

Building evidence for conservation globally

Journal of Threatened TAXA

10.11609/jott.2025.17.10.27551-27786

www.threatenedtaxa.org

26 October 2025 (Online & Print)

17(10): 27551-27786

ISSN 0974-7907 (Online)

ISSN 0974-7893 (Print)

Open Access

Publisher

Wildlife Information Liaison Development Societywww.wild.zooreach.org

Host

Zoo Outreach Organizationwww.zooreach.org

Srivari Illam, No. 61, Karthik Nagar, 10th Street, Saravanampatti, Coimbatore, Tamil Nadu 641035, India
Registered Office: 3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore, Tamil Nadu 641006, India
Ph: +91 9385339863 | www.threatenedtaxa.org
Email: sanjay@threatenedtaxa.org

EDITORS

Founder & Chief Editor

Dr. Sanjay Molur

Wildlife Information Liaison Development (WILD) Society & Zoo Outreach Organization (ZOO), Coimbatore, Tamil Nadu 641006, India

Assistant Editor

Dr. Chaithra Shree J., WILD/ZOO, Coimbatore, Tamil Nadu 641006, India

Managing Editor

Mr. B. Ravichandran, WILD/ZOO, Coimbatore, Tamil Nadu 641006, India

Associate Editors

Dr. Mandar Paingankar, Government Science College Gadchiroli, Maharashtra 442605, India**Dr. Ulrike Streicher**, Wildlife Veterinarian, Eugene, Oregon, USA**Ms. Priyanka Iyer**, ZOO/WILD, Coimbatore, Tamil Nadu 641006, India

Board of Editors

Dr. Russel Mittermeier

Executive Vice Chair, Conservation International, Arlington, Virginia 22202, USA

Prof. Mewa Singh Ph.D., FASc, FNA, FNAsc, FNAPsy

Ramanna Fellow and Life-Long Distinguished Professor, Biopsychology Laboratory, and Institute of Excellence, University of Mysore, Mysuru, Karnataka 570006, India; Honorary Professor, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore; and Adjunct Professor, National Institute of Advanced Studies, Bangalore

Stephen D. Nash

Scientific Illustrator, Conservation International, Dept. of Anatomical Sciences, Health Sciences Center, T-8, Room 045, Stony Brook University, Stony Brook, NY 11794-8081, USA

Dr. Fred Pluthero

Toronto, Canada

Dr. Priya Davidar

Sigur Nature Trust, Chadapatti, Mavinhalla PO, Nilgiris, Tamil Nadu 643223, India

Dr. John Fellowes

Honorary Assistant Professor, The Kadoorie Institute, 8/F, T.T. Tsui Building, The University of Hong Kong, Pokfulam Road, Hong Kong

Prof. Dr. Mirco Solé

Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Vice-coordenador do Programa de Pós-Graduação em Zoologia, Rodovia Ilhéus/Itabuna, Km 16 (45662-000) Salobrinho, Ilhéus - Bahia - Brasil

Dr. Rajeev Raghavan

Professor of Taxonomy, Kerala University of Fisheries & Ocean Studies, Kochi, Kerala, India

English Editors**Mrs. Mira Bhojwani**, Pune, India**Dr. Fred Pluthero**, Toronto, Canada**Copy Editors****Ms. Usha Madgunki**, Zooreach, Coimbatore, India**Ms. Trisa Bhattacharjee**, Zooreach. Coimbatore, India**Ms. Paloma Noronha**, Daman & Diu, India**Web Development****Mrs. Latha G. Ravikumar**, ZOO/WILD, Coimbatore, India**Typesetting****Mrs. Radhika**, Zooreach, Coimbatore, India**Mrs. Geetha**, Zooreach, Coimbatore India**Fundraising/Communications****Mrs. Payal B. Molur**, Coimbatore, India**Subject Editors 2021–2023****Fungi****Dr. B. Shivaraju**, Bengaluru, Karnataka, India**Dr. R.K. Verma**, Tropical Forest Research Institute, Jabalpur, India**Dr. Vatsavaya S. Raju**, Kakatiya University, Warangal, Andhra Pradesh, India**Dr. M. Krishnappa**, Jnana Sahyadri, Kuvenpu University, Shimoga, Karnataka, India**Dr. K.R. Sridhar**, Mangalore University, Mangalagangotri, Mangalore, Karnataka, India**Dr. Gunjan Biswas**, Vidyasagar University, Midnapore, West Bengal, India**Dr. Kiran Ramchandra Ranadive**, Annaheb Magar Mahavidyalaya, Maharashtra, India**Plants****Dr. G.P. Sinha**, Botanical Survey of India, Allahabad, India**Dr. N.P. Balakrishnan**, Ret. Joint Director, BSI, Coimbatore, India**Dr. Shonil Bhagwat**, Open University and University of Oxford, UK**Prof. D.J. Bhat**, Retd. Professor, Goa University, Goa, India**Dr. Ferdinand Boero**, Università del Salento, Lecce, Italy**Dr. Dale R. Calder**, Royal Ontario Museum, Toronto, Ontario, Canada**Dr. Cleofas Cervancia**, Univ. of Philippines Los Baños College Laguna, Philippines**Dr. F.B. Vincent Florens**, University of Mauritius, Mauritius**Dr. Merlin Franco**, Curtin University, Malaysia**Dr. V. Irudayaraj**, St. Xavier's College, Palayamkottai, Tamil Nadu, India**Dr. B.S. Kholia**, Botanical Survey of India, Gangtok, Sikkim, India**Dr. Pankaj Kumar**, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, USA**Dr. V. Sampath Kumar**, Botanical Survey of India, Howrah, West Bengal, India**Dr. A.J. Solomon Raju**, Andhra University, Visakhapatnam, India**Dr. Vijayasankar Raman**, University of Mississippi, USA**Dr. B. Ravi Prasad Rao**, Sri Krishnadevaraya University, Anantapur, India**Dr. K. Ravikumar**, FRLHT, Bengaluru, Karnataka, India**Dr. Aparna Watve**, Pune, Maharashtra, India**Dr. Qiang Liu**, Xishuangbanna Tropical Botanical Garden, Yunnan, China**Dr. Noor Azhar Mohamed Shazili**, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia**Dr. M.K. Vasudeva Rao**, Shiv Ranjan Housing Society, Pune, Maharashtra, India**Prof. A.J. Solomon Raju**, Andhra University, Visakhapatnam, India**Dr. Manda Datar**, Agharkar Research Institute, Pune, Maharashtra, India**Dr. M.K. Janarthanam**, Goa University, Goa, India**Dr. K. Karthigeyan**, Botanical Survey of India, India**Dr. Errol Vela**, University of Montpellier, Montpellier, France**Dr. P. Lakshminarasiham**, Botanical Survey of India, Howrah, India**Dr. Larry R. Noblick**, Montgomery Botanical Center, Miami, USA**Dr. K. Haridasan**, Pallavur, Palakkad District, Kerala, India**Dr. Analinda Manila-Fajard**, University of the Philippines Los Banos, Laguna, Philippines**Dr. P.A. Siru**, Central University of Kerala, Kasaragod, Kerala, India**Dr. Afroz Alam**, Banasthali Vidyapith (accredited A grade by NAAC), Rajasthan, India**Dr. K.P. Rajesh**, Zamorin's Guruvayurappan College, GA College PO, Kozhikode, Kerala, India**Dr. David E. Boufford**, Harvard University Herbaria, Cambridge, MA 02138-2020, USA**Dr. Ritesh Kumar Choudhary**, Agharkar Research Institute, Pune, Maharashtra, India**Dr. A.G. Pandurangan**, Thiruvananthapuram, Kerala, India**Dr. Navendu Page**, Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India**Dr. Kannan C.S. Warrier**, Institute of Forest Genetics and Tree Breeding, Tamil Nadu, India**Invertebrates****Dr. R.K. Avasthi**, Rohtak University, Haryana, India**Dr. D.B. Bastawade**, Maharashtra, India**Dr. Partha Pratim Bhattacharjee**, Tripura University, Suryamaninagar, India**Dr. Kailash Chandra**, Zoological Survey of India, Jabalpur, Madhya Pradesh, India**Dr. Ansie Dippenaar-Schoeman**, University of Pretoria, Queenswood, South Africa**Dr. Rory Dow**, National Museum of natural History Naturalis, The Netherlands**Dr. Brian Fisher**, California Academy of Sciences, USA**Dr. Richard Gallon**, Ilandudno, North Wales, LL30 1UP**Dr. Hemant V. Ghate**, Modern College, Pune, India**Dr. M. Monwar Hossain**, Jahangirnagar University, Dhaka, BangladeshFor Focus, Scope, Aims, and Policies, visit https://threatenedtaxa.org/index.php/JoTT/aims_scopeFor Article Submission Guidelines, visit <https://threatenedtaxa.org/index.php/JoTT/about/submissions>For Policies against Scientific Misconduct, visit https://threatenedtaxa.org/index.php/JoTT/policies_various

continued on the back inside cover

Cover: A Warty Hammer Orchid *Drakaea livida* gets pollinated by a male thynnine wasp through 'sexual deception' — a colour pencil reproduction of photos by ron_n_beths (flickr.com) and Rod Peakall; Water colour reproduction of Flame Lily *Gloriosa superba* — photo by Passakoran_14; and a bag worm and its architectural genius (source unknown). Art work by Pannagarsri G.

The impact of anthropogenic activities on *Manis javanica* Desmarest, 1822 (Mammalia: Pholidota: Manidae) in Sepanggar Hill, Malaysia

Nurasyiqin Awang Shairi¹ , Julius Kodoh² , Normah Binti Awang Besar³ & Jephthe Sompud⁴

¹⁻⁴ Faculty of Tropical Forestry, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia.

¹nasyiqin8@gmail.com, ²julius@ums.edu.my, ³normabr@ums.edu.my, ⁴jephthe@ums.edu.my (corresponding author)

Abstract: The Sunda Pangolin, also known as *Manis javanica* Desmarest, 1822 (Pholidota: Manidae), is the only pangolin species found in Malaysia. This species is 'Critically Endangered' as per the IUCN Red List of Threatened Species and is among the most heavily trafficked mammals globally. Anthropogenic activities such as residential development and frequent human movement near forest edges have increasingly threatened the safety of the Sunda Pangolin. These activities not only lead to habitat fragmentation but also expose wildlife to elevated noise levels and human disturbances due to the proximity of settlements. Therefore, this study aims to determine the impact of anthropogenic activities that influences the distribution of Sunda Pangolins in Sepanggar Hill using camera trap survey method. Ten camera traps were set up in a systematic random design from May 2023–January 2024. The distances of nearest human settlements from the camera traps and anthropogenic noise level were also measured. The data from the camera traps and the anthropogenic noise level were collected every month. Over 2,724 trapping nights, camera traps captured five pangolin events. The Pearson correlation shows very weak correlations (-0.24 - 0.32) on the correlation of Sunda Pangolin presence and the proximity to the human settlements based on 2,741 data points. Despite high noise levels ranging 44.3 – 57.0 dB, Sunda Pangolins were detected more frequently near the first camera trap ($N = 348$, $r = 0.147$, $p = 0.006^{**}$), an area with the highest anthropogenic noise, indicating a degree of noise tolerance. These findings highlight the adaptability of Sunda Pangolins to disturbed habitats as long as they do not feel threatened, but also underscore the necessity for targeted conservation efforts to mitigate more areas. Preserving quieter environments and reducing human impact is critical to ensure the survival of Sunda Pangolins in Sepanggar Hill. This research provides valuable insights for developing effective conservation strategies to protect this Critically Endangered species.

Keywords: Activity pattern, adaptability, camera trap, Critically Endangered, human impact, human presence, human proximity, noise level, Sunda Pangolin.

Editor: L.A.K. Singh, Bhubaneswar, Odisha, India.

