

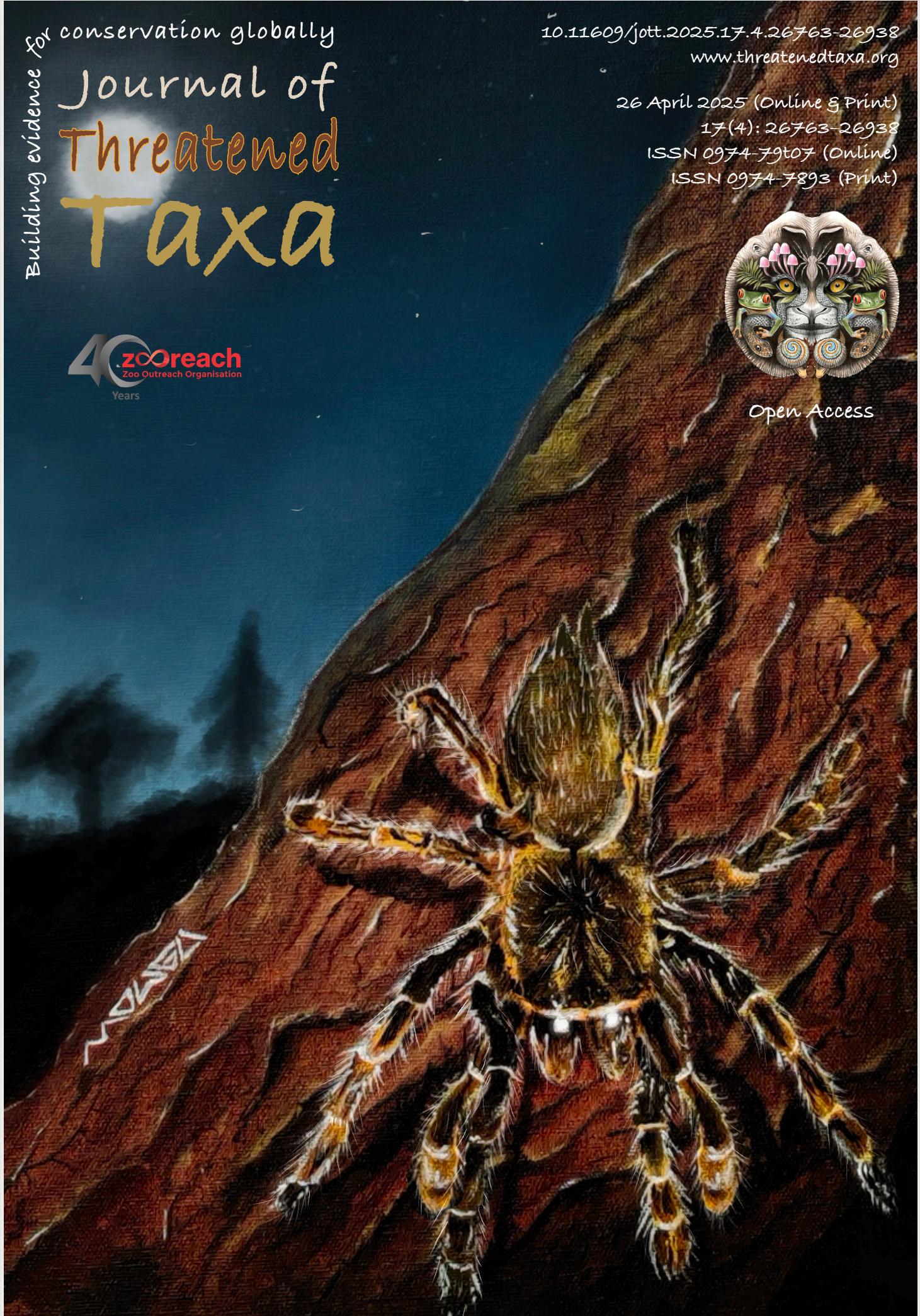
Building evidence for conservation globally

Journal of Threatened Taxa

10.11609/jott.2025.17.4.26763-26938

www.threatenedtaxa.org

26 April 2025 (Online & Print)


17(4): 26763-26938

ISSN 0974-7907 (Online)

ISSN 0974-7893 (Print)

Open Access

Publisher

Wildlife Information Liaison Development Societywww.wild.zooreach.org

Host

Zoo Outreach Organizationwww.zooreach.org

Srivari Illam, No. 61, Karthik Nagar, 10th Street, Saravanampatti, Coimbatore, Tamil Nadu 641035, India
Registered Office: 3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore, Tamil Nadu 641006, India
Ph: +91 9385339863 | www.threatenedtaxa.org
Email: sanjay@threatenedtaxa.org

EDITORS

Founder & Chief Editor

Dr. Sanjay Molur

Wildlife Information Liaison Development (WILD) Society & Zoo Outreach Organization (ZOO), Coimbatore, Tamil Nadu 641006, India

Assistant Editor

Dr. Chaithra Shree J., WILD/ZOO, Coimbatore, Tamil Nadu 641006, India

Managing Editor

Mr. B. Ravichandran, WILD/ZOO, Coimbatore, Tamil Nadu 641006, India

Associate Editors

Dr. Mandar Paingankar, Government Science College Gadchiroli, Maharashtra 442605, India**Dr. Ulrike Streicher**, Wildlife Veterinarian, Eugene, Oregon, USA**Ms. Priyanka Iyer**, ZOO/WILD, Coimbatore, Tamil Nadu 641006, India

Board of Editors

Dr. Russel Mittermeier

Executive Vice Chair, Conservation International, Arlington, Virginia 22202, USA

Prof. Mewa Singh Ph.D., FASc, FNA, FNAsc, FNAPsy

Ramanna Fellow and Life-Long Distinguished Professor, Biopsychology Laboratory, and Institute of Excellence, University of Mysore, Mysuru, Karnataka 570006, India; Honorary Professor, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore; and Adjunct Professor, National Institute of Advanced Studies, Bangalore

Stephen D. Nash

Scientific Illustrator, Conservation International, Dept. of Anatomical Sciences, Health Sciences Center, T-8, Room 045, Stony Brook University, Stony Brook, NY 11794-8081, USA

Dr. Fred Pluthero

Toronto, Canada

Dr. Priya Davidar

Sigur Nature Trust, Chadapatti, Mavinhalla PO, Nilgiris, Tamil Nadu 643223, India

Dr. John Fellowes

Honorary Assistant Professor, The Kadoorie Institute, 8/F, T.T. Tsui Building, The University of Hong Kong, Pokfulam Road, Hong Kong

Prof. Dr. Mirco Solé

Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Vice-coordenador do Programa de Pós-Graduação em Zoologia, Rodovia Ilhéus/Itabuna, Km 16 (45662-000) Salobrinho, Ilhéus - Bahia - Brasil

Dr. Rajeev Raghavan

Professor of Taxonomy, Kerala University of Fisheries & Ocean Studies, Kochi, Kerala, India

English Editors

Mrs. Mira Bhojwani, Pune, India**Dr. Fred Pluthero**, Toronto, Canada

Copy Editors

Ms. Usha Madgunki, Zooreach, Coimbatore, India**Ms. Trisa Bhattacharjee**, Zooreach. Coimbatore, India**Ms. Paloma Noronha**, Daman & Diu, India

Web Development

Mrs. Latha G. Ravikumar, ZOO/WILD, Coimbatore, India

Typesetting

Mrs. Radhika, Zooreach, Coimbatore, India**Mrs. Geetha**, Zooreach, Coimbatore India

Fundraising/Communications

Mrs. Payal B. Molur, Coimbatore, India

Subject Editors 2021–2023

Fungi

Dr. B. Shivaraju, Bengaluru, Karnataka, India**Dr. R.K. Verma**, Tropical Forest Research Institute, Jabalpur, India**Dr. Vatsavaya S. Raju**, Kakatiya University, Warangal, Andhra Pradesh, India**Dr. M. Krishnappa**, Jnana Sahyadri, Kuvenpu University, Shimoga, Karnataka, India**Dr. K.R. Sridhar**, Mangalore University, Mangalagangotri, Mangalore, Karnataka, India**Dr. Gunjan Biswas**, Vidyasagar University, Midnapore, West Bengal, India**Dr. Kiran Ramchandra Ranadive**, Anna Sahab Magar Mahavidyalaya, Maharashtra, India

