India
Dr. Akhilesh KV, ICAR-Central Marine Fisheries Research Institute, Mumbai Research Centre, Mumbai, Maharashtra, India
Dr. J.A. Johnson, Wildlife Institute of India, Dehradun, Uttarakhand, India
Dr. R. Ravinesh, Gujarat Institute of Desert Ecology, Gujarat, India

Amphibians

Dr. Sushil K. Dutta, Indian Institute of Science, Bengaluru, Karnataka, India
Dr. Annemarie Ohler, Muséum national d'Histoire naturelle, Paris, France

Reptiles

Dr. Gernot Vogel, Heidelberg, Germany
Dr. Raja Vyas, Vadodara, Gujarat, India
Dr. Pritpal S. Soorae, Environment Agency, Abu Dhabi, UAE.
Prof. Dr. Wayne J. Fuller, Near East University, Mersin, Turkey
Prof. Chandrashekher U. Rironker, Goa University, Taleigao Plateau, Goa, India
Dr. S.R. Ganesh, Chennai Snake Park, Chennai, Tamil Nadu, India
Dr. Himansu Sekhar Das, Terrestrial & Marine Biodiversity, Abu Dhabi, UAE

Journal of Threatened Taxa is indexed/abstracted in Bibliography of Systematic Mycology, Biological Abstracts, BIOSIS Previews, CAB Abstracts, EBSCO, Google Scholar, Index Copernicus, Index Fungorum, JournalSeek, National Academy of Agricultural Sciences, NewJour, OCLC WorldCat, SCOPUS, Stanford University Libraries, Virtual Library of Biology, Zoological Records.

NAAS rating (India) 5.64

Birds

Dr. Hem Sagar Baral, Charles Sturt University, NSW Australia
Mr. H. Biju, Coimbatore, Tamil Nadu, India
Dr. Chris Bowden, Royal Society for the Protection of Birds, Sandy, UK
Dr. Priya Davidar, Pondicherry University, Kalapet, Puducherry, India
Dr. J.W. Duckworth, IUCN SSC, Bath, UK
Dr. Rajah Jayopal, SACON, Coimbatore, Tamil Nadu, India
Dr. Rajiv S. Kalsi, M.L.N. College, Yamuna Nagar, Haryana, India
Dr. V. Santharam, Rishi Valley Education Centre, Chittoor Dt., Andhra Pradesh, India
Dr. S. Balachandran, Bombay Natural History Society, Mumbai, India
Mr. J. Praveen, Bengaluru, India
Dr. C. Srinivasulu, Osmania University, Hyderabad, India
Dr. K.S. Gopi Sundar, International Crane Foundation, Baraboo, USA
Dr. Gombobaatar Sundev, Professor of Ornithology, Ulaanbaatar, Mongolia
Prof. Reuven Yosef, International Birding & Research Centre, Eilat, Israel
Dr. Taej Mundkur, Wetlands International, Wageningen, The Netherlands
Dr. Carol Inskip, Bishop Auckland Co., Durham, UK
Dr. Tim Inskip, Bishop Auckland Co., Durham, UK
Dr. V. Gokula, National College, Tiruchirappalli, Tamil Nadu, India
Dr. Arkady Lelej, Russian Academy of Sciences, Vladivostok, Russia
Dr. Simon Dowell, Science Director, Chester Zoo, UK
Dr. Mário Gabriel Santiago dos Santos, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, Vila Real, Portugal
Dr. Grant Connette, Smithsonian Institution, Royal, VA, USA
Dr. P.A. Azeez, Coimbatore, Tamil Nadu, India