Date of publication: 26 October 2025 (online & print)

Citation: Shairi, N.A., J. Kodoh, N.B.A. Besar & J. Sompud (2025). The impact of anthropogenic activities on *Manis javanica* Desmarest, 1822 (Mammalia: Pholidota: Manidae) in Sepanggar Hill, Malaysia. *Journal of Threatened Taxa* 17(10): 27563–27575. <https://doi.org/10.11609/jott.9617.17.10.27563-27575>

Copyright: © Shairi et al. 2025. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: Universiti Malaysia Sabah and the Pangolin Consortium.

Competing interests: The authors declare no competing interests.

Malay abstract: See end of this article.

Author details: NURASYIQIN AWANG SHAIRI is a postgraduate (master's) student at the Faculty of Tropical Forestry, Universiti Malaysia Sabah. Her research focuses on the ecology and behavior of the Sunda Pangolin (*Manis javanica*) using camera-trap methods, emphasizing human–wildlife interaction and conservation in urban forest landscapes. JULIUS KODOH is a senior lecturer at the Faculty of Tropical Forestry, Universiti Malaysia Sabah. He teaches forest plantations and silvicultural practices, with research interests in forest ecology, wildlife management, and biodiversity assessment for sustainable forest conservation. NORMAH BINTI AWANG BESAR is the dean of the faculty of Tropical Forestry, Universiti Malaysia Sabah, and Head of the Living Laboratory (SFERA@UMS) where the Sunda Pangolin population is found. Her expertise is in forest soil science and sustainable management of tropical forest ecosystems. JEPHTE SOMPUD is a senior lecturer at the faculty of Tropical Forestry, Universiti Malaysia Sabah. He leads the Pangolin Research Group at UMS, conducting multidisciplinary research on wildlife ecology and conservation, particularly the critically endangered Sunda Pangolin in urban forest ecosystems.

Author contributions: NAS: Led field data collection and prepared the initial draft of the manuscript. JK: co-supervised and contributed to critical manuscript revision and refinement of the text. NbAB: Provided administrative coordination and strategic oversight throughout the project. JS: Conceptualized the study design and supervised academics as well as all fieldwork activities.

Acknowledgments: This study was funded by UMSGreat GUG0611-1/2023, Universiti Malaysia Sabah Research Grant SBK0424, and the Pangolin Consortium. We would like to express our gratitude to the Sabah Biodiversity Council (SaBC) for granting the necessary permits (JKM/MBS.1000-2/13JLD.265). Special thanks to the fieldwork team for their invaluable assistance during data collection. We also extend our profound thanks to the reviewers whose insights and feedback significantly enhanced this manuscript.

UMS
UNIVERSITI MALAYSIA SABAH

INTRODUCTION

Sabah, on the island of Borneo, supports high biodiversity, and is home to key wildlife species essential for ecosystem function, including the Clouded Leopard *Neofelis diardi*, Bornean Tembadau *Bos javanicus lowi*, Bornean Pygmy Elephant *Elephas maximus borneensis*, and Sunda Pangolin *Manis javanica* (Hearn et al. 2019; Sompud et al. 2022, 2023; Hiew et al. 2023). These species contribute significantly to habitat stability and ecological processes. Their persistence is increasingly threatened by habitat loss, poaching, and illegal trade, which collectively undermine regional biodiversity (Sompud et al. 2019; Giordano et al. 2023).

The Sunda Pangolin *Manis javanica* (Desmarest, 1822, Pholidota: Manidae) (Image 1), also known as the Malayan or Javan Pangolin, is a species of pangolin native to southeastern Asia. These solitary and nocturnal mammals are primarily found in various habitats, including tropical forests, subtropical forests, grasslands, and agricultural areas. Sunda Pangolins are adept climbers, often dwelling in trees, and utilizing their strong, curved claws to forage for ants, and termites (Chong et al. 2020). They play a crucial role in the ecosystems by controlling insect populations (Lim & Ng 2008; Sompud et al. 2019).

Despite their ecological importance, Sunda Pangolins are Critically Endangered due to severe threats from illegal wildlife trade and habitat destruction (Challender et al. 2019). They are among the most heavily trafficked mammals globally, driven by high demand for their scales, and meat (Challender et al. 2015; Aisher 2016; Nash et al. 2018). In Peninsular Malaysia, the Sunda Pangolin is protected under the Wildlife Protection Act No. 72 of 1972 (Sing & Pantel 2009). Meanwhile, in Sabah, the Sunda Pangolin is listed as a protected animal species, in Part I of Schedule 2 of the State's Wildlife Conservation Enactment 1997 (Pantel & Anak 2010). Internationally, it is listed in Appendix I of the Convention on International Trade in Endangered Species (CITES). Despite these legal protections, Sunda Pangolins continue to be captured, and illegally traded across southeastern Asia, including in Malaysia (Ariffin & Nan 2018). The scales are highly valued in traditional medicine, particularly in China, and Vietnam, for their alleged health benefits (Cheng et al. 2017). Additionally, pangolin meat is considered a delicacy in some cultures (Duckworth et al. 2008). The relentless poaching and habitat loss have pushed the Sunda Pangolin to the brink of extinction, necessitating urgent global conservation, and law enforcement efforts to combat the illicit trade, and protect the species.

The relationship between Sunda Pangolins and humans is fraught with challenges. Conservation of the Sunda Pangolin is hindered by differing levels of awareness and participation across community groups (Nash et al. 2020; Jones et al. 2023). Human encroachment on their habitats through deforestation and agricultural expansion displaces pangolins, leading to increased contact with human settlements. This often results in pangolins being accidentally caught in traps set for other animals, which subsequently increases poaching rates. Although previous studies suggest that Sunda Pangolins can tolerate some level of human presence (Chong et al 2020; Withaningsih et al. 2021; Nursamsi et al. 2023), their ability to survive in areas affected by people largely depends on the type and intensity of the activities, less harmful actions like research or hiking may not disturb them, while more damaging activities like logging, and land clearing can seriously impact their chances of living in those areas. Human encroachment, especially when involving habitat modification such as felling trees or agricultural expansion, can disrupt pangolin behavior, diminish food source, and reduce habitat quality (Panjang 2015; Chao et al. 2020). Furthermore, Subba et al. (2024) stated that urban expansion results in habitat fragmentation, negatively affecting pangolin occupancy rates due to increased human disturbance.

Hence, studying the impact of human activities on the Sunda Pangolin is crucial for several reasons. Firstly, it helps in understanding how human activities influence pangolin behaviour and resource access, which can inform effective conservation strategies (Bhandari et al. 2025; Chen et al. 2025). Secondly, such research can identify critical habitats needing protection to ensure the

Image 1. Sunda Pangolin *Manis javanica*. © Sompud, J., 2025.

survival of this endangered species by pinpointing areas most affected by human activities (Camaclang et al. 2015; Peters et al. 2023). Thirdly, investigating these dynamics offer insights into human-wildlife negative interactions, guiding strategies to benefit both local communities, and wildlife (Sompud et al. 2023). Addressing the impact of human activities such as logging and forest degradation requires comprehensive, long-term approaches that go beyond ecological research. These include preserving remaining natural habitats, enforcing wildlife protection laws more effectively, and engaging local communities through education to reduce demand for pangolin products, and increase awareness of the species' Critically Endangered status.

The objectives of this study are to assess the impact of anthropogenic activities that influences the distribution of Sunda Pangolin. These anthropogenic activities were measured based on the anthropogenic proximity, anthropogenic activity patterns, and anthropogenic noise in Sepanggar Hill. As such these are the specific objectives; 1) to assess the distribution of Sunda Pangolins in Sepanggar Hill, 2) to determine how human presence influences pangolin distribution in Sepanggar Hill, 3) to determine the correlation between the proximity to human settlements and the presence of the Sunda Pangolin, 4) to determine the correlation between anthropogenic noise levels and the presence of the Sunda Pangolin, and 5) to determine the activity pattern of human and Sunda Pangolins.

This study hypothesizes that Sunda Pangolins exhibit a positive response to certain aspects of human presence, particularly in areas where direct threats such as hunting are absent or minimal. It is proposed that Sunda Pangolins may be more frequently detected near human settlements or infrastructure due to indirect benefits such as reduced presence of natural predators, increased availability of food sources like termites associated with human-modified environments, or the presence of secondary vegetation that provides suitable cover. Furthermore, in areas with consistent and non-threatening human activity, Sunda Pangolins may become habituated and show reduced avoidance behaviour, allowing them to utilize edge habitats, and anthropogenic landscapes more freely. This suggests that under specific conditions, human-modified environments may offer ecological opportunities that Sunda Pangolins can exploit, indicating a level of behavioural flexibility, and potential for coexistence with humans in low-risk environments.

MATERIALS AND METHODS

Study Area

The study area is located in Sepanggar Hill, Universiti Malaysia Sabah (UMS), commonly known as UMS forest (Figure 1). This area includes Sustainable Forest and Research Area at Universiti Malaysia Sabah (SFERA@UMS), a 0.25 km² of land that has been set aside as a forest reserve by the UMS management to be utilized for forest research and education development (The Borneo Post 2022). It is located northwest of the campus with coordinates of 6.037° N and 116.115° E. Sepanggar Hill is a 2.2 km² secondary forest with its tallest peak at 190 m (Majuakim et al. 2018). The terrain varies from flat to hilly with some steep slopes. The land cover within the study area primarily consists of secondary forested habitats, although certain parts have been cleared, and are currently used as agricultural land. Notably, UMS protected and managed a small area for conservation, and research purposes (SFERA@UMS), while the other half is classified as state land, which lacks formal protection for biodiversity. This site was chosen because Sunda Pangolins were first found here in 2023, with no research done on their ecology (Sompud et al. 2023).

Methodology

The study employs a combination of camera trap surveys, decibel meters, and geographical tools to investigate the impact of anthropogenic activities on Sunda Pangolins. Camera traps are utilized to monitor and record the presence of both humans and Sunda Pangolins at each camera trap stations, providing data on their frequency of occurrence. To assess anthropogenic noise level, a decibel meter was used to measure the level of anthropogenic noise at the camera trap stations. Additionally, Google Maps was employed to calculate the distances between human settlements, and the camera trap locations, offering insights into how proximity to human activity influences pangolin behaviour.

Camera Trap Survey

The camera trap survey was conducted over eight months, from 17 May 2023–28 January 2024. The plot size was 300 x 300 m to maximize coverage by the camera traps. Each plot included a camera trap station with one camera trap. Stations were selected using a systematic random design (Stehman et al. 1992). The selection criteria for camera trap locations were based on ecological features known to attract *Manis javanica*, such as wildlife trails (Image 2), termite mounds (Image 3), and areas with dead trees (Image 4) (Simo et al.

2023). Each station was chosen to represent a range of microhabitats across the study area, ensuring varied terrain coverage. The consistency in habitat type was maintained by positioning camera traps within the secondary forest, avoiding areas with dense undergrowth that might obscure the field of view.

