

Open Access

Publisher

Wildlife Information Liaison Development Societywww.wild.zooreach.org

Host

Zoo Outreach Organizationwww.zooreach.org

Srivari Illam, No. 61, Karthik Nagar, 10th Street, Saravanampatti, Coimbatore, Tamil Nadu 641035, India
Registered Office: 3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore, Tamil Nadu 641006, India
Ph: +91 9385339863 | www.threatenedtaxa.org
Email: sanjay@threatenedtaxa.org

EDITORS

Founder & Chief Editor

Dr. Sanjay Molur

Wildlife Information Liaison Development (WILD) Society & Zoo Outreach Organization (ZOO), Coimbatore, Tamil Nadu 641006, India

Assistant Editor

Dr. Chaithra Shree J., WILD/ZOO, Coimbatore, Tamil Nadu 641006, India

Managing Editor

Mr. B. Ravichandran, WILD/ZOO, Coimbatore, Tamil Nadu 641006, India

Associate Editors

Dr. Mandar Paingankar, Government Science College Gadchiroli, Maharashtra 442605, India**Dr. Ulrike Streicher**, Wildlife Veterinarian, Eugene, Oregon, USA**Ms. Priyanka Iyer**, ZOO/WILD, Coimbatore, Tamil Nadu 641006, India

Board of Editors

Dr. Russel Mittermeier

Executive Vice Chair, Conservation International, Arlington, Virginia 22202, USA

Prof. Mewa Singh Ph.D., FASc, FNA, FNAsc, FNAPsy

Ramanna Fellow and Life-Long Distinguished Professor, Biopsychology Laboratory, and Institute of Excellence, University of Mysore, Mysuru, Karnataka 570006, India; Honorary Professor, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore; and Adjunct Professor, National Institute of Advanced Studies, Bangalore

Stephen D. Nash

Scientific Illustrator, Conservation International, Dept. of Anatomical Sciences, Health Sciences Center, T-8, Room 045, Stony Brook University, Stony Brook, NY 11794-8081, USA

Dr. Fred Pluthero

Toronto, Canada

Dr. Priya Davidar

Sigur Nature Trust, Chadapatti, Mavinhalla PO, Nilgiris, Tamil Nadu 643223, India

Dr. John Fellowes

Honorary Assistant Professor, The Kadoorie Institute, 8/F, T.T. Tsui Building, The University of Hong Kong, Pokfulam Road, Hong Kong

Prof. Dr. Mirco Solé

Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Vice-coordenador do Programa de Pós-Graduação em Zoologia, Rodovia Ilhéus/Itabuna, Km 16 (45662-000) Salobrinho, Ilhéus - Bahia - Brasil

Dr. Rajeev Raghavan

Professor of Taxonomy, Kerala University of Fisheries & Ocean Studies, Kochi, Kerala, India