Mammals

Dr. Giovanni Amori, CNR - Institute of Ecosystem Studies, Rome, Italy
Dr. Anwaruddin Chowdhury, Guwahati, India
Dr. David Mallon, Zoological Society of London, UK
Dr. Shomita Mukherjee, SACON, Coimbatore, Tamil Nadu, India
Dr. Angie Appel, Wild Cat Network, Germany
Dr. P.O. Nameer, Kerala Agricultural University, Thrissur, Kerala, India
Dr. Ian Redmond, UNEP Convention on Migratory Species, Lansdown, UK
Dr. Heidi S. Riddle, Riddle's Elephant and Wildlife Sanctuary, Arkansas, USA
Dr. Karin Schwartz, George Mason University, Fairfax, Virginia.
Dr. Lala A.K. Singh, Bhubaneswar, Orissa, India
Dr. Mewa Singh, Mysore University, Mysore, India
Dr. Paul Racey, University of Exeter, Devon, UK
Dr. Honnavalli N. Kumara, SACON, Anaikatty P.O., Coimbatore, Tamil Nadu, India
Dr. Nishith Dharaiya, HNG University, Patan, Gujarat, India
Dr. Spartaco Gippoliti, Socio Onorario Società Italiana per la Storia della Fauna "Giuseppe Altobello", Rome, Italy
Dr. Justus Joshua, Green Future Foundation, Tiruchirappalli, Tamil Nadu, India
Dr. H. Raghuram, The American College, Madurai, Tamil Nadu, India
Dr. Paul Bates, Harison Institute, Kent, UK
Dr. Jim Sanderson, Small Wild Cat Conservation Foundation, Hartford, USA
Dr. Dan Challender, University of Kent, Canterbury, UK
Dr. David Mallon, Manchester Metropolitan University, Derbyshire, UK
Dr. Brian L. Cypher, California State University-Stanislaus, Bakersfield, CA
Dr. S.S. Talmale, Zoological Survey of India, Pune, Maharashtra, India
Prof. Karan Bahadur Shah, Budhanilkantha Municipality, Kathmandu, Nepal
Dr. Susan Cheyne, Borneo Nature Foundation International, Palangkaraya, Indonesia
Dr. Hemanta Kafley, Wildlife Sciences, Tarleton State University, Texas, USA

Other Disciplines

Dr. Aniruddha Belsare, Columbia MO 65203, USA (Veterinary)
Dr. Mandar S. Paingankar, University of Pune, Pune, Maharashtra, India (Molecular)
Dr. Jack Tordoff, Critical Ecosystem Partnership Fund, Arlington, USA (Communities)
Dr. Ulrike Streicher, University of Oregon, Eugene, USA (Veterinary)
Dr. Hari Balasubramanian, EcoAdvisors, Nova Scotia, Canada (Communities)
Dr. Rayanna Helleni Santos Bezerra, Universidade Federal de Sergipe, São Cristóvão, Brazil
Dr. Jamie R. Wood, Landcare Research, Canterbury, New Zealand
Dr. Wendy Collinson-Jonker, Endangered Wildlife Trust, Gauteng, South Africa
Dr. Rajeshkumar G. Jani, Anand Agricultural University, Anand, Gujarat, India
Dr. O.N. Tiwari, Senior Scientist, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
Dr. L.D. Singla, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
Dr. Rupika S. Rajakaruna, University of Peradeniya, Peradeniya, Sri Lanka
Dr. Bharat Baviskar, Wild-CER, Nagpur, Maharashtra 440013, India

Reviewers 2021–2023

Due to paucity of space, the list of reviewers for 2021–2023 is available online.

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.

Print copies of the Journal are available at cost. Write to:
The Managing Editor, JoTT,
c/o Wildlife Information Liaison Development Society,
3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore,
Tamil Nadu 641006, India
ravi@threatenedtaxa.org & ravi@zooreach.org

Articles

Floral inventory and habitat significance of riparian ecosystem along the banks of Chithari River, Kasaragod, Kerala, India

– Sreehari K. Mohan, Shyamkumar Puravankara & P. Biju, Pp. 27407–27425

Propagation through stem cutting and air layering of a Critically Endangered tree *Humboldtia unijuga* Bedd. var. *trijuga* J.Joseph & V.Chandras. (Magnoliopsida: Fabales: Fabaceae)