Plants

Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India**Dr. N.P. Balakrishnan**, Ret. Joint Director, BSI, Coimbatore, India**Dr. Shonil Bhagwat**, Open University and University of Oxford, UK**Prof. D.J. Bhat**, Retd. Professor, Goa University, Goa, India**Dr. Ferdinand Boero**, Università del Salento, Lecce, Italy**Dr. Dale R. Calder**, Royal Ontario Museum, Toronto, Ontario, Canada**Dr. Cleofas Cervancia**, Univ. of Philippines Los Baños College Laguna, Philippines**Dr. F.B. Vincent Florens**, University of Mauritius, Mauritius**Dr. Merlin Franco**, Curtin University, Malaysia**Dr. V. Irudayaraj**, St. Xavier's College, Palayamkottai, Tamil Nadu, India**Dr. B.S. Kholia**, Botanical Survey of India, Gangtok, Sikkim, India**Dr. Pankaj Kumar**, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, USA**Dr. V. Sampath Kumar**, Botanical Survey of India, Howrah, West Bengal, India**Dr. A.J. Solomon Raju**, Andhra University, Visakhapatnam, India**Dr. Vijayasankar Raman**, University of Mississippi, USA**Dr. B. Ravi Prasad Rao**, Sri Krishnadevaraya University, Anantapur, India**Dr. K. Ravikumar**, FRLHT, Bengaluru, Karnataka, India**Dr. Aparna Watve**, Pune, Maharashtra, India**Dr. Qiang Liu**, Xishuangbanna Tropical Botanical Garden, Yunnan, China**Dr. Noor Azhar Mohamed Shazili**, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia**Dr. M.K. Vasudeva Rao**, Shiv Ranjan Housing Society, Pune, Maharashtra, India**Prof. A.J. Solomon Raju**, Andhra University, Visakhapatnam, India**Dr. Manda Datar**, Agharkar Research Institute, Pune, Maharashtra, India**Dr. M.K. Janarthanam**, Goa University, Goa, India**Dr. K. Karthigeyan**, Botanical Survey of India, India**Dr. Errol Vela**, University of Montpellier, Montpellier, France**Dr. P. Lakshminarasiham**, Botanical Survey of India, Howrah, India**Dr. Larry R. Noblick**, Montgomery Botanical Center, Miami, USA**Dr. K. Haridasan**, Pallavur, Palakkad District, Kerala, India**Dr. Analinda Manila-Fajard**, University of the Philippines Los Banos, Laguna, Philippines**Dr. P.A. Siru**, Central University of Kerala, Kasaragod, Kerala, India**Dr. Afroz Alam**, Banasthali Vidyapith (accredited A grade by NAAC), Rajasthan, India**Dr. K.P. Rajesh**, Zamorin's Guruvayurappan College, GA College PO, Kozhikode, Kerala, India**Dr. David E. Boufford**, Harvard University Herbaria, Cambridge, MA 02138-2020, USA**Dr. Ritesh Kumar Choudhary**, Agharkar Research Institute, Pune, Maharashtra, India**Dr. A.G. Pandurangan**, Thiruvananthapuram, Kerala, India**Dr. Navendu Page**, Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India**Dr. Kannan C.S. Warrier**, Institute of Forest Genetics and Tree Breeding, Tamil Nadu, India

Invertebrates

Dr. R.K. Avasthi, Rohtak University, Haryana, India**Dr. D.B. Bastawade**, Maharashtra, India**Dr. Partha Pratim Bhattacharjee**, Tripura University, Suryamaninagar, India**Dr. Kailash Chandra**, Zoological Survey of India, Jabalpur, Madhya Pradesh, India**Dr. Ansie Dippenaar-Schoeman**, University of Pretoria, Queenswood, South Africa**Dr. Rory Dow**, National Museum of natural History Naturalis, The Netherlands**Dr. Brian Fisher**, California Academy of Sciences, USA**Dr. Richard Gallon**, Ilandudno, North Wales, LL30 1UP**Dr. Hemant V. Ghate**, Modern College, Pune, India**Dr. M. Monwar Hossain**, Jahangirnagar University, Dhaka, BangladeshFor Focus, Scope, Aims, and Policies, visit https://threatenedtaxa.org/index.php/JoTT/aims_scopeFor Article Submission Guidelines, visit <https://threatenedtaxa.org/index.php/JoTT/about/submissions>For Policies against Scientific Misconduct, visit https://threatenedtaxa.org/index.php/JoTT/policies_various

continued on the back inside cover

Cover: Nilgiri Large Burrowing Spider *Haploclastus nilgirinus*. Acrylic on canvas. © Aakanksha Komanduri.

Evaluating wildlife activity and corridor functionality: a study of underpasses in and around Rajaji National Park, India

Nishant Verma¹ , Saket Badola² & Samrat Mondol³

¹ Forest Fire and Disaster Management, Uttarakhand Forest Department, Dehradun, Uttarakhand 248001, India.

² Corbett Tiger Reserve, Ramnagar, Uttarakhand 244715, India.

³ Wildlife Institute of India, Dehradun, Uttarakhand 248002, India.

¹ nvermaifs1999@gmail.com (corresponding author), ² dr.saketbadola@gmail.com, ³ samrat@wii.gov.in

Abstract: Habitat fragmentation threatens biodiversity, making wildlife corridors vital for maintaining ecological connectivity. This study evaluated the functionality of three corridors—Chilla-Motichur, Teenpani, and Laltappar—in and around Rajaji National Park, Uttarakhand, India. We deployed camera traps at these corridors and surrounding forest areas for 8,198 trap nights to monitor the wildlife use of the corridors. We recorded 17 species of wild animals in the connected forested area and nine within the corridors. The Wild Pig *Sus scrofa* and Sambar *Rusa unicolor* were the most frequently captured species, with the highest Relative Abundance Index (RAI) in the Teenpani corridor. Activity patterns of wild species showed changes in the corridor compared to forest areas. Chital *Axis axis* exhibited continuous activity in corridors but an early-morning peak in forests ($\Delta = 0.68$). Asiatic Elephant *Elephas maximus* shifted from daytime activity in forests to nocturnal peaks in corridors, likely avoiding human presence ($\Delta = 0.48$). Sambar avoided daytime activity in the corridor compared to activity in the forest ($\Delta = 0.55$), while Wild Pig maintained nocturnal peaks across both habitats ($\Delta = 0.71$). Human activity, primarily diurnal, overlapped with Chital ($\Delta = 0.61$) and increased potential encounters with Elephants and Leopards during evening hours ($\Delta = 0.25$ and 0.39 , respectively). Mitigation measures, such as habitat restoration and managing anthropogenic activities, are crucial for strengthening corridor functionality. The recent reintroduction of tigers in western Rajaji underscores the importance of these corridors for species connectivity and genetic exchange. This study provides valuable insights into managing wildlife corridors in human-dominated landscapes, highlighting their role in biodiversity conservation.

Keywords: Asiatic Elephant, camera trapping, conservation monitoring, habitat connectivity, human disturbance, infrastructure mitigation, species activity patterns.

Editor: Anonymity requested.

Date of publication: 26 April 2025 (online & print)

Citation: Verma, N., S. Badola & S. Mondol (2025). Evaluating wildlife activity and corridor functionality: a study of underpasses in and around Rajaji National Park, India. *Journal of Threatened Taxa* 17(4): 26780–26788. <https://doi.org/10.11609/jott.9621.17.4.26780-26788>

Copyright: © Verma et al. 2025. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: All the equipment and logistics were supported by the Uttarakhand Forest Department.

Competing interests: The authors declare no competing interests.

Author details and Author contributions: NISHANT VERMA (APCCF, Uttarakhand Forest Department) conceptualised the study, conducted fieldwork, analysed data, and wrote the first draft. SAKET BADOLA (former director, Rajaji Tiger Reserve) assisted with data collection and manuscript preparation. SAMRAT MONDOL (scientist, Wildlife Institute of India) contributed to the study design and reviewed the manuscript.

Acknowledgements: We sincerely thank the Director, Rajaji Tiger Reserve, the Divisional Forest Officer, Dehradun Forest Division, and Dr. Samir Sinha, former Chief Wildlife Warden, Uttarakhand, for providing field logistics and the necessary permissions to conduct this research. We are grateful to Dr. Bivash Pandav, Wildlife Institute of India, for his invaluable guidance in planning and carrying out the study. Dr. Shivam Shrotriya is acknowledged for his guidance in data analysis and writing. We also extend our appreciation to the field staff for their dedication and support in carrying out the work.