English Editors**Mrs. Mira Bhojwani**, Pune, India**Dr. Fred Pluthero**, Toronto, Canada**Copy Editors****Ms. Usha Madgunki**, Zooreach, Coimbatore, India**Ms. Trisa Bhattacharjee**, Zooreach. Coimbatore, India**Ms. Paloma Noronha**, Daman & Diu, India**Web Development****Mrs. Latha G. Ravikumar**, ZOO/WILD, Coimbatore, India**Typesetting****Mrs. Radhika**, Zooreach, Coimbatore, India**Mrs. Geetha**, Zooreach, Coimbatore India**Fundraising/Communications****Mrs. Payal B. Molur**, Coimbatore, India**Subject Editors 2021–2023****Fungi****Dr. B. Shivaraju**, Bengaluru, Karnataka, India**Dr. R.K. Verma**, Tropical Forest Research Institute, Jabalpur, India**Dr. Vatsavaya S. Raju**, Kakatiya University, Warangal, Andhra Pradesh, India**Dr. M. Krishnappa**, Jnana Sahyadri, Kuvenpu University, Shimoga, Karnataka, India**Dr. K.R. Sridhar**, Mangalore University, Mangalagangotri, Mangalore, Karnataka, India**Dr. Gunjan Biswas**, Vidyasagar University, Midnapore, West Bengal, India**Dr. Kiran Ramchandra Ranadive**, Annaheb Magar Mahavidyalaya, Maharashtra, India**Plants****Dr. G.P. Sinha**, Botanical Survey of India, Allahabad, India**Dr. N.P. Balakrishnan**, Ret. Joint Director, BSI, Coimbatore, India**Dr. Shonil Bhagwat**, Open University and University of Oxford, UK**Prof. D.J. Bhat**, Retd. Professor, Goa University, Goa, India**Dr. Ferdinand Boero**, Università del Salento, Lecce, Italy**Dr. Dale R. Calder**, Royal Ontario Museum, Toronto, Ontario, Canada**Dr. Cleofas Cervancia**, Univ. of Philippines Los Baños College Laguna, Philippines**Dr. F.B. Vincent Florens**, University of Mauritius, Mauritius**Dr. Merlin Franco**, Curtin University, Malaysia**Dr. V. Irudayaraj**, St. Xavier's College, Palayamkottai, Tamil Nadu, India**Dr. B.S. Kholia**, Botanical Survey of India, Gangtok, Sikkim, India**Dr. Pankaj Kumar**, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, USA.**Dr. V. Sampath Kumar**, Botanical Survey of India, Howrah, West Bengal, India**Dr. A.J. Solomon Raju**, Andhra University, Visakhapatnam, India**Dr. Vijayasankar Raman**, University of Mississippi, USA**Dr. B. Ravi Prasad Rao**, Sri Krishnadevaraya University, Anantapur, India**Dr. K. Ravikumar**, FRLHT, Bengaluru, Karnataka, India**Dr. Aparna Watve**, Pune, Maharashtra, India**Dr. Qiang Liu**, Xishuangbanna Tropical Botanical Garden, Yunnan, China**Dr. Noor Azhar Mohamed Shazili**, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia**Dr. M.K. Vasudeva Rao**, Shiv Ranjan Housing Society, Pune, Maharashtra, India**Prof. A.J. Solomon Raju**, Andhra University, Visakhapatnam, India**Dr. Manda Datar**, Agharkar Research Institute, Pune, Maharashtra, India**Dr. M.K. Janarthanam**, Goa University, Goa, India**Dr. K. Karthigeyan**, Botanical Survey of India, India**Dr. Errol Vela**, University of Montpellier, Montpellier, France**Dr. P. Lakshminarasiham**, Botanical Survey of India, Howrah, India**Dr. Larry R. Noblick**, Montgomery Botanical Center, Miami, USA**Dr. K. Haridasan**, Pallavur, Palakkad District, Kerala, India**Dr. Analinda Manila-Fajard**, University of the Philippines Los Banos, Laguna, Philippines**Dr. P.A. Siru**, Central University of Kerala, Kasaragod, Kerala, India**Dr. Afroz Alam**, Banasthali Vidyapith (accredited A grade by NAAC), Rajasthan, India**Dr. K.P. Rajesh**, Zamorin's Guruvayurappan College, GA College PO, Kozhikode, Kerala, India**Dr. David E. Boufford**, Harvard University Herbaria, Cambridge, MA 02138-2020, USA**Dr. Ritesh Kumar Choudhary**, Agharkar Research Institute, Pune, Maharashtra, India**Dr. A.G. Pandurangan**, Thiruvananthapuram, Kerala, India**Dr. Navendu Page**, Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India**Dr. Kannan C.S. Warrier**, Institute of Forest Genetics and Tree Breeding, Tamil Nadu, India**Invertebrates****Dr. R.K. Avasthi**, Rohtak University, Haryana, India**Dr. D.B. Bastawade**, Maharashtra, India**Dr. Partha Pratim Bhattacharjee**, Tripura University, Suryamaninagar, India**Dr. Kailash Chandra**, Zoological Survey of India, Jabalpur, Madhya Pradesh, India**Dr. Ansie Dippenaar-Schoeman**, University of Pretoria, Queenswood, South Africa**Dr. Rory Dow**, National Museum of natural History Naturalis, The Netherlands**Dr. Brian Fisher**, California Academy of Sciences, USA**Dr. Richard Gallon**, Ilandudno, North Wales, LL30 1UP**Dr. Hemant V. Ghate**, Modern College, Pune, India**Dr. M. Monwar Hossain**, Jahangirnagar University, Dhaka, BangladeshFor Focus, Scope, Aims, and Policies, visit https://threatenedtaxa.org/index.php/JoTT/aims_scopeFor Article Submission Guidelines, visit <https://threatenedtaxa.org/index.php/JoTT/about/submissions>For Policies against Scientific Misconduct, visit https://threatenedtaxa.org/index.php/JoTT/policies_various