Upon determining the optimal position, each camera trap, equipped with an infrared sensor, was

affixed to the base of a tree, positioned approximately 20–40 cm above ground level using a belt (Image 5). Placement adjustments were made based on topographical considerations, ensuring an appropriate camera angle (Ancrenaz et al. 2012). Following setup, batteries, and a memory card were inserted, and a walk test was conducted to confirm the camera's coverage of the selected areas. Camera trap data were collected

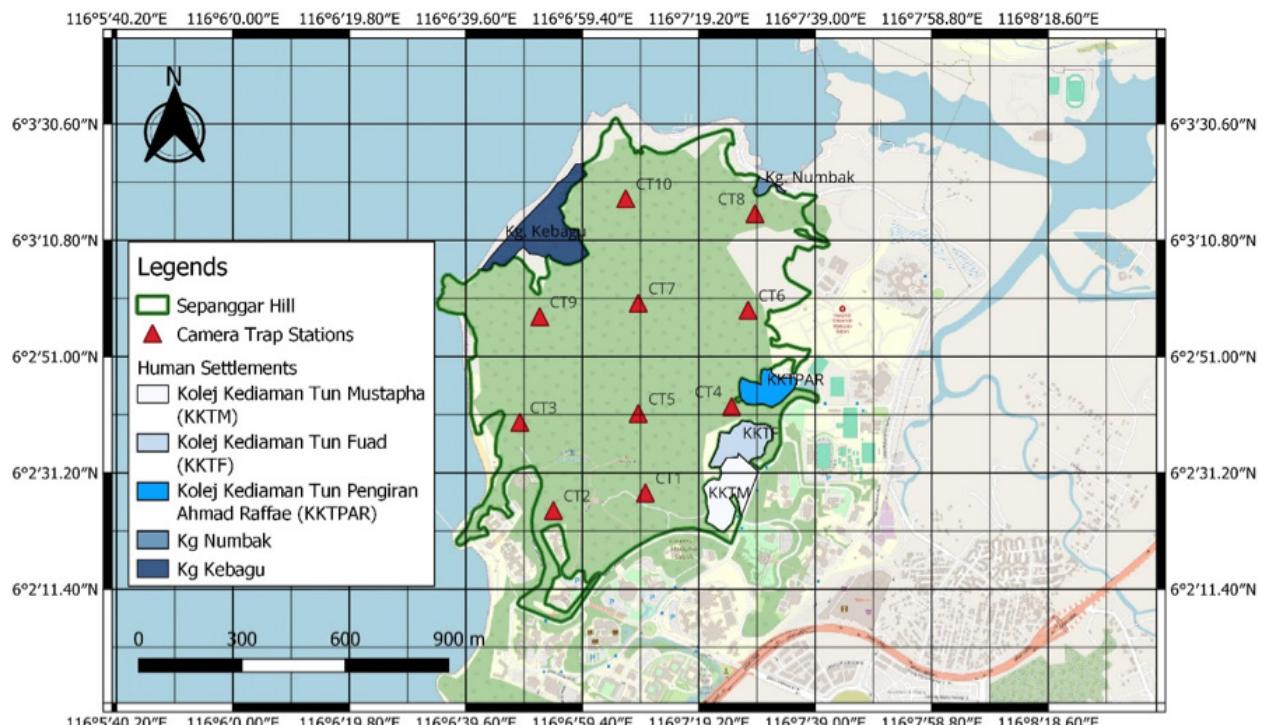


Figure 1. Map of the location of camera traps in Sepanggar Hill.

Image 2. Wildlife trail that was chosen for CT3. © UMS, 2023.

Image 3. Termite mound that was chosen for CT1. © UMS, 2023.

Image 4. Dead trees that was chosen for CT7. © UMS, 2023.

Image 5. Installing camera trap in CT1. © Shairi, N.A., 2023.

on a monthly basis, including battery replacement. The camera traps were set to capture images instead of videos because video files are much larger, which would have filled up the memory quickly, and reduced the amount of data that could be collected. The captured images were analyzed to detect the presence of Sunda Pangolins and humans. Additionally, the images obtained from the camera traps were utilized to assess the activity patterns of both humans and the pangolins by recording the number of human and pangolin events captured by the camera traps hourly.

Measuring distances between camera trap locations and the nearest human settlements

The distances from each camera trap station to the nearest human settlement were measured using Google Maps, based on straight-line (Euclidean) distance from the center point of each settlement to the exact GPS coordinates of each camera trap location (Trianni et al. 2014). For consistency, the nearest house or structure from each settlement to the study area was selected as the reference point. This approach was used to reflect the point of first human presence closest to the forest edge, which is more relevant to the Sunda Pangolin's sensitivity to human disturbance. While this method does not account for the full spatial extent of each settlement, it provides a standardized, and ecologically relevant measure of the nearest point of human activity to the study area. Five closest settlements were chosen: Kolej Kediaman Tun Mustapha (KKTM), Kolej Kediaman Tun Fuad (KKTF), Kolej Kediaman Tun Pengiran Ahmad Raffae (KKTPAR), Kg. Numbak, and Kg. Kebagu (Figure 1). The total number of UMS residents in the KKTM, KKTF, and KKTPAR are 1,600, 1,400, and 3,000 students, respectively (Universiti Malaysia Sabah, 2015). Meanwhile, the total number of humans resides in Kg. Numbak and Kg. Kebagu were estimated to be 600 and 300 people, respectively (Alim pers. comm. 24.xi.2023; Abniti pers. comm. 20.viii.2024).

Measuring anthropogenic noise levels

Anthropogenic noise levels were measured manually using a calibrated decibel meter model of SL-5868P from May 2023–April 2024 (Akpan & Obisung 2022). The decibel meter was calibrated before each field deployment to ensure accurate sound level readings. Calibration was conducted using a standard sound level calibrator set at 94 dB at 1 kHz. This process allowed for consistent baseline measurements across different collection periods.

Sound readings were taken during times of minimal wind activity to limit external interference. Furthermore, the noise level was only taken during the day because the noise levels at night are much lower than during daytime due to less noise pollution at night (Anomohanran & Osemeikhian 2006). For example, the calls for prayers can only be heard once at night, compared to the day, and there are fewer cars, and buses at night. Vegetation density was accounted for by positioning the decibel meter in open clearings near the camera trap stations to prevent absorption or reflection effects from dense foliage. Readings were conducted at approximately ear height to standardize the measurement environment

and mitigate sound propagation issues related to variable terrain and vegetation (Alademomi et al. 2020). This data was meticulously recorded and entered into an Excel spreadsheet for further analysis.

DATA ANALYSIS

Distribution of the Sunda Pangolin in Sepanggar Hill

For the first objective, the data collected from the camera traps were meticulously organized in an Excel spreadsheet. This spreadsheet included detailed information such as the camera trap stations, dates, times, locations, the number of Sunda Pangolin events, the number of human events, and the image titles. A descriptive analysis was conducted to map the distribution of Sunda Pangolins within Sepanggar Hill. Each plot where Sunda Pangolins were present was marked on a detailed map of the area, providing a visual representation of their distribution across the study site. The occupancy rate was also calculated by using the following equation:

$$\text{Occupancy rate } (\psi) = \frac{\text{Number of sites occupied}}{\text{Total number of sites surveyed}}$$

Impact of Human Presence and Settlements on Pangolins

To achieve the second and third objective, a two-tailed Pearson correlation coefficient analysis was conducted using the Statistical Package for the Social Sciences (SPSS). The Pearson correlation is a parametric statistical test used to measure the strength and direction of the linear relationship between two variables, with values ranging from -1 (perfect negative correlation) to +1 (perfect positive correlation) (Berman 2016). In this study, the analysis was based on 2,741 data collected from 10 camera trap stations distributed across Sepanggar Hill, with each station contributing one observation. The dependent variable was the presence of Sunda Pangolins, coded as 1 for presence and 0 for absence. Independent variables included the presence of humans (1 = present, 0 = absent), as well as the distances (in km) from each camera trap station to five human settlements: KKT, KKTF, KKTPAR, Kg. Numbak, and Kg. Kebagu. This analysis aimed to determine whether there was a significant relationship between Sunda Pangolin presence and human-related factors in the study area.

Activity pattern

For the fourth objective, the activity pattern was

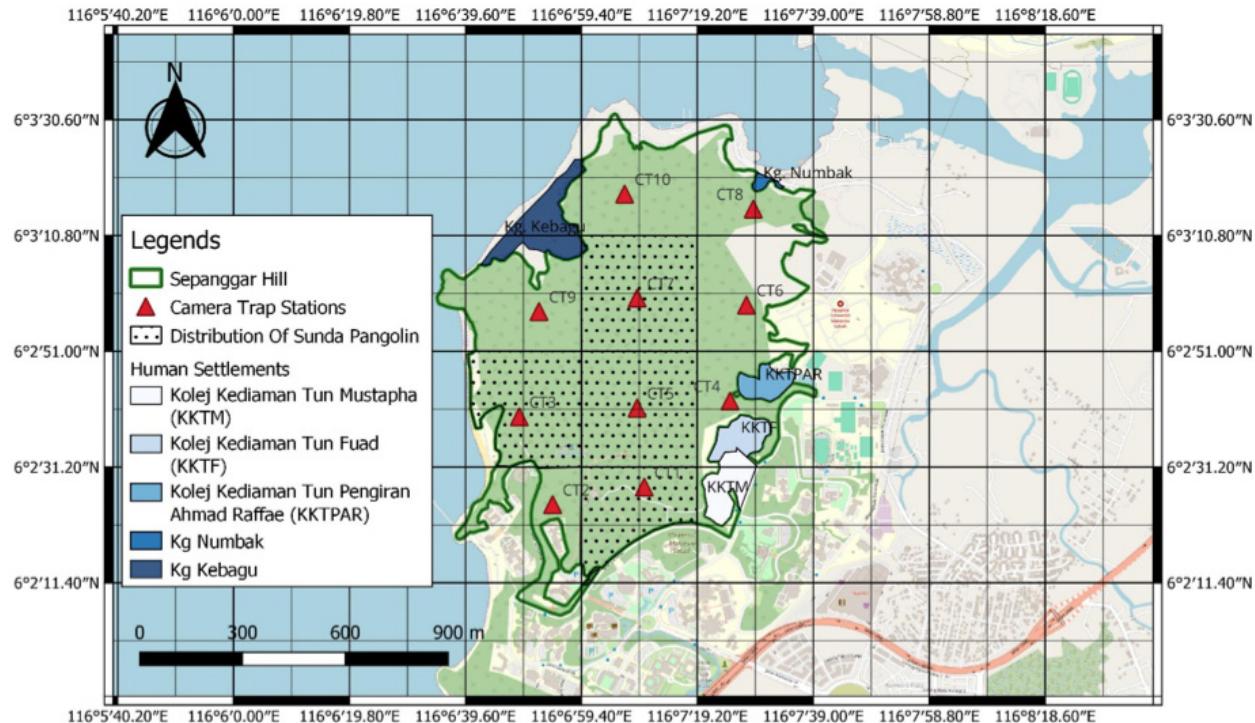


Figure 2. Distribution map of Sunda Pangolins in Sepanggar Hill.

analyzed by calculating the total events of human presence and the presence of Sunda Pangolin in each plot of camera trap during diurnal, and nocturnal times. Diurnal time is defined as the time taken between 0600–1759 h (12 hr) and the nocturnal time is the period between 1800–0559 h (12 hr) (Semiadi et al. 1993). The data was calculated and analyzed using descriptive analysis by observing, and counting the number of events of human presence, and the Sunda Pangolin presence in the camera trap pictures every 60 minutes. Hence, the data was counted as one if multiple pictures were taken within 60 minutes (Gardner & Goossens 2017). The data were then presented in an image to measure humans' and Sunda Pangolins' relative number of active times for each camera trap station.

Anthropogenic noise levels

For the fifth objective, the relationship between the presence of Sunda Pangolins and the average anthropogenic noise levels was also analyzed using Pearson correlation coefficient analysis in SPSS (Fialho et al. 2025). Noise levels were recorded monthly at each camera trap station using decibel meters, and these data were correlated with the frequency of pangolin detections at each station. The correlation analysis was performed individually for each camera trap to assess whether higher noise levels affected pangolin activity and distribution. This analysis provided insights into the impact of noise pollution on the behavior and habitat use of Sunda Pangolins within Sepanggar Hill.

RESULTS AND DISCUSSIONS

In general, 1,17,993 pictures were captured, derived from 2,724 trapping nights. Six camera traps were relocated after three months because those camera traps captured no Sunda Pangolin. During the survey, the camera traps also captured images of various other wildlife species, highlighting the biodiversity within Sepanggar Hill. These species included groups of Long-tailed Macaques *Macaca fascicularis*, Mouse Deer *Tragulidae* sp., Monitor Lizard *Varanus* sp., Birds (Aves sp.), Squirrels *Sciurus* sp., Water Buffaloes *Bubalus bubalis*, Masked Palm Civets *Paguma larvata*, and Ground Tortoise *Testudinidae* sp. This diverse array of animals underscores the ecological richness of the area and the importance of preserving this habitat, not only for the Critically Endangered Sunda Pangolin but also for the myriad of other species that coexist within this ecosystem.