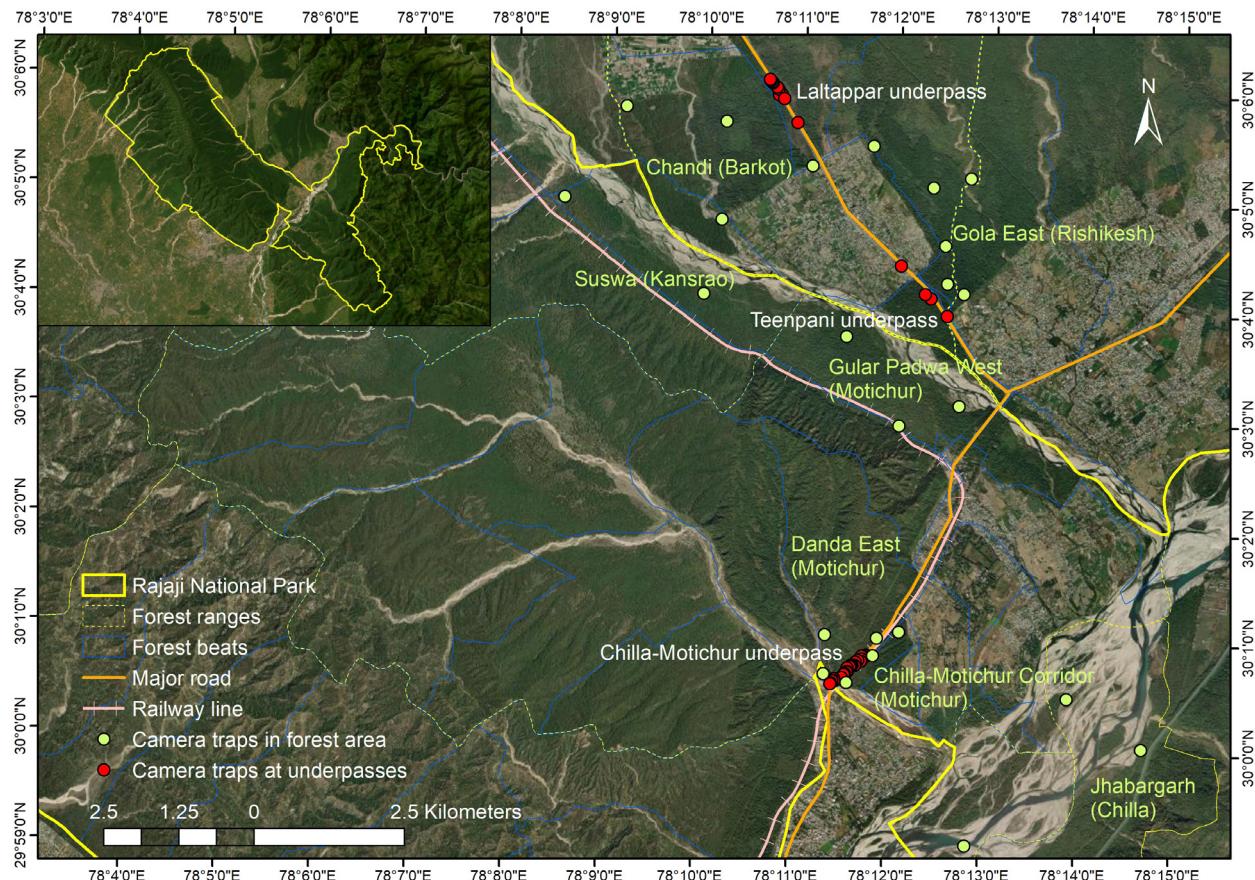
INTRODUCTION

The rapid expansion of human activities has led to significant alterations in natural landscapes. Habitat loss and fragmentation are two main contributors to biodiversity decline (Haddad et al. 2015). Anthropogenic habitat loss occurs when natural areas are converted for human activities such as agriculture, horticulture, infrastructure development, and urban expansion. Roads, railways, and urban expansion fragment once-continuous landscapes, thus impeding wildlife movement, disrupting ecological processes, and increasing the risk of local extinctions (Laurance et al. 2014; van der Ree et al. 2015). These processes disrupt habitat connectivity, impacting the movement, dispersal, and genetic exchange of wildlife populations (e.g., Callens et al. 2011; Napolitano et al. 2015). Such disruptions can have profound consequences, including population decline and loss of ecosystem functionality. Therefore, connecting natural habitats through ecological corridors is crucial for maintaining gene flow and population viability in the wild (Holderegger & Di Giulio 2010).

Wildlife corridors, composed of native vegetation, link larger habitat patches and facilitate animal movement (Burkart et al. 2016). By mitigating the effects of habitat loss and fragmentation, these corridors help sustain healthy animal populations and preserve biodiversity. In human-dominated landscapes, corridors are essential conservation tools, enabling wildlife to navigate fragmented habitats and reducing the risks of isolation and local extinctions.

The Terai Arc Landscape (TAL), spanning the Himalayan foothills in India and Nepal, is among the world's 200 globally significant ecoregions (Olson & Dinerstein 1998). This landscape harbours flagship species such as the Royal Bengal Tiger *Panthera tigris* and the Asiatic Elephant *Elephas maximus*, which require large, connected habitats for survival (Jhala et al. 2015). TAL is also a human-dominated landscape, facing significant challenges from expanding settlements, agriculture, and transportation infrastructure (Harihar & Pandav 2012). Corridors within this landscape are critical for maintaining connectivity between protected areas, yet many have become degraded due to anthropogenic pressures.

Rajaji National Park (RNP), spanning 820 km² within the western TAL, is a key protected area for Tigers, elephants, and other large mammals. This park is bifurcated into eastern and western sections by the Ganges River (Johnsingh et al. 2004). Additionally,


highways and railway lines connecting Haridwar and Dehradun, two of Uttarakhand's most populated cities, create significant movement barriers for wildlife between protected areas and surrounding patches of reserve forests. Particularly, the connectivity between the Barkot Range of the territorial forest and the Kansrao Range of RNP is critical for elephant movement in this landscape (Johnsingh et al. 2004). Historically, the erstwhile Chilla-Motichur corridor played a crucial role in facilitating wildlife movement across both banks of the Ganges. This 3-km long and 1-km wide stretch of forest land that connects the Chilla Forest range on the eastern part of the Ganga to the Motichur Range on the west bank, is the only functional link between the eastern and western parts of RNP. While roads, railways, and irrigation channels hinder wildlife movement, roads pose the greatest barrier due to a continuous traffic flow. To address these challenges, three wildlife underpasses—Chilla-Motichur, Teenpani, and Laltappar—were constructed on the highway to provide connectivity between forested habitats within and around the park in 2021 (Nigam et al. 2022).

In this study, the current functionality of these three corridors were assessed in facilitating wildlife movement. Using camera-trap data, the activity patterns of key species—Leopard *Panthera pardus*, Asiatic Elephant, Spotted Deer or Chital *Axis axis*, Sambar *Rusa unicolor*, and Wild Boar *Sus scrofa*—were compared within the corridors and nearby forest ranges. It was also examined how human activities influence wildlife behaviour and corridor usage. By assessing corridor effectiveness, this study provides data-driven insights for enhancing connectivity and informing conservation planning in RNP and the broader TAL.

MATERIAL AND METHODS

Study Area

The study was conducted in the western part of Rajaji National Park (RNP), situated in Uttarakhand, India (30.248–29.850 °N & 77.878–78.444 °E), within the Terai Arc Landscape (TAL). The study focused on three wildlife corridors—Chilla-Motichur, Teenpani, and Laltappar—which have been established to connect fragmented forest patches of the Chilla, Motichur, & Kansrao ranges of RNP, and Barkot & Rishikesh ranges of the Dehradun Forest Division (Image 1). These corridors are intersected by major highways and railways, with underpasses designed to mitigate barriers to wildlife movement. The Chilla-Motichur underpass is 900 m

Image 1. Location of the three corridors — Laltappar, Teenpani, and Chilla-Motichur — at the boundary of the western Rajaji National Park. All three corridors are traversed by road, and wildlife underpasses are built on all three roads. Sampled forest beats are mentioned in green text.

long, while the Teenpani and Laltappar underpasses are each approximately 500 m in length. These underpasses provide critical connectivity between forested habitats in the park and adjacent territorial forests (Nigam et al. 2022).

The vegetation of RNP is primarily tropical moist and dry deciduous forests (Champion & Seth 1968), dominated by *Sal Shorea robusta*. Riverine forests and scrublands are also present. The region supports diverse wildlife, including flagship species such as the Tiger, Asiatic Elephant, and Leopard. It also harbours a rich diversity of avifauna and herpetofauna.