continued on the back inside cover

Cover: The nine vultures of India, digital art made on Krita by Dupati Poojitha.

Propagation through stem cutting and air layering of a Critically Endangered tree *Humboldtia unijuga* Bedd. var. *trijuga* J.Joseph & V.Chandras. (Magnoliopsida: Fabales: Fabaceae)

Scaria Shintu¹ & P.S. Jothish²

^{1,2} Jawaharlal Nehru Tropical Botanic Garden and Research Institute (JNTBGRI), Palode, Thiruvananthapuram, Kerala 695562, India.

¹ University of Kerala, Thiruvananthapuram, Kerala 695034, India.

¹ shintuscaria1@gmail.com, ² jothishtbgr@gmail.com (corresponding author)

Abstract: *Humboldtia unijuga* var. *trijuga* is an evergreen tree, endemic to the southern Western Ghats of India belonging to the family Fabaceae, and is categorized as 'Critically Endangered'. High rates of flower & fruit predation and the recalcitrant nature of seeds have detrimental effect on regeneration, and individual recruitment in the wild. Therefore, the present study aimed to produce saplings through conventional propagation methods of stem cuttings and air layering by exogenous application of auxins, with various concentrations of Indole-3-butryic acid (IBA), Indole-3 acetic acid (IAA), and α -Naphthalene acetic acid (NAA). The study revealed that both IBA and IAA had developmental effects on stem cuttings and air layering, but maximum rooting was observed at 1,500 mg/l of IBA. This concentration may be used for mass multiplication and conservation of this endangered tree species.

Keywords: Agasthyamalai, auxin, conservation, conventional propagation method, evergreen tree, southern Western Ghats, Thiruvananthapuram.

Editor: Kannan C.S. Warrier, KSCSTE - Kerala Forest Research Institute, Thrissur, India.

Date of publication: 26 September 2025 (online & print)

Citation: Shintu, S. & P.S. Jothish (2025). Propagation through stem cutting and air layering of a Critically Endangered tree *Humboldtia unijuga* Bedd. var. *trijuga* J.Joseph & V.Chandras. (Magnoliopsida: Fabales: Fabaceae). *Journal of Threatened Taxa* 17(9): 27426-27432. <https://doi.org/10.11609/jott.9498.17.9.27426-27432>

Copyright: © Shintu & Jothish 2025. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: Science and Engineering Research Board (SERB) – India provided funding support to this study through Core Research Programme (File no. EMR/2017/001179/PS) to the author Jothish P.S.

Competing interests: The authors declare no competing interests.

Author details: SCARIA SHINTU is a research scholar at the Division of Plant Genetic Resources, KSCSTE – Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Palode, Thiruvananthapuram, Kerala. His research focuses on conservation biology and genetic diversity studies. JOTHISH P.S. is a principal scientist at the Division of Plant Genetic Resources, KSCSTE – Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Palode, Thiruvananthapuram, Kerala. His research expertise spans plant population biology, reproductive biology, genetic diversity studies and conservation of plant genetic resources especially on medicinal and aromatic plants.