– Scaria Shintu & P.S. Jothish, Pp. 27426–27432

Niche characterization and distribution of Sikkim Himalayan *Begonia* (Begoniaceae), India: a niche modeling approach

– Aditya Pradhan, Dibyendu Adhikari & Arun Chettri, Pp. 27433–27443

Diversity of snakes (Reptilia: Serpentes) in the Tezpur University Campus, Assam, India

– Mahari Jiumin Basumatary, Anubhav Bhuyan & Robin Doley, Pp. 27444–27455

Diversity and status of shorebirds in the estuaries of Algiers, northern Algeria

– Imad Eddine Rezouani, Belkacem Aimene Boulaouad, Selmane Chabani, Khalil Draidi & Badis Bakhouche, Pp. 27456–27463

Communities attitudes and conservation strategies for flying foxes *Pteropus* spp. (Mammalia: Chiroptera: Pteropodidae): a case study from Sabah, Malaysia Borneo

– Lawrence Alan Bansa, Marcela Pimid, Liesbeth Frias, Sergio Guerrero-Sánchez & Noor Haliza Hasan, Pp. 27464–27487

Communications

Leaf architecture of threatened *Aquilaria cumingiana* (Decne.) Ridley and *Aquilaria malaccensis* Lam. (Thymelaeales: Thymelaeaceae) using morphometrics analysis

– Rhea Lou R. Germo, Christian C. Estrologo & Gindol Rey A. Limbaro, Pp. 27488–27495

First record of *Euclimacia nodosa* (Westwood, 1847) and two species of the genus *Mantispilla* Enderlein, 1910 (Neuroptera: Mantispidae) from the sub-Himalayan foothills of West Bengal, India

– Abhirup Saha, Ratnadeep Sarkar, Subhajit Das, Prapti Das & Dhiraj Saha, Pp. 27496–27505

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print)

September 2025 | Vol. 17 | No. 9 | Pages: 27407–27550

Date of Publication: 26 September 2025 (Online & Print)

DOI: [10.11609/jott.2025.17.9.27407-27550](https://doi.org/10.11609/jott.2025.17.9.27407-27550)

Butterfly diversity in Jitpur Simara Sub-metropolitan City, Bara District, Nepal: a preliminary checklist

– Alisha Mulmi, Prakriti Chataut & Mahamad Sayab Miya, Pp. 27506–27516

First documented case of flunixin residue in a Himalayan Vulture *Gyps himalayensis* Hume, 1869 (Aves: Accipitridae: Accipitridae) in India: conservation and veterinary implications

– Soumya Sundar Chakraborty, Debal Ray, Apurba Sen, P.J. Harikrishnan, Nabi Kanta Jha & Rounaq Ghosh, Pp. 27517–27522

Review

MaxENT tool for species modelling in India: an overview

– S. Suresh Ramanan, A. Arunachalam, U.K. Sahoo & Kalidas Upadhyaya, Pp. 27523–27534

Short Communications

Vocalisations of Rusty-spotted Cats *Prionailurus rubiginosus* (I. Geoffroy Saint-Hilaire, 1831) (Mammalia: Carnivora: Felidae) in Frankfurt Zoo

– Vera Pfannerstill, Johannes Köhler & Sabrina Linn, Pp. 27535–27539

Effect of schistosomiasis on captive elephants in Madhya Pradesh, India

– Onkar Anchal & K.P. Singh, Pp. 27540–27543

Notes

Recent additions and taxonomic changes in the liverwort and hornwort flora of India

– Shuvadeep Majumdar & Monalisa Dey, Pp. 27544–27547

First photographic record of the Smooth-coated Otter *Lutra perspicillata* in Polavaram Forest Range, Andhra Pradesh, India

– Arun Kumar Gorati, Ritesh Vishwakarma, Anukul Nath & Parag Nigam, Pp. 27548–27550

Publisher & Host

Threatened Taxa