Camera-trapping

Camera traps were deployed between April and November 2022 across the corridors and adjacent forest ranges (Table 1). Sixty-four motion-triggered digital cameras (Cuddeback Model C1) were installed, yielding a total of 8,198 trap nights. Cameras were single-sided and mounted approximately 30–40 cm above ground level. Under the flyovers, the cameras were placed at

a minimum of 25 m to a maximum of 100 m distance from each other along the flyover, so that any animal crossing the flyover would not be missed out. The Chilla-Motichur corridor was monitored by 24 cameras, whereas the Teenpani and Laltappar corridors each had eight cameras. Eight adjacent forest beats in five ranges of RNP and the Dehradun Forest division were sampled to understand the presence of wildlife. Three camera traps were deployed in each of the beats, except for six cameras in the Chandi beat of Barkot Range as it was relatively larger (Image 1, Table 1). Camera traps were strategically placed along trails, riverbanks, and other linear features to maximize the detection of medium- and large-sized mammals, which commonly use these pathways (Jhala et al. 2015). All the camera traps were active 24 h and monitored every fortnight to check the battery status and retrieve the data.

Data analyses

Species identification was conducted manually for each photograph by a single observer and verified by a

Table 1. Details of the survey effort during camera trapping at the corridors and adjacent forest ranges in and around the western Rajaji National Park.

Sites	Start date	End date	Total cameras	Total trap nights	Sampling coverage
Corridors					
Laltappar	12.iv.2022	05.xi.2022	8	1656	500
Teenpani	10.vi.2022	05.xi.2022	8	1184	500
Chilla-Motichur	25.iv.2022	26.xi.2022	24	4485	900
Forest beats (ranges)					
Chandi (Barkot)	04.iii.2022	21.iv.2022	6	288	14.83
Jhabargarh (Chilla)	13.iii.2022	16.iv.2022	3	102	11.60
Suswa (Kansrow)	19.iii.2022	04.v.2022	3	138	6.14
Gola East (Rishikesh)	13.iii.2022	22.iv.2022	3	120	10.57
Chilla-Motichur Corridor (Motichur)	01.iv.2022	18.iv.2022	3	54	2.20
Danda East (Motichur)	16.iii.2022	19.iv.2022	3	102	6.12
Gular Parwa West (Motichur)	16.iii.2022	08.iv.2022	3	69	6.40

second observer. The date and time of each photograph were recorded from the image metadata, maintaining a time interval of 1 min for independent capture events. Wildlife presence in the connected forest areas and corridor underpasses was quantified using the relative abundance index (RAI), defined as the number of independent detections per 1,000 trap nights (O'Brien 2011). Comparative analyses of species activity patterns in forests and corridors, as well as their temporal overlap with humans, were conducted using the camtrapR package (version 2.3.0; Niedballa et al. 2016) in R (version 4.4.0; R Core Team 2024). Temporal overlap was estimated by the overlap coefficient Δ , which ranges from 0 (no overlap) to 1 (complete overlap) and is calculated using kernel density functions fitted to the time data of capture incidents of two species (Ridout & Linkie 2009).

RESULTS

Over 8,198 trap nights, camera traps recorded 17 species in the forest areas and nine in the corridors. Among the corridors, Chilla-Motichur and Laltappar had the highest species richness (seven species each), while Teenpani recorded six species (Image 2, Table 2). Teenpani had the highest relative abundance index (RAI) for Wild Boar (227.2) and Sambar (123.31) among the corridors, whereas Chilla-Motichur and Laltappar exhibited lower RAI for most species (Table 2). In contrast, adjacent forest areas exhibited higher

RAIs across all species, indicating a preference for less-disturbed habitats (Wilcoxon test: $V = 0$, $p < 0.001$).

Species exhibited distinct activity patterns between corridors and forest areas (Figure 1). Chital, the only diurnal species, exhibited activity throughout the 24-hour period in corridors, whereas it displayed a distinct early-morning peak inside the forest ($\Delta = 0.68$). Leopards were uniformly active throughout the day in the forest but showed slightly reduced daytime activity in corridors ($\Delta = 0.71$). Elephants exhibited contrasting activity patterns, with a daytime activity peak in forest ranges and a night-time peak in corridors ($\Delta = 0.48$). Sambar displayed an early-morning activity peak in corridors, avoiding the daytime, while in the forest, it maintained activity throughout the day with increased movement during morning and evening hours ($\Delta = 0.55$). Wild Pig activity remained consistent across both habitats, with peaks at night and reduced activity during the day ($\Delta = 0.71$).

Human activity occurred exclusively during the daytime across all corridors, significantly overlapping with Chital ($\Delta = 0.61$, Figure 1). Other species avoided times of peak human activity. The Leopard ($\Delta = 0.39$) and the elephant ($\Delta = 0.25$), both species frequently involved in negative human-wildlife interactions, showed increased overlap with human activity in the evening hours.

Image 2. Some of the wildlife species captured by camera traps at the corridors; top left to right: Asiatic Elephant, Sambar, Chital, and Barking Deer; bottom left to right: Leopard, Striped Hyena, and Wild Boar. © Uttarakhand Forest Department.

DISCUSSION

This study highlights both the significance and challenges of wildlife corridors in maintaining connectivity for species within fragmented habitats. The lower species richness observed in corridors (nine species) compared to forested areas (17 species) reflects the impact of disturbance and habitat fragmentation in human-dominated landscapes, a pattern consistent with global studies (Benítez-López et al. 2010; van der Ree et al. 2015).

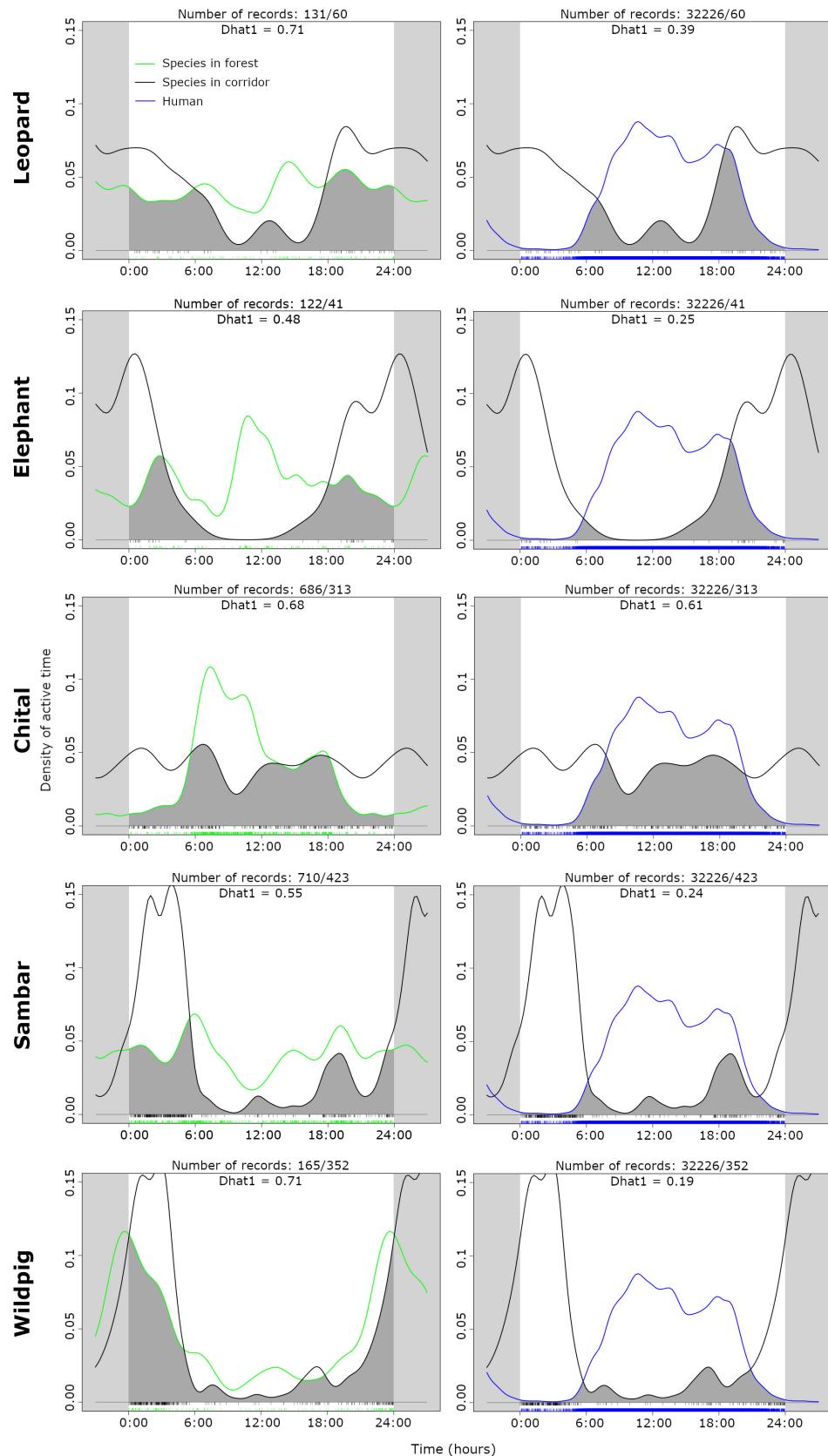
Species activity patterns exhibited significant shifts within corridors compared to forest areas (Figure 1). Chital exhibited continuous activity throughout the daytime in corridors, whereas, in forests, its activity peaked during the early morning hours. Chital is primarily a diurnal species, with peak activity occurring at dawn and dusk. They spend most of their time feeding, followed by resting and social activities. This diurnal pattern is consistent across various habitats,