Author contributions: PSJ conceptualised and designed the work, analysed the data, SS carried out the fieldwork, data collection, and drafted the manuscript. PSJ corrected and edited the manuscript in the final form. PSJ and SS approved the final manuscript.

Acknowledgments: We greatly acknowledge the director, KSCSTE-JNTBGRI for extending facilities, the funding of Science and Engineering Research Board (SERB), Government of India through the Order No. EMR/2017/001179/PS to the second author, the University of Kerala for enrolling the first author in the PhD program, and Kerala Forest Department for forest entry permission.

INTRODUCTION

Humboldtia unijuga var. *trijuga* J.Joseph & V.Chandras. is a medium-sized evergreen tree of the family Leguminosae, endemic to the southern Western Ghats. Its distribution is highly restricted to the hillocks of the Agasthyamala forests within the altitude range of 490–1,050 m (Sanjappa 1986). This species has been categorized as ‘Critically Endangered’ by the IUCN Red List (WCMC 1998). Traditional healers use the bark and leaves of this tree for skin treatment (Vijayan et al. 2007). Its crimson-coloured cauliflorous flowers, with their strikingly attractive appearance, make this plant as a potential ornamental choice for gardens, and avenues. Being a Critically Endangered species and a potential economically important plant, conservation of this species is highly essential. Studies showed that flower, fruit, and seed predation by animals along with the recalcitrant nature of seeds negatively affect the natural regeneration, and recruitment of this species (Jothish & Anilkumar 2023). Hence, it is very important to multiply the plant and reintroduce into its natural habitat. Vegetative propagation is an easy and advantageous method to obtain saplings of species with ineffective sexual reproduction (Honney & Bossuyt 2005; Jose et al. 2011).

Vegetative propagation methods are considered technically simple and cost-effective for developing exact copies and conserving the stock plants with the same genetic identity (Carmona et al. 2022). Treating with rooting hormones is an effective approach for the multiplication and vegetative propagation of any plant species (Abidin & Metali 2015). The positive effects of auxin treatment for vegetative propagation were reported by various workers (Ali et al. 2008; Kharkwal et al. 2008; Jeruto et al. 2010; Kamila & Panda 2019). Among the propagation methods, air layering has an added advantage over other techniques, as it ensures early blooming, and fruit set (Jose et al. 2010). In this context, simple vegetative propagation trials of air layering and stem cuttings were conducted with rooting hormones for the production of more planting materials for the reintroduction, and conservation programs of this species.

MATERIALS AND METHODS

Study species

Humboldtia unijuga var. *trijuga* is an evergreen under-storey species growing up to 12 m. It is located

in Bonacaud of Thiruvananthapuram District of Kerala State. The tree naturally exhibits slow growth. Leaves are compound with three to four pair of leaflets. Flowering is observed in August–January. Flowers are borne in compact racemes on branches and main trunk, and are crimson red in colour. Fruit is a legume with one or two seeds and fruits are observed in December–April. Insect larvae and arboreal animals like monkeys and squirrels predate flowers and fruits. Seeds are large and recalcitrant.

Stem cuttings

The stem-cutting experiment was conducted during August–September at the central nursery of Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Palode, in 2022. Each experiment had 25 cuttings for each treatment. Healthy and disease-free stem cuttings of semi-hard type having 15–20 cm of length, 8–10 mm diameter with 3–5 nodes, and leaves were collected from adult individuals from the natural habitat. Immediately after collection, the cuttings were brought to the nursery and treated with 1% Bavistin to avoid fungal infection. The basal portion of each cutting was cut at right angles and dipped in four different concentrations of auxins (500, 1,000, 1,500, and 2,000 mg/l), viz., Indole-3-butyric acid (IBA), Indole-3 acetic acid (IAA), and α -Naphthalene acetic acid (NAA) for five minutes. The cuttings dipped in distilled water were treated as a control. The cuttings were planted on the same day of collection as early as possible. To avoid / reduce the transpiration rate, the leaf’s surface area was subjected to a half-cut. Immediately after the treatment, the whole set was planted into the sand bed in the mist house having a temperature of 28 ± 2 °C, and 70–80 % relative humidity. Intermittent mist was supplied for 40 seconds six times in a day. The experiment was observed twice a week for the first six weeks, and the cuttings that showed wilting were removed. After 12 weeks the sprouted plants were observed. Root parameters like percentage of rooting, number of roots per cutting, and root length were recorded. Cuttings with roots of ≥ 1 mm were considered as rooted and used for calculating rooting percentage (out of total treatments) and root length of ≥ 1 cm was considered for calculating mean number of roots. After measurements, they were planted in polythene bags containing a potting mixture of river sand, dried cow dung, and garden soil in a 2:1:1 ratio. Survival percentage was calculated after six months.