Distribution of the Sunda Pangolin

Despite the high volume of data, Sunda Pangolins were recorded in only five events at four camera trap stations (CT1, CT3, CT5, and CT7) with an occupancy rate of 40%. The distribution of Sunda Pangolins appeared to be concentrated towards the center of Sepanggar Hill and more towards the UMS campus, as shown in Figure 2. This spatial distribution could be influenced by several factors, including habitat preferences such as human encroachment, and their preference for undisturbed environments (Liu & Weng 2014; Chong et al. 2020).

In this study, the differences in human activities within UMS campus and outside of the campus may contribute to the visitation factor of the Sunda Pangolin. UMS has designated 0.25 km² of land in the Sepanggar Hill forest as a forest reserve, which serves as a research area (The Borneo Post, 2022). This protected status may contribute to the presence of Sunda Pangolins in camera trap stations located closer to UMS, as they do not feel threatened even though there are existing anthropogenic activities that are confined to research and education activities only. On the other hand, the areas that are outside of the UMS campus are accessible to the residents who live near the forested areas. We observed during the course of this study that there were some areas that had become barren due to the felling of trees by the people around the area, totalling 0.099 km². This could be the reason why the Sunda Pangolin does not prefer to visit areas outside of the UMS campus, as this species are vulnerable to habitat loss, and poaching (Challender et al. 2012).

Although the study recorded only five independent Sunda Pangolin events within a limited study area, which may constrain the statistical power and generalizability of the findings, this limitation is expected given the species' elusive behaviour, and Critically Endangered status (Panjang et al. 2024). Reliable field data on Sunda Pangolins remain scarce, and even a small number of detections can offer valuable insights into their habitat use and potential responses to anthropogenic disturbances. These preliminary findings provide a foundation for future, larger-scale research, and underscore the importance of long-term monitoring efforts in human-impacted landscapes.

The Presence of Sunda Pangolins and Humans

Pangolins show some resilience to moderate human disturbances depending on various factors (Zanvo et al. 2023). In the current study, it was found that the presence of Sunda Pangolins was detected even in areas with recorded human presence, as evident by camera

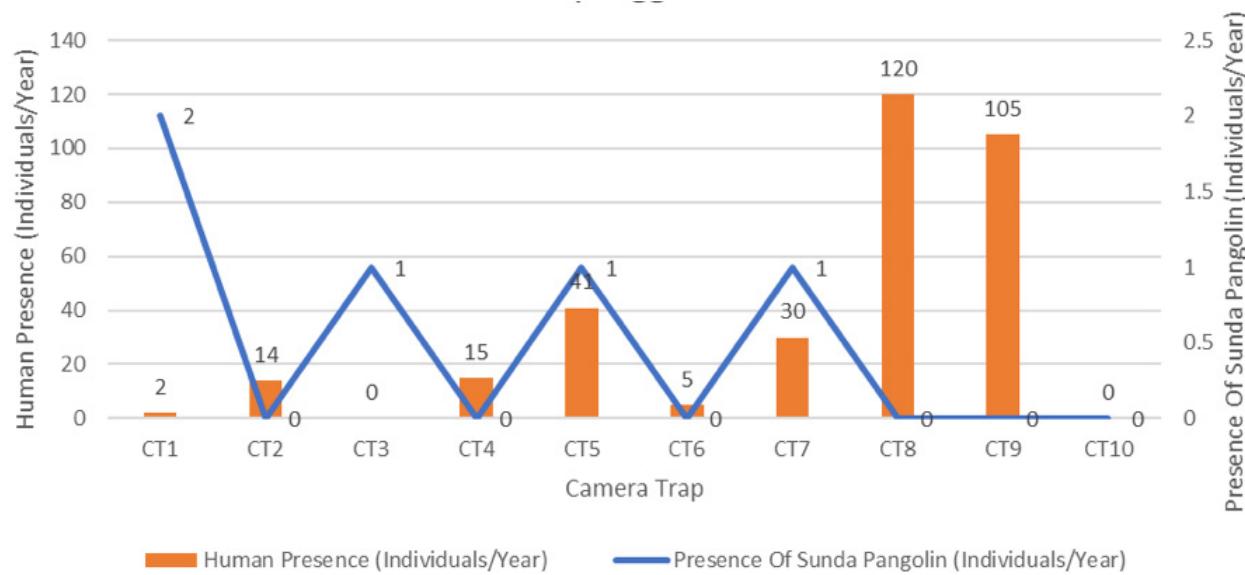


Figure 3. Graph of human presence and the Sunda Pangolins in Sepanggar Hill.

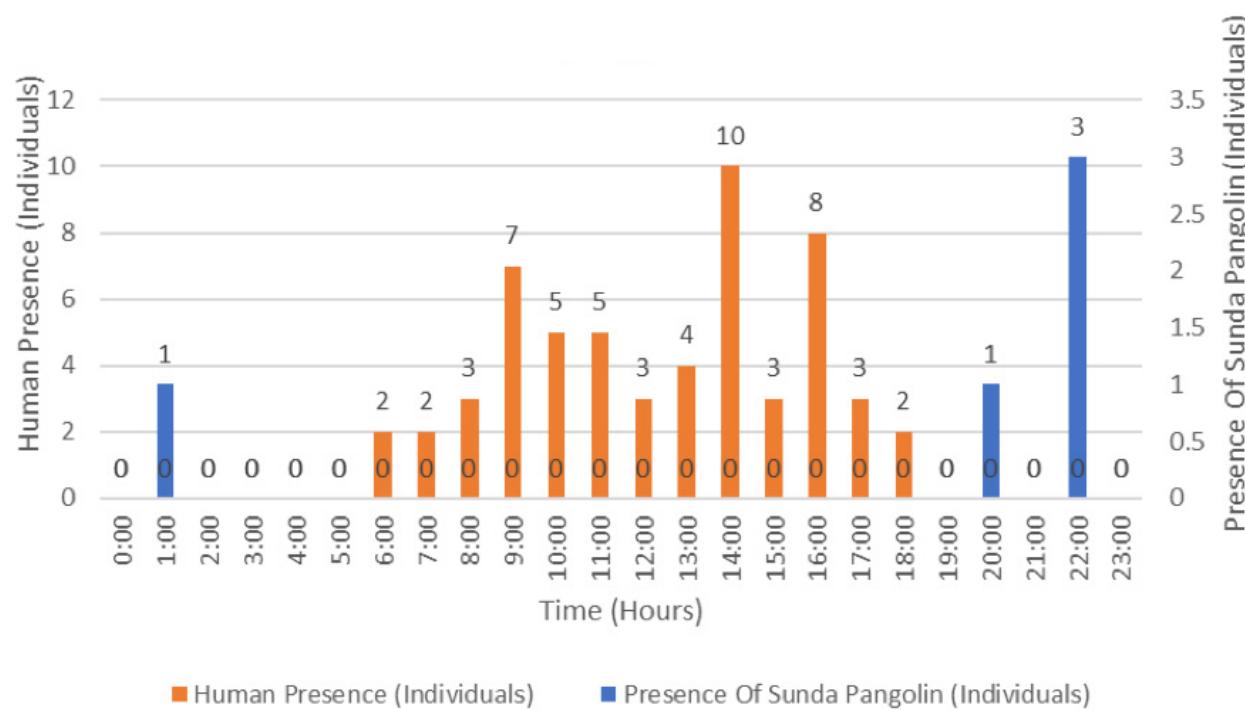


Figure 4. Graph of activity pattern of humans and the Sunda Pangolins in Sepanggar Hill.

trap data (Figure 3). The human presence ranged from 2–120 individuals during data collection, with one to three individuals recorded per event. In this study, the Pearson correlation analysis examined the relationship between Sunda Pangolin presence and distance from five human-related locations: KKTM, KKTF, KKTPAR, Kg. Numbak, and Kg. Kebagu. The correlation values were

-0.24, -0.12, 0.00, 0.32, and -0.01, respectively, with a sample size of 2,741 (Table 1). These values show very weak relationships, meaning that the distance from human areas does not strongly affect whether pangolins are present or not.

Interestingly, the analysis showed a weak negative correlation near KKTM and KKTF, which are residential

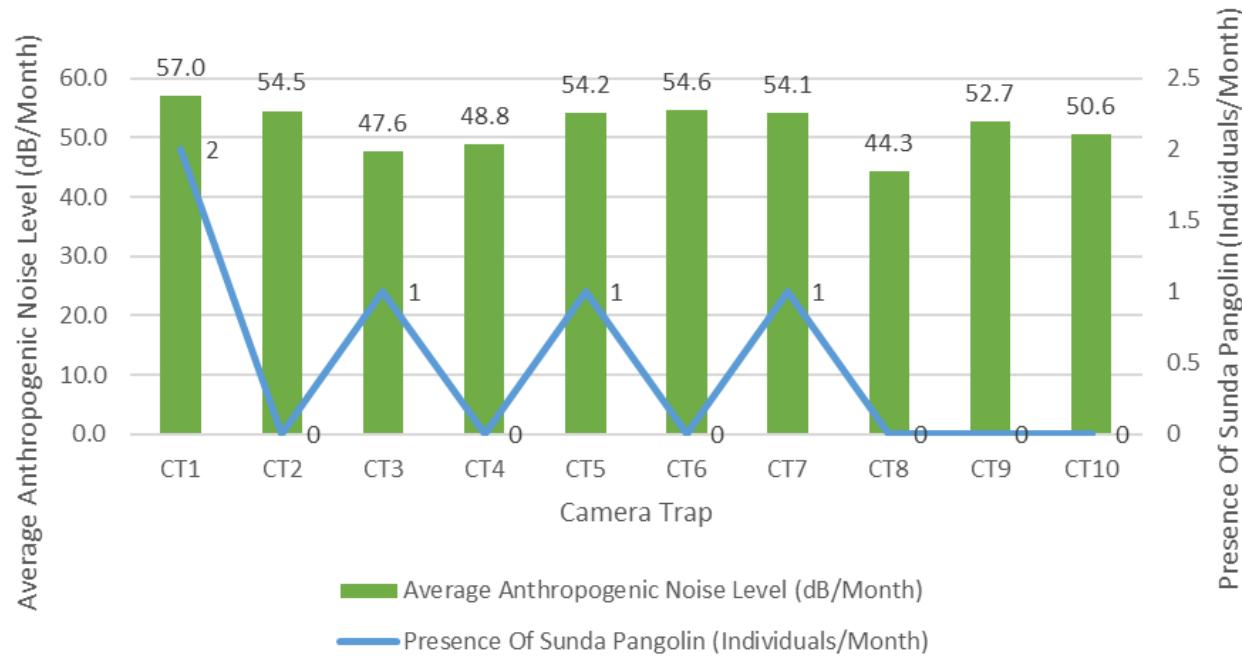


Figure 5. Graph of anthropogenic noise level and the Sunda Pangolins in Sepanggar Hill.

Table 1. Results of Pearson correlation coefficient analysis on the correlation between the presence of Sunda Pangolin and the human settlements.

	Presence of Sunda Pangolin	Proximity to KKTM	Proximity to KKTF	Proximity to KKTPAR	Proximity to Kg Numbak	Proximity to Kg Kebagu
Correlation Coefficient	1	-0.024	-0.012	0.000	0.032	-0.001
Sig. (2-tailed)		0.206	0.521	0.989	0.098	0.957
N	2741	2741	2741	2741	2741	2741

areas for UMS staff and students. People in these areas mostly do research or hiking, not harmful activities. However, because people are regularly present there, the Sunda Pangolins might avoid the area even if there is no direct threat. This may be because disturbances like human noise or lingering scent trails can affect wildlife, especially, since pangolins depend on their sense of smell to find food while foraging (DiPaola et al. 2020).