including those with high human activity, where they may alter their behaviour to avoid disturbances (Rajawat & Chandra 2020; Dahya et al. 2023; Kumar et al. 2023). Leopards, known for their cathemeral activity (Palei et al. 2021; Dahya et al. 2023), exhibited uniform activity in forests but reduced daytime activity in corridors, possibly avoiding human activity. Elephants shifted their activity from a daytime peak in forests to a nocturnal peak in corridors, demonstrating their adaptability to avoid human encounters (Chakraborty et al. 2021). Sambar, predominantly nocturnal in other studies (Kumar et al. 2023), showed early-morning peaks in corridors, likely due to lower human presence at that time. Wild Boars maintained their nocturnal peaks across both habitats, consistent with findings from Dahya et al. (2023).

Human activity in corridors was predominantly diurnal, significantly overlapping with Chital activity, while other species mostly avoided peak human activity times. The overlap of Leopards and Elephants with human activity during evening hours is concerning, given

Table 2. Relative abundance index (per 1,000 trap nights) of the wildlife species, livestock, and humans captured at three corridors and adjacent forest areas in and around the western Rajaji National Park.

Species	Laltappar	Teenpani	Chilla-Motichur	Forest area
Barking Deer <i>Muntiacus muntjak</i>	0.6	-	0.22	12.9
Chital <i>Axis axis</i>	50.12	-	8.03	1363.44
Sambar <i>Rusa unicolor</i>	99.64	123.31	7.8	993.55
Nilgai <i>Boselaphus tragocamelus</i>	-	-	-	15.05
Asiatic Elephant <i>Elephas maximus</i>	19.93	2.53	0.89	172.04
Wild Boar <i>Sus scrofa</i>	13.89	227.2	22.07	223.66
Rhesus Macaque <i>Macaca mulatta</i>	1.81	-	1.34	43.01
Central Indian Langur <i>Semnopithecus entellus</i>	-	0.84	-	25.81
Indian Hare <i>Lepus nigricollis</i>	-	-	-	49.46
Indian Crested Porcupine <i>Hystrix indica</i>	-	3.38	-	49.46
Indian Peafowl <i>Pavo cristatus</i>	-	-	-	329.03
Indian Pangolin <i>Manis crassicaudata</i>	-	-	-	4.3
Leopard <i>Panthera pardus</i>	12.08	15.2	4.01	215.05
Tiger <i>Panthera tigris</i>	-	-	-	4.3
Striped Hyena <i>Hyaena hyaena</i>	-	-	-	21.51
Golden Jackal <i>Canis aureus</i>	-	-	-	4.3
Small Indian Civet <i>Viverricula indica</i>	-	-	-	17.2
Livestock	397.34	333.61	108.58	531.18
Human	752.42	26094.59	2360.98	206.45


the elevated risk of human-wildlife encounters (Figure 1). Such patterns, particularly involving species known to cause damage or pose danger in shared spaces, highlight the need for targeted management strategies.

The study also underscores the importance of infrastructure like underpasses in enhancing corridor functionality. Although highway underpasses support wildlife movement, parallel railway lines may act as significant barriers, particularly for elephants, necessitating targeted mitigation measures (Carvalho et al. 2017; Gilhooly et al. 2019). Additionally, debris from underpass construction, garbage dumping, and the use of old roads below the flyover at Teenpani exacerbate habitat degradation (Oro et al. 2013; Katlam et al. 2018). Habitat restoration, particularly in the Chilla-Motichur corridor, and increasing forested cover are crucial for improving corridor effectiveness (Dutta et al. 2018).

The translocation of four Tigers from Corbett Tiger Reserve to western Rajaji National Park (2021–2024) reinforces the importance of maintaining functional corridors (Times of India 2024, director, Rajaji Tiger Reserve pers. comm. 20.iii.2025). In 2022, a male Tiger was photo-captured in camera traps moving from the Chilla Range in the east to the Motichur Range in the

western Rajaji using the reclaimed corridor under the Chilla-Motichur flyover. This observation signifies the successful restoration of historical connectivity between the eastern and western RNP. Furthermore, it highlights the critical role of the Chilla-Motichur corridor in Tiger conservation in this landscape. As Tigers recolonise the western TAL, maintaining and monitoring these corridors will be vital for their survival and genetic exchange. The corridor, is yet to be fully restored as an existing ammunition depot of the Indian army cuts through it leaving little space for unrestricted movement of wild animals.

The current study was limited in scope due to a smaller sample size, a lack of a more systematic sampling design, and coverage of only limited areas around the flyovers. Using more camera traps in a grid design could yield more information on the spatial use and abundance of wildlife populations in the landscape. Therefore, the analyses were restricted to RAI as an indicator of site use intensity. Interpreting RAI as abundance may be incorrect as the number of captures may be affected by habitat quality, disturbances, individual behaviour and camera placement (O'Brien 2011). Temporal activity may also be affected by similar biases in captures. Therefore,

Figure 1. Comparison of the activity time of the five species frequently captured at the corridors around the western Rajaji National Park: Left—activity time of the species within the corridor and the forest ranges | right—activity overlap of the species with humans in the corridor. Dhat value represents the overlap coefficient.

temporal patterns were not analysed for all the captured species but focused only on the species with sufficient captures across the camera traps.

Nonetheless, this study provides valuable insights into the effectiveness of highway underpasses and the challenges of maintaining corridor functionality in human-dominated landscapes. Active measures are essential to enhance corridor utility, including habitat restoration to increase forest cover, shifting of the army's ammunition depot to fully restore the corridor, restricting human activity during critical wildlife movement times, ensuring proper disposal of construction debris and garbage, and implementing effective mitigation strategies for railways to facilitate safe crossings such as advance alert systems, improved braking systems in the trains, regular patrolling and crossing infrastructures (Carvalho et al. 2017). Continuous monitoring of corridor use is crucial, particularly with the recent reintroduction of Tigers, to support the long-term conservation of these apex predators and Elephants in the region.

The findings from this study offer broader conservation implications for wildlife corridors in other parts of the TAL and similarly fragmented habitats across India. The observed shifts in wildlife activity patterns and the influence of human presence highlight the urgent need for integrated infrastructure planning including road and rail barriers in preserving corridor functionality. These results can inform national-level policy on corridor identification, underpass design, and mitigation strategies, especially under frameworks such as India's Wildlife Action Plan (2017–2031), which prioritises connectivity conservation (MOECCF 2017). Furthermore, the study underscores the importance of long-term monitoring, offering a replicable approach for assessing corridor functionality in other Tiger and elephant landscapes.

REFERENCE

Benítez-López, A., R. Alkemade & P. Verweij (2010). The impacts of roads and other infrastructure on mammal and bird populations: a meta-analysis. *Biological Conservation* 143: 1307–1316. <https://doi.org/10.1016/j.BIOCON.2010.02.009>

Burkart, S., F. Gugerli, J. Senn, R. Kuehn & J. Bolliger (2016). Evaluating the functionality of expert-assessed wildlife corridors with genetic data from roe deer. *Basic and Applied Ecology* 17(1): 52–60. <https://doi.org/10.1016/j.baae.2015.09.001>

Callens, T., P. Galbusera, E. Matthysen, E.Y. Durand, M. Githiru, J.R. Huyghe & L. Lens (2011). Genetic signature of population fragmentation varies with mobility in seven bird species of a fragmented Kenyan cloud forest. *Molecular Ecology* 20: 1829–1844. <https://doi.org/10.1111/j.1365-294X.2011.05028.x>

Carvalho, F., S. Santos, A. Mira & R. Lourenço (2017). Methods to Monitor and Mitigate Wildlife Mortality in Railways, pp. 23–42. In: Borda-de-Águia, L., R. Barrientos, P. Beja & H. Pereira (eds.). *Railway Ecology*. Springer, Cham, xxx + 320 pp. https://doi.org/10.1007/978-3-319-57496-7_3

Chakraborty, P., J. Borah, P. Bora, P., S. Dey, T. Sharma & S. Rongphar (2021). Camera trap based monitoring of a key wildlife corridor reveals opportunities and challenges for large mammal conservation in Assam, India. *Tropical Ecology* 62: 186–196. <https://doi.org/10.1007/s42965-020-00138-x>

Champion, H.G. & S.K. Seth (1968). *A Revised Survey of the Forest Types of India*. Manager of publications, 404 pp.