Air layering

Air layering was done on 16 randomly selected

disease-free, healthy individuals of *H. unijuga* var. *trijuga* growing in its habitat. The layering experiments were conducted in August–September of 2022, which experienced an active growth phase of the plant with favorable climatic conditions. Actively growing stems were selected, and from these branches, and lateral branches of 30–50 cm length, and 1–3 cm diameter with leaves were randomly selected from each tree for layering treatments. A small strip of bark (3 cm) from the selected branches was girdled out below the nodal region using a sharp budding knife. Various concentrations (500, 1,000, 1,500, and 2,000 mg/l) of growth hormones such as IBA, IAA, and NAA were applied (absorbent cotton dipped in respective concentrations of auxins) on the girdled region, and were covered with polythene sleeves containing moist rooting compost. The rooting medium was prepared by mixing cocopeat, river sand, and dried cow dung in a ratio of 2:1:1. Both ends of the layering were tied tightly with thread to avoid drying of the medium. Small holes were made in the polythene sleeves to permit limited air exchange. The trials were carried out in such a manner that a single tree was layered with the application of a single concentration (500 or 1,000 or 1,500, or 2,000 mg/l) of different hormones including one control without hormones (4 treatments + 1 control). Accordingly, a total of 80 layers (experiment) were created under four different auxin treatments. The air layers were labelled properly and left undisturbed for eight weeks. Observations were made weekly for root emergence and the treatments were sprayed with water to maintain moisture content. After eight weeks, the air layers were cut from the parent plant and the rooting mixture was gently removed. The success of layers was assessed by recording the presence of callus, rooting percentage, number of roots, and root length as in stem cuttings. The number of roots initiated from each treatment was counted and averaged. Similarly, lengths of roots formed in a layer were measured, and mean root length was calculated. After measurements, air-layered plants were planted in polythene bags containing potting mixture of river sand, dried cow dung, and garden soil in 2:1:1 ratio and kept in the nursery. Survival percentage was calculated after six months.

Statistical analysis

Each of the five treatments, including the control, was replicated five times. The results of root length and number of roots were subjected to one-way analysis of variance (ANOVA) followed by Duncan's multiple range test, $p \leq 0.05$ with SPSS software v.16. Data for mean root length and number of roots are given as mean \pm

standard error of the replicates.

RESULTS

Propagation through stem cuttings

The stem cuttings treated with IBA and IAA only showed developmental response. The rooting percentage was varied 16–66.6 under different auxin concentrations. All IBA-treated cuttings showed rooting, while cuttings treated with 1,000 and 1,500 mg/l IAA only showed rooting. Those cuttings treated with NAA and control cuttings showed no rooting response at all (Table 1). Cuttings treated with 1,500 mg/l of IBA showed maximum rooting (66.6%), whereas 1,500 mg/l IAA resulted in 54.5% rooting. The mean root number and mean root length of IBA set ranged from 2.4 ± 0.24 – 7.2 ± 0.58 and 1.8 ± 0.05 – 6.4 ± 0.12 cm and were significantly higher than other treatments (one-way ANOVA). The IAA set ranged from 2.2 ± 0.37 – 5.2 ± 0.48 and 2.3 ± 0.18 – 4.7 ± 0.12 cm, respectively (Image 1A–C). The bud initiation was observed on the fourth week after planting in control cuttings, however after the bud break it dried off. The stem cuttings treated with 1,500 mg/l of IBA and IAA showed bud initiation after two weeks, and responded with maximum rooting, and shooting. After six weeks the buds were transformed into fully functional leaves. Finally, after 12 weeks the regenerated stem cuttings were transplanted into separate pots.