On the other hand, a weak positive correlation was found near Kg. Numbak and Kg. Kebagu, even though people in these villages do more harmful activities like cutting trees and using fire to clear land. One reason for this might be that these destructive actions usually happen during the day, while pangolins are active at night. Additionally, disturbed areas may offer improved burrows, and foraging conditions for pangolins, such as increased access to termites in decaying wood (Dorji 2017; Chao et al. 2020).

Other studies support the idea that pangolins respond differently depending on the situation. Some studies, like

Karawita et al. (2017), say that pangolins tend to avoid humans as they are highly sensitive to human activities (Manshur et al. 2015; Anasari et al. 2021; Sulaksono et al. 2023). But others, like Chong et al. (2020), found that pangolins are sometimes seen in human-modified areas. In one case, a pangolin was even spotted walking inside a shop at KKTPAR without showing fear, suggesting that they may get used to humans in places where they are not hunted (Sompud et al. 2023).

Overall, the results suggest that Sunda Pangolins do not completely avoid areas with people. Instead, they might adjust based on how often people are around, what kind of activities they do, and whether the environment still meets their needs. This shows that pangolins may have some ability to live in areas where human activity is present, especially when the risks are low, and resources are still available (Chong et al. 2020; Nash et al. 2020).

Activity pattern of Sunda Pangolins and humans

Humans are primarily diurnal due to the nature of the human body which operates on the circadian rhythm and other biological factors that help modulate activity levels during daylight hours (Bonny & Firsov 2012; Andreatta & Allen 2021). In this study, the humans were observed to be diurnal, in which they are active during daytime (Figure 4). For instances, the humans were mostly seen active from 0600–1859 h, with the peak activity observed from 1400–1459 h as observed in Figure 4. On the contrary, the Sunda Pangolins were observed to be active at night from 2000–0159 h, with peak activity at range time between 2200–2259 h. This shows that the Sunda Pangolin is a nocturnal mammal species as seen in previous research (Lim & Ng 2008; Challender et al. 2012; Sompud et al. 2019). Based on Figure 4, there were no instances where Sunda Pangolins and humans were present simultaneously at the same location. This temporal separation suggests that there is no direct overlap in the activities of Sunda Pangolins and humans in the Sepanggar Hill forest, which might be a coping mechanism for the pangolins to avoid human encounters. This behavior could be crucial for their survival in disturbed habitats where human presence is significant.

Currently, there is a dearth of studies specifically examining the activity patterns of Sunda Pangolins and humans. The nocturnal behaviour observed in this study aligns with previous research conducted by Lim & Ng (2008), Challender et al. (2012), and Sompud et al. (2019), which consistently reported nocturnal activity in Sunda Pangolins. In contrast, humans are diurnal which means that they are primarily active during the day and resting at night. This nocturnal lifestyle allows them to coexist with humans, however, it also increases their susceptibility to poaching (Khatiwada et al. 2022).

Anthropogenic noise level and presence of the Sunda Pangolin

Sunda Pangolins, like many nocturnal mammals, rely heavily on their acute sense of hearing for foraging and predator avoidance (DiPaola et al. 2020). Increasing levels of anthropogenic noise can interfere with these crucial activities. The analysis shows that there is a positive correlation between noise levels and pangolin presence at Camera Trap Station 1 ($N = 348$, $r = 0.147$, $p = 0.006^{**}$). The anthropogenic noises that were observed come from cars, aeroplanes, people talking, the call to prayer (adhan), and occasional ferry horns. The observations of this study revealed that the noise levels in Sepanggar Hill ranged 44.3–57.0 dB (Figure 5).

Based on the Figure 5, the Sunda Pangolin was detected in areas ranging 47.6–57.0 dB. This suggested that the Sunda Pangolin can tolerate the noise levels below 57.0 dB as it is still below the threshold that can cause stress on the species. A study done by Manci (1988) found that noise levels up to 60 dB does not cause negative response to animals that have habituated to noise (Johansson et al. 2016). Therefore, it was suggested that the Sunda Pangolin have adapted the noise level in Sepanggar Hill.

This result is somewhat unexpected, given that previous research, such as Shannon et al. (2016) and Withaningsih et al. (2018), found that many wildlife species, including pangolins, tend to avoid areas which are above 40 dB (Duporge et al. 2021). High noise levels, between 52–68 dB are generally thought to interfere with foraging, communication, and predator avoidance behaviour, leading to increased stress, and decreased reproductive success in many wildlife species (Nursamsi et al. 2023; Shannon et al. 2016). In a study done by DiPaola et al. (2020), the Sunda Pangolin was suggested to react to loud noises, and may adjust their tail position, and their movement to minimize the noise they make in their natural environment. Although pangolins may not rely on sound to find prey, it is likely they use it to detect, and avoid predators. A similar study was done by Sabin et al. (2024) on the impacts of anthropogenic noise on other pangolin species in Chandragiri-Champadevi Hills, Nepal. The study focuses more on the impacts of noise on the foraging and resting burrow count for Chinese Pangolins in the study area. It was found that the presence of these species at foraging burrows is significantly higher in areas with elevated noise levels (0.285 ± 0.073 m), ranging 22.67–58.00 dB. This could be due to their preference for agricultural areas which are the potential habitats for these species (Newton et al. 2008). In contrast, the impact of noise on resting burrow selection by Chinese Pangolins was deemed insignificant. This shows that anthropogenic noise impacts only certain behaviors of the Chinese Pangolins such as foraging.

CONCLUSION

In conclusion, there were impacts of the anthropogenic activities on the Sunda Pangolin in Sepanggar Hill, such as human presence, proximity to human settlements, activity pattern, and anthropogenic noise levels. The analysis results indicate a positive correlation between the Sunda Pangolin and anthropogenic activities, specifically, proximity to

human settlements, and anthropogenic noise levels. It was found that the Sunda Pangolin does not avoid humans completely as evident in this study. For instance, the Sunda Pangolins were still detected even in areas near human settlements with minimal activity pattern such as CT1. This shows that the Sunda Pangolins have adapted to human presence in Sepanggar Hill. On the other hand, it was observed that anthropogenic noise levels do not impact the Sunda Pangolins that much despite being significant at CT1. This could be due to the insufficient data over the six-month period, and the noise levels recorded are below 60 dB. Thus, it is concluded that three out of four parameters of the anthropogenic activities had impacted the Sunda Pangolin.

Given these findings, it is clear that while pangolins can coexist with low-impact human activities, the more severe impacts of habitat destruction, and noise from areas outside UMS threaten their survival. Therefore, we recommend for collaborative conservation efforts between the local governments, non-government organisations, and researchers at UMS by enforcing stricter regulations to protect Sunda Pangolins. By combining knowledge and resources, these groups can develop a clear strategy that addresses the species' needs, and their habitat by limiting deforestation, and land-clearing activities in Sepanggar Hill forest, and nearby areas. Thus, it is important to secure enough funding and resources to execute this plan. These funds can be used to put protective measures in place, support research, and ensure that the efforts to conserve pangolins can continue over time. Working as a team will help achieve long-term success in protecting this Critically Endangered species. In addition, buffer zones should be set up around Sepanggar Hill to provide a safe space between humans and wildlife by minimizing the anthropogenic noise, construction, and agricultural development, on the habitats of the Sunda Pangolins. These buffer zones would act as transitional spaces and introducing noise barriers, reducing direct human encroachment, and providing a safe boundary for pangolins to thrive. These steps could provide actionable pathways to mitigate threats to Sunda Pangolins while promoting coexistence with human activities.

REFERENCES

Aisher, A. (2016). Scarcity, Alterity and Value: Decline of the Pangolin, the World's Most Trafficked Mammal. *Conservation and Society* 14(4): 317–329. <https://doi.org/10.4103/0972-4923.197610>

Akpan, A.O. & E.O. Obisung (2022). Evaluation of acoustic conditions, occupants' satisfaction and comfort in open-plan offices: a case study of select places in Akwa Ibom State, Nigeria. *Researchers Journal of Science and Technology*. Retrieved from <https://rejost.com.ng/index.php/home/article/view/23>

Alademomi, A., C. Okolie, B. Ojegbile, O. Daramola, J. Onyegbula, R. Adepo & W. Ademeno (2020). Spatial And Statistical Analysis Of Environmental Noise Levels In The Main Campus Of The University Of Lagos. *The Journal of Engineering Research* 17(2): 75–88. <https://doi.org/10.24200/tjer.vol17iss2pp75-88>

Anasari, S.D., W. Pusparini & N. Andayani (2021). Predicting the Distribution of Sunda Pangolin (*Manis javanica* Desmarest, 1822) in Way Canguk Research Station, Bukit Barisan Selatan National Park, Lampung. *Journal of Tropical Biodiversity and Biotechnology* 6(1): 1–11. <https://doi.org/10.22146/jtbb.58612>

Ancrenaz, M., A.J. Hearn, J. Ross, R. Sollmann & A. Wilting (2012). Handbook for wildlife monitoring using camera-traps. BBEC Publication, Sabah Parks and Japan International Cooperation Agency, 71pp.

Andreatta, G. & C.N. Allen (2021). How neurons adjust to diurnality. *Elife* 10. <https://doi.org/10.7554/ELIFE.74704>

Anomohanran, D. & J.E. Osemeikhan (2006). Day and night noise pollution study in some major town in Delta State, Nigeria. *Ghana Journal of Science* 46: 47–54. <https://doi.org/10.4314/gjs.v46i1.15916>

Ariffin, M. & M.B.C. Nan (2018). Sunda Pangolin protection and trade-related crimes: Assessing local community knowledge in Kedah, Malaysia. *Journal of Sustainability Science and Management* 13(1): 169–180.

Berman, J.J. (2016). Chapter 4 - Understanding Your Data. Data Simplification: Taming Information with Open Source Tools. *Science Direct* 2016: 135–187. <https://doi.org/10.1016/B978-0-12-803781-2.00004-7>

Bhandari, B., B. Dhami, N. Kc, P. Mahatara, A. Neupane, S. Gosai, A. Udaya, N. Phuyal & P. Ghimire (2025). Habitat and Anthropogenic Determinants of Chinese Pangolin (*Manis pentadactyla*) Burrow Occupancy in Udayapur, Eastern Nepal: Implications for Site-Specific Conservation. *Ecology and Evolution* 15(6): e71493. <https://doi.org/10.1002/ece3.71493>

Bonny, O. & D. Firsov (2012). L'importance des rythmes circadiens en pratique clinique. *Forum Médical Suisse* 12(45): 879–881. <https://doi.org/10.4414/SMF.2012.01327>

Camaclang, A.E., M. Maron, T.G. Martin & H.P. Possingham (2015). Current practices in the identification of critical habitat for threatened species. *Conservation Biology* 29(2): 482–492. <https://doi.org/10.1111/cobi.12428>

Challender, D.W., N.V. Thai, M. Jones & L. May (2012). Time-budgets and activity patterns of captive Sunda Pangolins (*Manis javanica*). *Zoo Biology* 31(2): 206–218.

Challender, D.W., S.R. Harrop & D.C. MacMillan (2015). Understanding markets to conserve trade-threatened species in CITES. *Biological Conservation* 187: 249–259. <https://doi.org/10.1016/j.biocon.2015.04.015>

Challender, D.W.S., D.H.A. Willcox, E. Panjang, N. Lim, H. Nash, S. Heinrich & J. Chong (2019). *Manis javanica*. The IUCN Red List of Threatened Species 2019:e.T12763A123584856. <https://doi.org/10.2305/IUCN.UK.2019-3.RLTS.T12763A123584856.en>

Chao, J.T. H.F. Li & C.C. Lin (2020). Chapter 3 - The role of pangolins in ecosystems. In *Pangolins : Science, Society and Conservation* 2020: 43–48. <https://doi.org/10.1016/B978-0-12-815507-3.00003-4>

Chen, H.L., Y.C. Liao, W.J. Lin & H.F. Li (2025). Historic record, current distribution and habitat selection of Chinese pangolin in Yangmingshan National Park, Taiwan. *Global Ecology and Conservation* 59: e03521. <https://doi.org/10.1016/j.gecco.2025.e03521>

Cheng, W., S. Xing & T.C. Bonebrake (2017). Recent pangolin seizures in China reveal priority areas for intervention. *Conservation Letters* 10(6): 757–764. <https://doi.org/10.1111/conl.12339>

Chong, J.L., E. Panjang, D. Willcox, H.C. Nash, G. Semiadi, W. Sodsai, N.T.L. Lim, L. Fletcher, A. Kurniawan & S. Cheema (2020). Chapter 6—Sunda Pangolin *Manis javanica* (Desmarest, 1822). *Pangolins*.