Dahya, M.N., R. Chaudhary, A. Shah & A. Kazi (2023). Assemblage, relative abundance and activity pattern of wild mammals in the human-dominated landscape of Vansda Taluka, Gujarat, India. *Mammalia* 87(5): 434–441. <https://doi.org/10.1515/mammalia-2022-0130>

Dutta, T., S. Sharma & R. DeFries (2018). Targeting restoration sites to improve connectivity in a tiger conservation landscape in India. *PeerJ* 6: e5587. <https://doi.org/10.7717/peerj.5587>

Gilhooly, P., S. Nielsen, J. Whittington & C. St. Clair (2019). Wildlife mortality on roads and railways following highway mitigation. *Ecosphere* 10(2): e02597. <https://doi.org/10.1002/ECS2.2597>

Haddad, N., L.A. Brudvig, J. Clober, K.F. Davies, A. Gonzalez, R.D. Holt, T.E. Lovejoy, J.O. Sexton, M.P. Austin, C.D. Collins, W.M. Cook, E.I. Damschen, R.M. Ewers, B.L. Foster, C.N. Jenkins, A.J. King, W.F. Laurance, D.J. Levey, C.R. Margules, B.A. Melbourne, A.O. Nicholls, J.L. Orrock, D. Song & J.R. Townshend (2015). Habitat fragmentation and its lasting impact on Earth's ecosystems. *Science Advances* 1: e1500052. <https://doi.org/10.1126/sciadv.1500052>

Harihar, A. & B. Pandav (2012). Influence of connectivity, wild prey and disturbance on occupancy of tigers in the human-dominated western Terai Arc landscape. *PLoS ONE* 7(7): e40105. <https://doi.org/10.1371/journal.pone.0040105>

Holderegger, R. & M. Di Giulio (2010). The genetic effects of roads: a review of empirical evidence. *Basic and Applied Ecology* 11(6): 522–531. <https://doi.org/10.1016/j.baae.2010.06.006>

Jhala, Y.V., Q. Qureshi & R. Gopal (2015). *Status of Tigers in India, 2014*. National Tiger Conservation Authority and Wildlife Institute of India, Dehradun, India, 460 pp.

Johnsingh, A.J.T., K. Ramesh, Q. Qureshi, A. David, S.P. Goyal, G.S. Rawat, K. Rajapandian & S. Prasad (2004). *Conservation Status of Tiger and Associated Species in the Terai Arc Landscape, India*. Wildlife Institute of India, Dehradun, India, viii + 110 pp.

Katlam, G., S. Prasad, M. Aggarwal & R. Kumar (2018). Trash on the menu. *Current Science* 115(12): 2322–2326.

Kumar, K.A., Q. Qureshi & Y.V. Jhala (2023). Impact of human activities on wild ungulates in Nagarjunasagar Srisailam Tiger Reserve, Andhra Pradesh, India. *Journal of Threatened Taxa* 15(5): 23147–23163. <https://doi.org/10.11609/jott.8145.15.5.23147-23163>

Laurance, W.F., G.R. Clements, S. Sloan, C.S. O'Connell, N.D. Mueller, M. Goosem, O. Venter, D.P. Edwards, B. Phalan, A. Balmford & A. van Der Ree (2014). A global strategy for road building. *Nature* 513(7517): 229–232. <https://doi.org/10.1038/nature13717>

Ministry of Environment, Forest and Climate Change (MOEFCC) (2017). India's National Wildlife Action Plan (2017–2031). Government of India. https://ntca.gov.in/assets/uploads/Reports/Others/Wildlife_Action_Plan_2017_31.pdf Downloaded on 22 March 2025.

Napolitano, S., D. Díaz, J. Sanderson, W.E. Johnson, K. Ritland, C.E. Ritland & E. Poulin (2015). Reduced genetic diversity and increased dispersal in Guigna *Leopardus guigna* in Chilean Fragmented landscapes. *Journal of Heredity* 106(S1): 522–536. <https://doi.org/10.1093/jhered/esv025>

Niedballa, J., R. Sollmann, A. Courtiol & A. Wilting (2016). camtrapR: an R package for efficient camera trap data management. *Methods in Ecology and Evolution* 7(12): 1457–1462. <https://doi.org/10.1111/2041-210X.12600>

Nigam, P., S. Mondol, B. Habib, N. Lakshminarayanan & J. Das (2022). *Quantitative Assessment of Animal Movement Through Newly*

Commissioned Wildlife Underpasses at the Chilla-Motichur and Kansrao-Barkot Corridors in the Rajaji Landscape, Uttarakhand. Wildlife Institute of India-Uttarakhand Forest Department, Dehradun, India, 30 pp.

Olson, D.M. & E. Dinerstein (1998). The Global 200: A representation approach to conserving the earth's most biologically valuable ecoregions. *Conservation Biology* 12(3): 502–515.

O'Brien, T.G. (2011). Abundance, Density, and Relative Abundance: A Conceptual Framework, pp. 71–96. In: O'Connell, A.F., J.D. Nichols & K.U. Karanth (eds.). *Camera Traps in Animal Ecology: Methods and Analyses*. Springer, New York, 271 pp.

Oro, D., M. Genovart, G. Tavecchia, M.S. Fowler & A. Martínez-Abráin (2013). Ecological and evolutionary implications of food subsidies from humans. *Ecology Letters* 16(12): 1501–1514.

Palei, H., T. Pradhan, H. Sahu & A. Nayak (2021). Diet and activity pattern of leopard in relation to prey in tropical forest ecosystems. *Mammalia* 88(1): 1–16. <https://doi.org/10.1515/mammalia-2021-0003>.

Rajawat, R., & S. Chandra (2020). Activity Pattern of Chital (*Axis axis*) in Mukundra Hills Tiger Reserve, India. *International Journal of Ecology and Environmental Sciences* 46: 173–176.

Ridout, M.S. & M. Linkie (2009). Estimating overlap of daily activity patterns from camera trap data. *Journal of Agricultural, Biological, and Environmental Statistics* 14: 322–337. <https://doi.org/10.1198/jabes.2009.08038>

R Core Team (2024). *R: A Language and Environment for Statistical Computing*. R Foundation for Statistical Computing, Vienna, Austria. <https://www.R-project.org/>.

Times of India (2024). Fourth Tiger to be Translocated from Corbett to Rajaji Reserve. <https://timesofindia.indiatimes.com/city/dehradun/fourth-tiger-to-be-translocated-from-corbett-to-rajaji-reserve-dehradun/articleshow/108417305.cms>. Accessed on 04 January 2025.

van der Ree, R., J.A. Jaeger, E.A. van der Grift & A.P. Clevenger (2015). Effects of roads and traffic on wildlife populations and landscape function: Road ecology is moving toward larger scales. *Ecology and Society* 20(2): 1–15.