Air layering

Air layering samples responded positively to auxins such as IBA and IAA. The root initiation was observed in hormone-treated samples after 3–4 weeks. Rooting percentage varied 20–52.6 %. The number of roots and root length were measured after eight weeks (Image 1D–E). Data indicated that layering of samples treated with 1,500 mg/l of IBA recorded higher percentage of rooting success (52.6%) and was at par with 1,500 mg/l of IAA (46.1%). The mean root number and the mean root length of IBA set ranged from 3.2 ± 0.20 – 10.2 ± 0.37 and 1.6 ± 1.01 – 7.2 ± 0.19 cm, and significantly higher than other treatments (one-way ANOVA). The IAA set was 3.2 ± 0.20 – 6.8 ± 0.20 and 2.6 ± 0.08 – 4.6 ± 0.13 cm, respectively (Table 2). After 15 weeks the layered samples were transplanted into separate pots and placed under a mist house before reintroduction.

Image 1. *Humboldtia unijuga* var. *trijuga*: A–C—Stem cuttings. A—1,500 mg/l of IBA treated stem cutting | B—1,500 mg/l of IAA treated stem cutting | C—Stem cutting established on polythene bag | D—Air layering | E—early flowering on air layered sapling. © Shintu S.

DISCUSSION

The present study aimed to develop a vegetative propagation protocol for the multiplication and ex situ conservation of the 'Critically Endangered' species *H. unijuga* var. *trijuga*. When effective seeding is not

available, exact copies of the parent plant can be produced in large numbers using conventional propagation methods, which can be made more successful through the application of exogenous auxin, within a shorter period. The present study showed that exogenous application of specific auxins resulted in rooting in stem

Table 1. Effect of different concentrations of auxins on rooting percentage, number and length of roots, and survival percentage of stem cuttings of *Humboldtia unijuga* var. *trijuga* after 12 weeks.

Treatments / hormone	Concentration (mg/l)	Callus formation (%)	Number of roots (Mean \pm SE)	Root length (cm) (Mean \pm SE)	Rooting (%)	Survival (%)
Control	NA	16	NR	NR	NR	NA
IBA	500	32	2.4 \pm 0.24 ^d	1.8 \pm 0.05 ^f	25	25
	1000	56	3.8 \pm 0.37 ^c	2.7 \pm 0.12 ^d	54.5	36.3
	1500	68	7.2 \pm 0.58 ^a	6.4 \pm 0.12 ^a	66.6	40
	2000	36	4.4 \pm 0.89 ^{bc}	3.5 \pm 0.15 ^c	16	NR
IAA	500	24	NR	NR	NR	NA
	1000	40	2.2 \pm 0.37 ^d	2.3 \pm 0.18 ^e	44.4	25
	1500	56	5.2 \pm 0.48 ^b	4.7 \pm 0.12 ^b	54.5	33.3
	2000	NR	NA	NA	NA	NA
NAA	500	NR	NA	NA	NA	NA
	1000	NR	NA	NA	NA	NA
	1500	NR	NA	NA	NA	NA
	2000	NR	NA	NA	NA	NA

Note: Stem cuttings with at least one root were considered for calculating percentage of rooting: SE—standard error | ANOVA Df (n-1) = 12, F = 74.6***, F = 573.9***, level of significance P < 0.05, n = 25 | different letters indicate significant differences between treatments based on p value < 0.05 and same letter are not significantly different from each other at the p < 0.05. NR—Not responded | NA—Not applicable.

Table 2. Effects of different concentrations of auxins on rooting percentage, number and length of roots, and survival percentage of air-layered branches *Humboldtia unijuga* var. *trijuga* after 12 weeks.