Science, Society and Conservation 2020: 89–108. <https://doi.org/10.1016/B978-0-12-815507-3.00006-X>

DiPaola, J.D., M. Yindee & J.M. Plotnik (2020). Investigating the use of sensory information to detect and track prey by the Sunda Pangolin (*Manis javanica*) with conservation in mind. *Scientific Reports* 10(1): 9787. <https://doi.org/10.1038/s41598-020-65898-x>

Dorji, D. (2017). Distribution, habitat use, threats and conservation of the critically endangered Chinese pangolin (*Manis pentadactyla*) in Samtse District, Bhutan. Unpublished. Rufford Small Grants, UK, 18 pp.

Duckworth, J.W., A. Pattanavibool, P. Newton & N.V. Nhuan (2008). *Manis javanica*. In: IUCN 2011. IUCN Red List of Threatened Species. Version 2010.4. <http://www.iucnredlist.org>.

Duporge, I., M.P. Spiegel, E.R. Thomson, T. Chapman, C. Lamberton, C. Pond, D.W. Macdonald, T. Wang & H. Klinck (2021). Determination of optimal flight altitude to minimise acoustic drone disturbance to wildlife using species audiograms. *Methods in Ecology and Evolution* 12(11): 2196–2207. <https://doi.org/10.1111/2041-210X.13691>

Fialho, M.A., M. Rocamora & L. Ziegler (2025). Detection of anthropogenic noise pollution as a possible chronic stressor in Antarctic Specially Protected Area N° 150, Ardley Island. *Ecological Informatics* 87: 103117. <https://doi.org/10.1016/j.ecoinf.2025.103117>

Gardner, P.C. & B. Goossens (2017). Danau Girang Field Centre The Bornean Banteng Programme: Conservation and management of the endangered wild cattle *Bos javanicus lowi* in Sabah. http://www.deramakot.sabah.gov.my/PDF/BantengSurveyReport_DeramakotForestReserve.pdf

Giordano, A.J., L.M. Winstead, M.A. Imron, Rustam, J. Sompud, J.V. Kumaran & K.J.C. Pei (2023). Dark Clouds Ahead? Anecdotal evidence for an illegal live trade in Sunda *Neofelis diardi* and Indochinese *N. nebulosa* Clouded Leopards (Mammalia: Carnivora: Felidae). *Journal of Threatened Taxa* 15(6): 23441–23445. <https://doi.org/10.11609/jott.8425.15.6.23441-23445>

Hearn, A.J., J. Ross, H. Bernard, S.A. Bakar, B. Goossens, L.T. Hunter & D.W. Macdonald (2019). Responses of Sunda clouded leopard *Neofelis diardi* population density to anthropogenic disturbance: refining estimates of its conservation status in Sabah. *Oryx* 53(4): 643–653. <https://doi.org/10.1017/S0030605317001065>

Hiew, S.E., B. Musta, M.S. Sarjadi, M. Maid, M. Muning, J. Kodoh, C. Goh, M. Jonalius & J. Sompud (2022). Monitoring of the habitat usage of Tembadau (*Bos javanicus lowi*) around salt lick in a forest plantation of Sabah, Malaysia. *Biodiversitas Journal of Biological Diversity* 23(11): 6062–6069. <https://doi.org/10.13057/biodiv/d231162>

Johansson, K., P. Sigray, T. Backström & C. Magnhagen (2016). Stress response and habituation to motorboat noise in two coastal fish species in the Bothnian Sea, pp. 513–521. In: *The Effects Of Noise On Aquatic Life II*. Conference Proceedings, Springer New York, xxx + 1292 pp.

James, E.E., F. Tuh, W. Lintangah & J. Sompud (2023). The knowledge, attitude and practice of local Sabahan in Malaysia on Sunda Pangolin. *Biodiversitas Journal of Biological Diversity* 24(9): 4702–4710. <https://doi.org/10.13057/biodiv/d240910>

Khatiwada, A.P., W.M. Wright, K. Kunkel, M.P. Khatiwada, C. Waterman, S. Bhattacharai, H.S. Baral, C.P. Pokhrel & F. Dalerum (2022). Human influence on burrow activity of the Chinese pangolin in Nepal. *Wildlife Research* 50: 76–83. <https://doi.org/10.1071/WR21024>

Karawita, H., P. Perera & N. Dayawansa (2017). Habitat selection and burrow characterization of Indian Pangolin (*Manis Crassicaudata*) in a tropical lowland rainforest habitat in south west Sri Lanka. *Plos One* 13(11): e0206082. <https://doi.org/10.1371/journal.pone.0206082>

Lim, N.T. & P.K. Ng (2008). Home range, activity cycle and natal den usage of a female Sunda Pangolin *Manis javanica* (Mammalia: Pholidota) in Singapore. *Endangered Species Research* 4: 233–240. <https://doi.org/10.3354/esr00032>

Liu, Y. & Q. Weng (2014). Fauna in decline: Plight of the pangolin. *Science* 345(6199): 884–884. <https://doi.org/10.1126>

SCIENCE.345.6199.884-A

Majuakim, L.A., L.M. Ling & J. Gisil (2018). An Inventory of Flora in Urban Forests of Universiti Malaysia Sabah Campus, Sabah, Malaysia. *Journal of Tropical Biology and Conservation* 15: 173–188. <https://doi.org/10.51200/jtbc.v15i.1491>

Manci, K.M. (1988). Effects of aircraft noise and sonic booms on domestic animals and wildlife: a literature synthesis. US Fish and Wildlife Service, National Ecology Research Center, 88 pp.

Manshur, A., A.P. Kartono & B. Masy'ud (2015). Karakteristik Habitat Trenggiling Jawa (*Manis javanica*) Di Taman Nasional Gunung Halimun Salak. *Media Konservasi* 20: 77–83.

Nash, H.C., G.W. Low, S. W. Choo, J.L. Chong, G. Semiadi, R. Hari, M.H. Sulaiman, S.T. Turvey, T.A. Evans & F.E. Rheindt (2018). Conservation genomics reveals possible illegal trade routes and admixture across pangolin lineages in Southeast Asia. *Conservation Genetics* 19: 1083–1095. <https://doi.org/10.1007/s10592-018-1080-9>

Nash, H.C., P.B. Lee, N.T. Lim, S. Luz, C. Li, T.F. Chung, A. Olsson, B.C.N. Strange & M. Rao (2020). The Sunda Pangolin in Singapore: a multi-stakeholder approach to research and conservation, pp. 411–425. In: Challender, D.W.S., H.C. Nash & C. Waterman (eds.). *Pangolins. Biodiversity of World: Conservation from Genes to Landscapes*. Academic Press, 630 pp. <https://doi.org/10.1016/B978-0-12-815507-3.00026-5>

Newton, P.N., V. Thai, S. Roberton & D. Bell (2008). Pangolins in peril: using local hunters' knowledge to conserve elusive species in Vietnam. *Endangered Species Research* 6: 41–53. <https://doi.org/10.3354/ESR00127>

Nursamsi, I., Z. Amir, H. Decoeur, J.H. Moore & M.S. Luskin (2023). Sunda Pangolins show inconsistent responses to disturbances across multiple scales. *Wildlife Letters* 1(2): 59–70. <https://doi.org/10.1002/wl2.12010>

Panjang, E. (2015). *The Ecology of Sunda Pangolin in Kabil-Sepilok Forest Reserve, Sabah* Unpublished. (Doctoral dissertation, Universiti Malaysia Sabah).

Panjang, E., Lim, H.Y. Thomas, R.J. Goossens, B. Hearn, A.J. Macdonald, D.W. Ross, J. Wong, S.T. Guharajan, R. Mohamed, A. Gardner, P.C. Koh, S. Cheah, C. Ancrenas, M. Lackman, I. Ong, R. Nilus, R. Hastie, A. Brodie, J.F. Granados, A. Helmy, O. Lapis, O.M. Simon, D. Davies, G. Wong, S.T. Rampangajouw, M. Matsubayashi, H. Sano, C. Runting, R.K. Sipangkui, S. & N.K. Abram (2024). Mapping the distribution of the Sunda Pangolin (*Manis javanica*) within natural forest in Sabah, Malaysian Borneo. *Global Ecology and Conservation* 52: e02962. <https://doi.org/10.1016/j.gecco.2024.e02962>

Pantel, S. & N.A. Anak (2010). A preliminary assessment of pangolin trade in Sabah. TRAFFIC Southeast Asia, Petaling Jaya, 5 pp.

Peters, N.M., Kendall, J.G. Davies, C. Bracebridge, A. Nicholas, M.P. Mgumba & C.M. Beale (2023). Identifying priority locations to protect a wide-ranging endangered species. *Biological Conservation* 277: 109828. <https://doi.org/10.1016/j.biocon.2022.109828>

Sabin, K., C.S. Regmi, B. Pant, A. Nepal, H.B. Katuwal & H.P. Sharma (2024). Factors influencing Chinese Pangolin (*Manis pentadactyla*) burrow selection in the Chandragiri-Champadevi hills of Kathmandu Valley, Nepal. *Helijon* 10(4): e25774. <https://doi.org/10.1016/j.helijon.2024.e25774>

Semiadi, G., P.D. Muir, T.N. Barry, C.J. Veltman & J. Hodgson (1993). Grazing patterns of Sambar Deer (*Cervus unicolor*) and Red Deer (*Cervus elaphus*) in captivity. *New Zealand Journal of Agricultural Research* 36(2): 253–260. <https://doi.org/10.1080/00288233.1993.10417761>

Shannon, G., M.F. McKenna, L.M. Angeloni, K.R. Crooks K.M. Fristrup, E. Brown, K.A. Warner, M.D. Nelson, C. White, J. Briggs, S. McFarland & G. Wittemyer (2016). A synthesis of two decades of research documenting the effects of noise on wildlife. *Biological Reviews* 91: 982–1005. <https://doi.org/10.1111/BRV.12207>

Simo, F.T., G.F. Difouo, S. Kekeunou, I. G. Ichu, D. Olson, N.J. Deere & D.J. Ingram (2023). Adapting camera-trap placement based on animal behavior for rapid detection: A focus on the Endangered, White-bellied Pangolin (*Phataginus tricuspis*). *Ecology and Evolution*

13(5): 1–10. <https://doi.org/10.1002/ece3.10064>

Sing, Y.C. & S. Pantel (2009). Pangolin capture and trade in Malaysia. Proceedings of the Workshop on Trade and Conservation of Pangolins Native to South and Southeast Asia. Singapore Zoo, Singapore. TRAFFIC Southeast Asia, Petaling Jaya, Selangor, Malaysia, 30 June–2 July 2008.

Sompud, J., C.B. Sompud, K.J.C. Pei, N.C.M. Sun, R. Repin & F. Tuh (2019). Sunda Pangolin *Manis javanica* (Mammalia: Pholidota: Manidae) of Gaya Island. *Journal of Threatened Taxa* 11(5): 13522–13556. <https://doi.org/10.11609/jot.4198.11.5.13552–13556>

Sompud, J., A.Z. Adams, S.E. Hiew, M. Maid, J. Kodoh, M.S. Sarjadi, C. Goh, M. Jonalius & M. Baba (2022). Bornean Pygmy Elephant habitat usage of natural salt licks in Segaliud Loran Forest Reserve. In *IOP Conference Series: Earth and Environmental Science* 1053(1): 012016. <https://doi.org/10.1088/1755-1315/1053/1/012016>

Sompud, J., N. Sahar, C. Adros, E. Richard & C.B. Sompud (2023). Notes on a new distribution record of the Critically Endangered Sunda Pangolin (*Manis javanica*) in Sabah, Malaysian Borneo. *Biodiversitas Journal of Biological Diversity* 24(2): 975–981. <https://doi.org/10.13057/biodiv/d240237>

Stehman, S. (1992). Comparison of systematic and random sampling for estimating the accuracy of maps generated from remotely sensed data. *PE & RS-Photogrammetric Engineering and Remote Sensing* 58(9): 1343–1350.