Mr. Jatishwor Singh Irungbam, Biology Centre CAS, Branišovská, Czech Republic.
Dr. Ian J. Kitching, Natural History Museum, Cromwell Road, UK
Dr. George Mathew, Kerala Forest Research Institute, Peechi, India
Dr. John Noyes, Natural History Museum, London, UK
Dr. Albert G. Orr, Griffith University, Nathan, Australia
Dr. Sameer Padhye, Katholieke Universiteit Leuven, Belgium
Dr. Nancy van der Poorten, Toronto, Canada
Dr. Karen Schnabel, NIWA, Wellington, New Zealand
Dr. R.M. Sharma, (Retd.) Scientist, Zoological Survey of India, Pune, India
Dr. Manju Siliwal, WILD, Coimbatore, Tamil Nadu, India
Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India
Dr. K.A. Subramanian, Zoological Survey of India, New Alipore, Kolkata, India
Dr. P.M. Sureshan, Zoological Survey of India, Kozhikode, Kerala, India
Dr. R. Varatharajan, Manipur University, Imphal, Manipur, India
Dr. Eduard Vives, Museu de Ciències Naturals de Barcelona, Terrassa, Spain
Dr. James Young, Hong Kong Lepidopterists' Society, Hong Kong
Dr. R. Sundararaj, Institute of Wood Science & Technology, Bengaluru, India
Dr. M. Nithyanandan, Environmental Department, La Al Kuwait Real Estate. Co. K.S.C., Kuwait
Dr. Himender Bharti, Punjabi University, Punjab, India
Mr. Purnendu Roy, London, UK
Dr. Saito Motoki, The Butterfly Society of Japan, Tokyo, Japan
Dr. Sanjay Sondhi, TITLI TRUST, Kalpavriksh, Dehradun, India
Dr. Nguyen Thi Phuong Lien, Vietnam Academy of Science and Technology, Hanoi, Vietnam
Dr. Nitin Kulkarni, Tropical Research Institute, Jabalpur, India
Dr. Robin Wen Jiang Ngiam, National Parks Board, Singapore
Dr. Lional Monod, Natural History Museum of Geneva, Genève, Switzerland.
Dr. Asheesh Shivam, Nehru Gram Bharti University, Allahabad, India
Dr. Rosana Moreira da Rocha, Universidade Federal do Paraná, Curitiba, Brasil
Dr. Kurt R. Arnold, North Dakota State University, Saxony, Germany
Dr. James M. Carpenter, American Museum of Natural History, New York, USA
Dr. David M. Claborn, Missouri State University, Springfield, USA
Dr. Karen Schnabel, Marine Biologist, Wellington, New Zealand
Dr. Amazonas Chagas Júnior, Universidade Federal de Mato Grosso, Cuiabá, Brasil
Mr. Monsoon Jyoti Gogoi, Assam University, Silchar, Assam, India
Dr. Heo Chong Chin, Universiti Teknologi MARA (UiTM), Selangor, Malaysia
Dr. R.J. Shiel, University of Adelaide, SA 5005, Australia
Dr. Siddharth Kulkarni, The George Washington University, Washington, USA
Dr. Priyadarshan Dharma Rajan, ATREE, Bengaluru, India
Dr. Phil Alderslade, CSIRO Marine And Atmospheric Research, Hobart, Australia
Dr. John E.N. Veron, Coral Reef Research, Townsville, Australia
Dr. Daniel Whitmore, State Museum of Natural History Stuttgart, Rosenstein, Germany.
Dr. Yu-Feng Hsu, National Taiwan Normal University, Taipei City, Taiwan
Dr. Keith V. Wolfe, Antioch, California, USA
Dr. Siddharth Kulkarni, The Hormiga Lab, The George Washington University, Washington, D.C., USA
Dr. Tomas Ditrich, Faculty of Education, University of South Bohemia in Ceske Budejovice, Czech Republic
Dr. Mihaly Foldvari, Natural History Museum, University of Oslo, Norway
Dr. V.P. Uniyal, Wildlife Institute of India, Dehradun, Uttarakhand 248001, India
Dr. John T.D. Caleb, Zoological Survey of India, Kolkata, West Bengal, India
Dr. Priyadarshan Dharma Rajan, Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Bangalore, Karnataka, India

Fishes

Dr. Topiltzin Contreras MacBeath, Universidad Autónoma del estado de Morelos, México
Dr. Heok Hee Ng, National University of Singapore, Science Drive, Singapore
Dr. Rajeev Raghavan, St. Albert's College, Kochi, Kerala, India
Dr. Robert D. Sluka, Chiltern Gateway Project, A Rocha UK, Southall, Middlesex, UK
Dr. E. Vivekanandan, Central Marine Fisheries Research Institute, Chennai, India
Dr. Davor Zanella, University of Zagreb, Zagreb, Croatia
Dr. A. Biju Kumar, University of Kerala, Thiruvananthapuram, Kerala, India
Dr. Akhilesh KV, ICAR-Central Marine Fisheries Research Institute, Mumbai Research Centre, Mumbai, Maharashtra, India
Dr. J.A. Johnson, Wildlife Institute of India, Dehradun, Uttarakhand, India
Dr. R. Ravinesh, Gujarat Institute of Desert Ecology, Gujarat, India

Amphibians

Dr. Sushil K. Dutta, Indian Institute of Science, Bengaluru, Karnataka, India
Dr. Annemarie Ohler, Muséum national d'Histoire naturelle, Paris, France

Reptiles

Dr. Gernot Vogel, Heidelberg, Germany
Dr. Raja Vyas, Vadodara, Gujarat, India
Dr. Pritpal S. Soorae, Environment Agency, Abu Dhabi, UAE.
Prof. Dr. Wayne J. Fuller, Near East University, Mersin, Turkey
Prof. Chandrashekher U. Rironker, Goa University, Taleigao Plateau, Goa, India
Dr. S.R. Ganesh, Chennai Snake Park, Chennai, Tamil Nadu, India
Dr. Himansu Sekhar Das, Terrestrial & Marine Biodiversity, Abu Dhabi, UAE

Journal of Threatened Taxa is indexed/abstracted in Bibliography of Systematic Mycology, Biological Abstracts, BIOSIS Previews, CAB Abstracts, EBSCO, Google Scholar, Index Copernicus, Index Fungorum, JournalSeek, National Academy of Agricultural Sciences, NewJour, OCLC WorldCat, SCOPUS, Stanford University Libraries, Virtual Library of Biology, Zoological Records.

NAAS rating (India) 5.64

Birds

Dr. Hem Sagar Baral, Charles Sturt University, NSW Australia
Mr. H. Biju, Coimbatore, Tamil Nadu, India
Dr. Chris Bowden, Royal Society for the Protection of Birds, Sandy, UK
Dr. Priya Davidar, Pondicherry University, Kalapet, Puducherry, India
Dr. J.W. Duckworth, IUCN SSC, Bath, UK
Dr. Rajah Jayopal, SACON, Coimbatore, Tamil Nadu, India
Dr. Rajiv S. Kalsi, M.L.N. College, Yamuna Nagar, Haryana, India
Dr. V. Santharam, Rishi Valley Education Centre, Chittoor Dt., Andhra Pradesh, India
Dr. S. Balachandran, Bombay Natural History Society, Mumbai, India
Mr. J. Praveen, Bengaluru, India
Dr. C. Srinivasulu, Osmania University, Hyderabad, India
Dr. K.S. Gopi Sundar, International Crane Foundation, Baraboo, USA
Dr. Gombobaatar Sundev, Professor of Ornithology, Ulaanbaatar, Mongolia
Prof. Reuven Yosef, International Birding & Research Centre, Eilat, Israel
Dr. Taej Mundkur, Wetlands International, Wageningen, The Netherlands
Dr. Carol Inskip, Bishop Auckland Co., Durham, UK
Dr. Tim Inskip, Bishop Auckland Co., Durham, UK
Dr. V. Gokula, National College, Tiruchirappalli, Tamil Nadu, India
Dr. Arkady Lelej, Russian Academy of Sciences, Vladivostok, Russia
Dr. Simon Dowell, Science Director, Chester Zoo, UK
Dr. Mário Gabriel Santiago dos Santos, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, Vila Real, Portugal
Dr. Grant Connette, Smithsonian Institution, Royal, VA, USA
Dr. P.A. Azeez, Coimbatore, Tamil Nadu, India

Mammals

Dr. Giovanni Amori, CNR - Institute of Ecosystem Studies, Rome, Italy
Dr. Anwaruddin Chowdhury, Guwahati, India
Dr. David Mallon, Zoological Society of London, UK
Dr. Shomita Mukherjee, SACON, Coimbatore, Tamil Nadu, India
Dr. Angie Appel, Wild Cat Network, Germany
Dr. P.O. Nameer, Kerala Agricultural University, Thrissur, Kerala, India
Dr. Ian Redmond, UNEP Convention on Migratory Species, Lansdown, UK
Dr. Heidi S. Riddle, Riddle's Elephant and Wildlife Sanctuary, Arkansas, USA
Dr. Karin Schwartz, George Mason University, Fairfax, Virginia.
Dr. Lala A.K. Singh, Bhubaneswar, Orissa, India
Dr. Mewa Singh, Mysore University, Mysore, India
Dr. Paul Racey, University of Exeter, Devon, UK
Dr. Honnavalli N. Kumara, SACON, Anaikatty P.O., Coimbatore, Tamil Nadu, India
Dr. Nishith Dharaiya, HNG University, Patan, Gujarat, India
Dr. Spartaco Gippoliti, Socio Onorario Società Italiana per la Storia della Fauna "Giuseppe Altobello", Rome, Italy
Dr. Justus Joshua, Green Future Foundation, Tiruchirappalli, Tamil Nadu, India
Dr. H. Raghuram, The American College, Madurai, Tamil Nadu, India
Dr. Paul Bates, Harison Institute, Kent, UK
Dr. Jim Sanderson, Small Wild Cat Conservation Foundation, Hartford, USA
Dr. Dan Challender, University of Kent, Canterbury, UK
Dr. David Mallon, Manchester Metropolitan University, Derbyshire, UK
Dr. Brian L. Cypher, California State University-Stanislaus, Bakersfield, CA
Dr. S.S. Talmale, Zoological Survey of India, Pune, Maharashtra, India
Prof. Karan Bahadur Shah, Budhanilkantha Municipality, Kathmandu, Nepal
Dr. Susan Cheyne, Borneo Nature Foundation International, Palangkaraya, Indonesia
Dr. Hemanta Kafley, Wildlife Sciences, Tarleton State University, Texas, USA

Other Disciplines

Dr. Aniruddha Belsare, Columbia MO 65203, USA (Veterinary)
Dr. Mandar S. Paingankar, University of Pune, Pune, Maharashtra, India (Molecular)
Dr. Jack Tordoff, Critical Ecosystem Partnership Fund, Arlington, USA (Communities)
Dr. Ulrike Streicher, University of Oregon, Eugene, USA (Veterinary)
Dr. Hari Balasubramanian, EcoAdvisors, Nova Scotia, Canada (Communities)
Dr. Rayanna Helleni Santos Bezerra, Universidade Federal de Sergipe, São Cristóvão, Brazil
Dr. Jamie R. Wood, Landcare Research, Canterbury, New Zealand
Dr. Wendy Collinson-Jonker, Endangered Wildlife Trust, Gauteng, South Africa
Dr. Rajeshkumar G. Jani, Anand Agricultural University, Anand, Gujarat, India
Dr. O.N. Tiwari, Senior Scientist, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
Dr. L.D. Singla, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
Dr. Rupika S. Rajakaruna, University of Peradeniya, Peradeniya, Sri Lanka
Dr. Bharat Baviskar, Wild-CER, Nagpur, Maharashtra 440013, India

Reviewers 2021–2023

Due to paucity of space, the list of reviewers for 2021–2023 is available online.

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.

Print copies of the Journal are available at cost. Write to:
The Managing Editor, JoTT,
c/o Wildlife Information Liaison Development Society,
3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore,
Tamil Nadu 641006, India
ravi@threatenedtaxa.org & ravi@zooreach.org

Articles

Biodiversity in Garh Panchkot and surroundings (Purulia, West Bengal) of residential and migratory land vertebrates with special reference to endangered species

– Amrita Panja, Biplab Kahar & Sujoy Chattaraj, Pp. 26763–26779

Evaluating wildlife activity and corridor functionality: a study of underpasses in and around Rajaji National Park, India

– Nishant Verma, Saket Badola & Samrat Mondol, Pp. 26780–26788

Avifaunal diversity and conservation status of waterbirds in Pillaimadam Lagoon, Palk Bay, India

– H. Byju, H. Maitreyi, N. Raveendran, S. Ravichandran & Reshma Vijayan, Pp. 26789–26802

Comments on the systematics and morphology of *Smithophis bicolor* (Blyth, 1855) (Reptilia: Squamata: Natricidae) based on topotypical specimens from Meghalaya, India

– Jayaditya Purkayastha, Bipin Meetei Asem, Hmar Tlawmte Lalremsanga, Madhurima Das, Holiness Warjri, Goldenstar Thongni & Sanath Chandra Bohra, Pp. 26803–26813

Diversity and distribution of fish in rivers Chinnar and Thenar and their tributary, southern Western Ghats, Tamil Nadu, India

– K. Mahesh Kumar, T. Ajayla Karthika & K. Anvar, Pp. 26814–26823

Diversity and habitat preferences of butterflies (Insecta: Lepidoptera) in Dzongu, Mangan, Sikkim, India

– Sonam Wangchuk Lepcha & Monish Kumar Thapa, Pp. 26824–26849

Seasonal study on succession of forensically significant entomofauna under indoor environment in Punjab, India

– Pawandeep Kaur & Madhu Bala, Pp. 26850–26856

Communications

First photographic record of ferret badger *Melogale* sp. (Mammalia: Carnivora: Mustelidae) from the state of Tripura, India

– Omkar Patil, Ashutosh Joshi & Amey Parkar, Pp. 26857–26863

An update on the status of some Data Deficient bat species from India

– Uttam Saikia, Manuel Ruedi & Rohit Chakravarty, Pp. 26864–26871

Distribution, perception, and conservation challenges of endemic Madras Hedgehog *Paraechinus nudiventris* in Tenkasi District, Tamil Nadu: insights from questionnaire surveys

– Brawin Kumar & Abinash Muthaiyan, Pp. 26872–26878

Notes on the interesting species *Tacca leontopetaloides* (L.) Kuntze

– Sk. Md. Abu Imam Saadi, Mehebub Sarwar Hossain, Debasis Bhunia, Sk. Rasidul Islam, Sayantan Tripathi, Sanjit Sinha & Amal Kumar Mondal, Pp. 26879–26886

Extended distribution of the rare basidiolichen *Sulzbacheromyces yunnanensis* (Lichenized Basidiomycota) from Mizoram, India

– V.L. Thachunglura, Prabhat Kumar Rai, Zohmangaiha Chawngthu, Lallawmkima Bochung, P.C. Vanlalhluna & John Zothanzama, Pp. 26887–26892

Short Communications

First photographic record of a Leopard Cat *Prionailurus bengalensis* (Kerr, 1792) (Mammalia: Carnivora: Felidae) in central India

– Prabhu Nath Shukla, Bilal Habib, Virendra Kumar Mishra, Sumedh Lomesh Bobade, Eshaan Chaitanya Rao & Kanishka, Pp. 26893–26897

New record of Mysore Slender Loris *Loris lydekkerianus* near Puducherry, India

– Shanmugam Mani, P. Aravind Aathi, K. Sivakumar, Aurosyalle Bystrom & D. Saravanan, Pp. 26898–26902

The brachypterous endemic genus *Ardistomopsis* (Coleoptera: Carabidae: Panagaeinae) of the Indian subcontinent: first report of *Ardistomopsis batesi* Straneo & Ball, 1989 and *Ardistomopsis marginicollis* (Schaum, 1864) (Coleoptera: Carabidae: Panagaeinae) from the Western Ghats and the biogeographical significance

– V.A. Jithmon, M. Divya & Thomas K. Sabu, Pp. 26903–26907

First report of *Jauravia assamensis* Kapur, 1961 (Coleoptera: Coccinellidae) from West Bengal, India

– Tamoghno Majumder, Aloy Adak & Kusal Roy, Pp. 26908–26911

First record of *Hycleus marcipoli* Pan & Bologna, 2014 (Coleoptera: Meloidae) as a pest of Common Beans in Kashmir Himalaya, India

– Farhana Shafi & Altaf Hussain Mir, Pp. 26912–26916

Sonerila bababudangiriensis (Melastomataceae), a new species of herb from the Western Ghats of India

– Prashant Karadakatti & Siddappa B. Kakkalamei, Pp. 26917–26922

Rediscovery of *Phallus aurantiacus* Mont. from India and new distribution record from Odisha, India

– Malay Prithwiraj Sahoo, Supriya Sahu, Samarendra Narayan Mallick, Prabhat Kumar Das, Yasaswinee Rout, Subrat Dalabhera, Sitaram Prasad Panda & Vinaykumar Hallur, Pp. 26923–26927

Occurrence of a rare desmid *Tetmemorus laevis* Ralfs ex Ralfs from Yumthang Valley, northern Sikkim with a note on the genus in India

– Debjyoti Das, Jay Mal & Jai Prakash Keshri, Pp. 26928–26931

Notes

Ophiorrhiza japonica Blume (Rubiaceae): a new record for India

– Ngasheppam Malemnganbi Chanu, Peimichon Langkan, Thongam Nourenpai Khanganba & Thongam Biseshwori, Pp. 26932–26935

Isodon neorensis Ranjan, G. Krishna & Anant Kumar (Lamiaceae): a new record for Sikkim Himalaya, India

– Pramod Rai, Pp. 26936–26938

Publisher & Host

Threatened Taxa