Subba, A., G. Tamang, S. Lama, J. H. Limbu, N. Basnet, R.C. Kyes & L. Khanal (2024). Habitat Occupancy of the Critically Endangered Chinese Pangolin (*Manis pentadactyla*) under Human Disturbance in an Urban Environment: Implications for Conservation. *Ecology and Evolution* 14(12): e70726. <https://doi.org/10.1002/ece3.70726>

Sulaksono, N., S. Pudyatmoko, S. Sumardi, W. Wardhana & A. Budiman (2023). The effects of anthropogenic disturbances on the spatiotemporal patterns of medium–large mammals in tropical volcanic landscapes. *Animals* 13(20): 3217. <https://doi.org/10.3390/ani13203217>

The Borneo Post (2022). UMS gazettes 62 acres of land as forest reserve. <https://www.theborneopost.com/2022/06/22/ums-gazettes-62-acres-of-land-as-forest-reserve/>

Trianni, G., E. Angiuli, G. Lisini & P. Gamba (2014). Human settlements from landsat data using google earth engine. 2014 IEEE Geoscience and Remote Sensing Symposium. QC, Canada, 2014: 1473–1476.

Universiti Malaysia Sabah (2015). Accommodation. Retrieved 10 October 2024 from <https://www.ums.edu.my/v5/accommodation>

Withaningsih, S.P. Parikesit & A. Nasrudin (2021). Correlation between landscape structure and distribution of Javan Pangolin (*Manis Javanica*) in an extreme landscape. *Biodiversitas Journal of Biological Diversity* 22(2): 920–932. <https://doi.org/10.13057/biodiv/d220248>

Zanvo, S., C.A. Djagoun, P. Gaubert, A.F. Azihou, C. Jézéquel, B. Djossa, B. Sinsin & B. Hugueny (2023). Modeling population extirpation rates of white-bellied and giant pangolins in Benin using validated local ecological knowledge. *Conservation Science and Practice* 5(8): <https://doi.org/10.1111/csp2.12986>

Malay: Tenggiling Sunda atau *Manis javanica* Desmarest, 1822 (Pholidota: Manidae) merupakan satu-satunya spesies tenggiling yang terdapat di Malaysia. Spesies ini dikategorikan sebagai "Sangat Terancam" (Critically Endangered) dalam Senarai Merah Spesies Terancam IUCN dan merupakan antara mamalia yang paling banyak diperdagangkan secara haram di dunia. Aktiviti antropogenik seperti pembangunan penempatan dan pergerakan manusia yang kerap berhampiran tepi hutan semakin mengancam keselamatan Tenggiling Sunda. Aktiviti ini bukan sahaja menyebabkan fragmentasi habitat, tetapi juga mendedahkan hidupan liar kepada tahap bunyi dan gangguan manusia yang tinggi akibat jarak yang dekat dengan kawasan penempatan. Oleh itu, kajian ini dijalankan untuk menentukan kesan aktiviti antropogenik terhadap taburan Tenggiling Sunda di Bukit Sepanggar menggunakan kaedah tinjauan kamera perangkap. Sebanyak sepuluh kamera perangkap dipasang secara sistematis dan rawak dari Mei 2023 hingga Januari 2024. Jarak antara penempatan manusia terdekat dengan lokasi kamera perangkap serta tahap bunyi antropogenik turut diukur. Data dikumpul setiap bulan bagi kedua-dua parameter tersebut. Sepanjang 2,724 malam pemasangan, kamera perangkap merekodkan lima kejadian tenggiling. Analisis korelasi Pearson menunjukkan hubungan yang sangat lemah (-0.24 hingga 0.32) antara kehadiran Tenggiling Sunda dengan jarak ke penempatan manusia berdasarkan 2,741 titik data. Walaupun tahap bunyi tinggi antara 44.3–57.0 dB, Tenggiling Sunda lebih kerap dikesan berhampiran kamera perangkap pertama ($N = 348$, $r = 0.147$, $p = 0.006^{**}$), iaitu kawasan dengan tahap bunyi tertinggi, menunjukkan toleransi terhadap gangguan bunyi. Dapatkan ini menonjolkan keupayaan adaptasi Tenggiling Sunda terhadap habitat terganggu selagi mereka tidak berasa terancam, serta menekankan keperluan usaha pemuliharaan bersasar untuk mengurangkan impak manusia. Pemeliharaan kawasan yang lebih tenang dan pengurangan gangguan manusia amat penting bagi memastikan kelangsungan hidup Tenggiling Sunda di Bukit Sepanggar. Kajian ini memberi panduan penting untuk merangka strategi pemuliharaan yang berkesan bagi melindungi spesies yang sangat terancam ini.

Mr. Jatishwor Singh Irungbam, Biology Centre CAS, Branišovská, Czech Republic.
Dr. Ian J. Kitching, Natural History Museum, Cromwell Road, UK
Dr. George Mathew, Kerala Forest Research Institute, Peechi, India
Dr. John Noyes, Natural History Museum, London, UK
Dr. Albert G. Orr, Griffith University, Nathan, Australia
Dr. Sameer Padhye, Katholieke Universiteit Leuven, Belgium
Dr. Nancy van der Poorten, Toronto, Canada
Dr. Karen Schnabel, NIWA, Wellington, New Zealand
Dr. R.M. Sharma, (Retd.) Scientist, Zoological Survey of India, Pune, India
Dr. Manju Siliwal, WILD, Coimbatore, Tamil Nadu, India
Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India
Dr. K.A. Subramanian, Zoological Survey of India, New Alipore, Kolkata, India
Dr. P.M. Sureshan, Zoological Survey of India, Kozhikode, Kerala, India
Dr. R. Varatharajan, Manipur University, Imphal, Manipur, India
Dr. Eduard Vives, Museu de Ciències Naturals de Barcelona, Terrassa, Spain
Dr. James Young, Hong Kong Lepidopterists' Society, Hong Kong
Dr. R. Sundararaj, Institute of Wood Science & Technology, Bengaluru, India
Dr. M. Nithyanandan, Environmental Department, La Al Kuwait Real Estate. Co. K.S.C., Kuwait
Dr. Himender Bharti, Punjabi University, Punjab, India
Mr. Purnendu Roy, London, UK
Mr. Saito Motoki, The Butterfly Society of Japan, Tokyo, Japan
Dr. Sanjay Sondhi, TITLI TRUST, Kalpavriksh, Dehradun, India
Dr. Nguyen Thi Phuong Lien, Vietnam Academy of Science and Technology, Hanoi, Vietnam
Dr. Nitin Kulkarni, Tropical Research Institute, Jabalpur, India
Dr. Robin Wen Jiang Ngiam, National Parks Board, Singapore
Dr. Lional Monod, Natural History Museum of Geneva, Genève, Switzerland.
Dr. Asheesh Shivam, Nehru Gram Bharti University, Allahabad, India
Dr. Rosana Moreira da Rocha, Universidade Federal do Paraná, Curitiba, Brasil
Dr. Kurt R. Arnold, North Dakota State University, Saxony, Germany
Dr. James M. Carpenter, American Museum of Natural History, New York, USA
Dr. David M. Claborn, Missouri State University, Springfield, USA
Dr. Karen Schnabel, Marine Biologist, Wellington, New Zealand
Dr. Amazonas Chagas Júnior, Universidade Federal de Mato Grosso, Cuiabá, Brasil
Mr. Monsoon Jyoti Gogoi, Assam University, Silchar, Assam, India
Dr. Heo Chong Chin, Universiti Teknologi MARA (UiTM), Selangor, Malaysia
Dr. R.J. Shiel, University of Adelaide, SA 5005, Australia
Dr. Siddharth Kulkarni, The George Washington University, Washington, USA
Dr. Priyadarshan Dharma Rajan, ATREE, Bengaluru, India
Dr. Phil Alderslade, CSIRO Marine And Atmospheric Research, Hobart, Australia
Dr. John E.N. Veron, Coral Reef Research, Townsville, Australia
Dr. Daniel Whitmore, State Museum of Natural History Stuttgart, Rosenstein, Germany.
Dr. Yu-Feng Hsu, National Taiwan Normal University, Taipei City, Taiwan
Dr. Keith V. Wolfe, Antioch, California, USA
Dr. Siddharth Kulkarni, The Hormiga Lab, The George Washington University, Washington, D.C., USA
Dr. Tomas Ditrich, Faculty of Education, University of South Bohemia in Ceske Budejovice, Czech Republic
Dr. Mihaly Foldvari, Natural History Museum, University of Oslo, Norway
Dr. V.P. Uniyal, Wildlife Institute of India, Dehradun, Uttarakhand 248001, India
Dr. John T.D. Caleb, Zoological Survey of India, Kolkata, West Bengal, India
Dr. Priyadarshan Dharma Rajan, Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Bangalore, Karnataka, India

Fishes

Dr. Topiltzin Contreras MacBeath, Universidad Autónoma del estado de Morelos, México
Dr. Heok Hee Ng, National University of Singapore, Science Drive, Singapore
Dr. Rajeev Raghavan, St. Albert's College, Kochi, Kerala, India
Dr. Robert D. Sluka, Chiltern Gateway Project, A Rocha UK, Southall, Middlesex, UK
Dr. E. Vivekanandan, Central Marine Fisheries Research Institute, Chennai, India
Dr. Davor Zanella, University of Zagreb, Zagreb, Croatia
Dr. A. Biju Kumar, University of Kerala, Thiruvananthapuram, Kerala, India
Dr. Akhilesh KV, ICAR-Central Marine Fisheries Research Institute, Mumbai Research Centre, Mumbai, Maharashtra, India
Dr. J.A. Johnson, Wildlife Institute of India, Dehradun, Uttarakhand, India
Dr. R. Ravinesh, Gujarat Institute of Desert Ecology, Gujarat, India

Amphibians

Dr. Sushil K. Dutta, Indian Institute of Science, Bengaluru, Karnataka, India
Dr. Annemarie Ohler, Muséum national d'Histoire naturelle, Paris, France

Reptiles

Dr. Gernot Vogel, Heidelberg, Germany
Dr. Raja Vyas, Vadodara, Gujarat, India
Dr. Pritpal S. Soorae, Environment Agency, Abu Dhabi, UAE.
Prof. Dr. Wayne J. Fuller, Near East University, Mersin, Turkey
Prof. Chandrashekher U. Rironker, Goa University, Taleigao Plateau, Goa, India
Dr. S.R. Ganesh, Chennai Snake Park, Chennai, Tamil Nadu, India
Dr. Himansu Sekhar Das, Terrestrial & Marine Biodiversity, Abu Dhabi, UAE

Journal of Threatened Taxa is indexed/abstracted in Bibliography of Systematic Mycology, Biological Abstracts, BIOSIS Previews, CAB Abstracts, EBSCO, Google Scholar, Index Copernicus, Index Fungorum, JournalSeek, National Academy of Agricultural Sciences, NewJour, OCLC WorldCat, SCOPUS, Stanford University Libraries, Virtual Library of Biology, Zoological Records.

NAAS rating (India) 5.64

Birds

Dr. Hem Sagar Baral, Charles Sturt University, NSW Australia
Mr. H. Biju, Coimbatore, Tamil Nadu, India
Dr. Chris Bowden, Royal Society for the Protection of Birds, Sandy, UK
Dr. Priya Davidar, Pondicherry University, Kalapet, Puducherry, India
Dr. J.W. Duckworth, IUCN SSC, Bath, UK
Dr. Rajah Jayopal, SACON, Coimbatore, Tamil Nadu, India
Dr. Rajiv S. Kalsi, M.L.N. College, Yamuna Nagar, Haryana, India
Dr. V. Santharam, Rishi Valley Education Centre, Chittoor Dt., Andhra Pradesh, India
Dr. S. Balachandran, Bombay Natural History Society, Mumbai, India
Mr. J. Praveen, Bengaluru, India
Dr. C. Srinivasulu, Osmania University, Hyderabad, India
Dr. K.S. Gopi Sundar, International Crane Foundation, Baraboo, USA
Dr. Gombobaatar Sundev, Professor of Ornithology, Ulaanbaatar, Mongolia
Prof. Reuven Yosef, International Birding & Research Centre, Eilat, Israel
Dr. Taej Mundkur, Wetlands International, Wageningen, The Netherlands
Dr. Carol Inskip, Bishop Auckland Co., Durham, UK
Dr. Tim Inskip, Bishop Auckland Co., Durham, UK
Dr. V. Gokula, National College, Tiruchirappalli, Tamil Nadu, India
Dr. Arkady Lelej, Russian Academy of Sciences, Vladivostok, Russia
Dr. Simon Dowell, Science Director, Chester Zoo, UK
Dr. Mário Gabriel Santiago dos Santos, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, Vila Real, Portugal
Dr. Grant Connette, Smithsonian Institution, Royal, VA, USA
Dr. P.A. Azeez, Coimbatore, Tamil Nadu, India

Mammals

Dr. Giovanni Amori, CNR - Institute of Ecosystem Studies, Rome, Italy
Dr. Anwaruddin Chowdhury, Guwahati, India
Dr. David Mallon, Zoological Society of London, UK
Dr. Shomita Mukherjee, SACON, Coimbatore, Tamil Nadu, India
Dr. Angie Appel, Wild Cat Network, Germany
Dr. P.O. Nameer, Kerala Agricultural University, Thrissur, Kerala, India
Dr. Ian Redmond, UNEP Convention on Migratory Species, Lansdown, UK
Dr. Heidi S. Riddle, Riddle's Elephant and Wildlife Sanctuary, Arkansas, USA
Dr. Karin Schwartz, George Mason University, Fairfax, Virginia.
Dr. Lala A.K. Singh, Bhubaneswar, Orissa, India
Dr. Mewa Singh, Mysore University, Mysore, India
Dr. Paul Racey, University of Exeter, Devon, UK
Dr. Honnavalli N. Kumara, SACON, Anaikatty P.O., Coimbatore, Tamil Nadu, India
Dr. Nishith Dharaiya, HNG University, Patan, Gujarat, India
Dr. Spartaco Gippoliti, Socio Onorario Società Italiana per la Storia della Fauna "Giuseppe Altobello", Rome, Italy
Dr. Justus Joshua, Green Future Foundation, Tiruchirappalli, Tamil Nadu, India
Dr. H. Raghuram, The American College, Madurai, Tamil Nadu, India
Dr. Paul Bates, Harison Institute, Kent, UK
Dr. Jim Sanderson, Small Wild Cat Conservation Foundation, Hartford, USA
Dr. Dan Challender, University of Kent, Canterbury, UK
Dr. David Mallon, Manchester Metropolitan University, Derbyshire, UK
Dr. Brian L. Cypher, California State University-Stanislaus, Bakersfield, CA
Dr. S.S. Talmale, Zoological Survey of India, Pune, Maharashtra, India
Prof. Karan Bahadur Shah, Budhanilkantha Municipality, Kathmandu, Nepal
Dr. Susan Cheyne, Borneo Nature Foundation International, Palangkaraya, Indonesia
Dr. Hemanta Kafley, Wildlife Sciences, Tarleton State University, Texas, USA

Other Disciplines

Dr. Aniruddha Belsare, Columbia MO 65203, USA (Veterinary)
Dr. Mandar S. Paingankar, University of Pune, Pune, Maharashtra, India (Molecular)
Dr. Jack Tordoff, Critical Ecosystem Partnership Fund, Arlington, USA (Communities)
Dr. Ulrike Streicher, University of Oregon, Eugene, USA (Veterinary)
Dr. Hari Balasubramanian, EcoAdvisors, Nova Scotia, Canada (Communities)
Dr. Rayanna Helleni Santos Bezerra, Universidade Federal de Sergipe, São Cristóvão, Brazil
Dr. Jamie R. Wood, Landcare Research, Canterbury, New Zealand
Dr. Wendy Collinson-Jonker, Endangered Wildlife Trust, Gauteng, South Africa
Dr. Rajeshkumar G. Jani, Anand Agricultural University, Anand, Gujarat, India
Dr. O.N. Tiwari, Senior Scientist, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
Dr. L.D. Singla, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
Dr. Rupika S. Rajakaruna, University of Peradeniya, Peradeniya, Sri Lanka
Dr. Bharat Baviskar, Wild-CER, Nagpur, Maharashtra 440013, India

Reviewers 2021–2023

Due to paucity of space, the list of reviewers for 2021–2023 is available online.

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.

Print copies of the Journal are available at cost. Write to:
The Managing Editor, JoTT,
c/o Wildlife Information Liaison Development Society,
3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore,
Tamil Nadu 641006, India
ravi@threatenedtaxa.org & ravi@zooreach.org

Articles

Fruit bat (Pteropodidae) composition and diversity in the montane forests of Mt. Kampalili, Davao De Oro, Philippines

– Ilamay Joy A. Yangurin, Marion John Michael M. Achondo, Aaron Froilan M. Raganas, Aileen Grace D. Delima, Cyrose Suzie Silvosa-Millado, Dolens James B. Iñigo, Shiela Mae E. Cabrera, Sheryl Moana Marie R. Ollamina, Jayson C. Ibañez & Lief Erikson D. Gamalo, Pp. 27551–27562

The impact of anthropogenic activities on *Manis javanica* Desmarest, 1822 (Mammalia: Pholidota: Manidae) in Sepanggar Hill, Malaysia

– Nurasyiqin Awang Shairi, Julius Kodoh, Normah Binti Awang Besar & Jephte Sompud, Pp. 27563–27575

Preliminary notes on a coastal population of Striped Hyena *Hyaena hyaena* (Linnaeus, 1758) from Chilika lagoon, India

– Partha Dey, Tiasa Adhya, Gottumukkala Himaja Varma & Supriya Nandy, Pp. 27576–27583

Wildlife management and conservation implications for Blackbuck corresponding with Tal Chhapar Wildlife Sanctuary, Rajasthan, India

– Ulhas Gondhali, Yogendra Singh Rathore, Sandeep Kumar Gupta & Kanti Prakash Sharma, Pp. 27584–27593

Amphibians and reptiles of Chitwan National Park, Nepal: an updated checklist and conservation issues

– Santosh Bhattarai, Bivek Gautam, Chiranjibi Prasad Pokhrel & Ram Chandra Kandel, Pp. 27594–27610

Butterfly diversity in Nagarahole (Rajiv Gandhi) National Park of Karnataka, India: an updated checklist

– S. Santhosh, V. Gopi Krishna, G.K. Amulya, S. Sheily, M. Nithesh & S. Basavarajappa, Pp. 27611–27636

Floral traits, pollination syndromes, and nectar resources in tropical plants of Western Ghats

– Ankur Patwardhan, Medhavi Tadwalkar, Amruta Joglekar, Mrunalini Sonne, Vivek Pawar, Pratiksha Mestry, Shivani Kulkarni, Akanksha Kashikar & Tejaswini Pachpor, Pp. 27637–27650

Ecological status, distribution, and conservation strategies of *Terminalia coronata* in the community forests of southern Haryana, India

– K.C. Meena, Neetu Singh, M.S. Bhandoria, Pradeep Bansal & S.S. Yadav, Pp. 27651–27660

Pterocarpus santalinus L.f. (Magnoliopsida: Fabaceae) associated arboreal diversity in Seshachalam Biosphere Reserve, Eastern Ghats of Andhra Pradesh, India

– Buchanapalli Sunil Kumar, Araveeti Madhusudhana Reddy, Chennuru Nagendra, Madha Venkata Suresh Babu, Nandimanadalam Rajasekhar Reddy, Veeramasu Jyosthna Sailaja Rani & Salkapuram Sunitha, Pp. 27661–27674

Potential distribution, habitat composition, preference and threats to Spikenard *Nardostachys jatamansi* (D.Don) DC. in Sakteng Wildlife Sanctuary, Trashigang, Bhutan

– Dorji Phuntsho, Namgay Shacha, Pema Rinzin & Tshewang Tenzin, Pp. 27675–27687

Checklist of floristic diversity of Mahadare Conservation Reserve, Satara, Maharashtra, India

– Sunil H. Bhoite, Shweta R. Sutar, Jaykumar J. Chavan & Swapnaja M. Deshpande, Pp. 27688–27704

Communication

Assessing fish diversity in the Ujani reservoir: an updated overview after one decade

– Ganesh Markad, Ranjit More, Vinod Kakade & Jiwan Sarwade, Pp. 27705–27719

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print)

October 2025 | Vol. 17 | No. 10 | Pages: 27551–27786

Date of Publication: 26 October 2025 (Online & Print)

DOI: [10.11609/jott.2025.17.10.27551-27786](https://doi.org/10.11609/jott.2025.17.10.27551-27786)

Reviews

A review of 21st century studies on lizards (Reptilia: Squamata: Sauria) in northeastern India with an updated regional checklist

– Manmath Bharali, Manab Jyoti Kalita, Narayan Sharma & Ananda Ram Boro, Pp. 27720–27733

Understanding the ethnozoological drivers and socioeconomic patterns of bird hunting in the Indian subcontinent

– Anish Banerjee, Pp. 27734–27747

Short Communications

Recent records of endemic bird White-faced Partridge *Arborophila orientalis* (Horsfield, 1821) in Meru Betiri National Park, Indonesia

– Arif Mohammad Siddiq & Nur Kholiq, Pp. 27748–27753

Exploring carapace phenotypic variation in female Fiddler Crab *Austruca annulipes* (H. Milne Edwards, 1837): insights into adaptive strategies and ecological significance

– Vaishnavi Bharti, Sagar Naik & Nitin Sawant, Pp. 27754–27760

Habitat-specific distribution and density of fireflies (Coleoptera: Lampyridae): a comparative study between grassland and woodland habitats

– Kushal Choudhury, Firdaus Ali, Bishal Basumatary, Meghraj Barman, Papiya Das & Hilloljyoti Singha, Pp. 27761–27765

Hygrophila phlomoides Nees (Acanthaceae), a new record to the flora of northern India from Suhelwa Wildlife Sanctuary, Uttar Pradesh

– Pankaj Bharti, Baleshwar Meena, T.S. Rana & K.M. Prabhukumar, Pp. 27766–27770

The rediscovery of *Strobilanthes parryorum* C.E.C.Fisch., 1928 (Asterids: Lamiales: Acanthaceae) in Mizoram, India

– Lucy Lalawmpuii, Renthlei Lalnunfeli, Paulraj Selva Singh Richard, Pochamoni Bharath Simha Yadav, Subbiah Karuppusamy & Kholring Lalchandama, Pp. 27771–27776

New report of *Biophytum nervifolium* Thwaites (Oxalidaceae) from Gujarat, India

– Kishan Ishwarlal Prajapati, Siddharth Dangar, Santhosh Kumar Ettickal Sukumaran, Vivek Chauhan & Ekta Joshi, Pp. 27777–27781

Note

Water Monitor *Varanus salvator* predation on a Hog Deer *Axis porcinus* fawn at Kaziranga National Park, Assam, India

– Saurav Kumar Boruah, Luku Ranjan Nath, Shisukanta Nath & Nilutpal Mahanta, Pp. 27782–27784

Book Review

A book review of moths from the Eastern Ghats: Moths of Agastya

– Sanjay Sondhi, Pp. 27785–27786

Publisher & Host

Threatened Taxa