Treatment / hormone	Concentration (mg/l)	Callus formation (%)	Number of roots (Mean \pm SE)	Root length in cm (Mean \pm SE)	Rooting (%)	Survival (%)
Control		30	1.4 \pm 0.24 ^d	1.04 \pm 0.05 ^e	33.3	NR
IBA	500	20	3.8 \pm 0.37 ^c	2.4 \pm 0.14 ^c	20	NR
	1000	52	6.6 \pm 0.50 ^b	4.3 \pm 0.11 ^b	46.1	50
	1500	76	10.2 \pm 0.37 ^a	7.2 \pm 0.19 ^a	52.6	60
	2000	36	3.2 \pm 0.20 ^c	1.6 \pm 0.06 ^d	22.2	NR
IAA	500	NR	NA	NA	NA	NA
	1000	36	3.2 \pm 0.20 ^c	2.6 \pm 0.08 ^c	33.3	33.3
	1500	52	6.8 \pm 0.20 ^b	4.6 \pm 0.13 ^b	46.1	42.8
	2000	NR	NA	NA	NA	NA
NAA	500	NR	NA	NA	NA	NA
	1000	NR	NA	NA	NA	NA
	1500	NR	NA	NA	NA	NA
	2000	NR	NA	NA	NA	NA

Note: Air layering with at least one root was considered for calculating the percentage of rooting: SE—standard error; ANOVA Df (n-1) = 12, F = 203.7***, F = 683.5***, level of significance P < 0.05, n = 25 | different letters indicate significant differences between treatments based on p value < 0.05 and same letter are not significantly different from each other at the p < 0.05. NR—Not responded | NA—Not applicable.

cuttings and air layering in *H. unijuga* var. *trijuga*, and the saplings survived successfully. Many studies revealed the effectiveness of vegetative propagation of endemic and endangered species used for the restoration of vegetation (Lemay et al. 2009; Ramos-Palacios et al. 2012; Duarte et al. 2018) and ex situ conservation

practices for species with inherent problems of seed germination and seedling establishment in wild (Kamila & Panda 2019). Also, this will allow large-scale production of planting materials for reintroduction programmes. The precision of auxins was found critical for the vegetative propagation success in this study. Auxins are particularly

crucial for plant cell growth and are involved in numerous biological processes including initiation of leaf primordia, and lateral root production (Bertoni 2011; Pacurar et al. 2014).

The present study confirmed that the application of auxins IBA and IAA were found ideal for *H. unijuga* var. *trijuga* which promote root formation both in air layering, and stem cuttings like *Syzygium caryophyllum* (Hussain & Anilkumar 2016) and *Dysoxylum malabaricum* (Hussain et al. 2013), as they found that stem cuttings treated with 1,500 mg/l of IBA recorded the highest rooting success (53.3%) and 63% of success in air layering. Although rooting was observed in all the treatments, especially of IBA treatments, data revealed the maximum significant rooting response by higher concentration of IBA followed by higher concentration of IAA (Tables 1 & 2). The application of IBA may enhance the translocation of sugar to the base of cuttings and stimulate rooting in the layering process. Nanda (1975) reported that auxins promote the activity of hydrolytic enzymes, which in turn promotes stem cuttings to root by enhancing the mobilization of reserve food supplies. The present experiment revealed that stem cuttings treated with 1,500 mg/l IBA resulted in significantly higher values for sprouting of 66.6% and 54.6% survival. The application of IBA was found ideal for the allied species *Humboldtia vahliana* as reported by Jose et al. (2010). Behera et al. (2020) reported that cuttings of *Commiphora wightii* treated with concentrations of IBA shows better result at concentration of 1,000 mg/l. The present study as well as other studies showed that IBA is one of the most effective and widely used auxins in vegetative propagation over a wide range of concentrations and is effective in stimulating root growth in a large number of plant species (Hartman et al. 2011). IBA was found to be a better rooting hormone in comparison with IAA & NAA, and is nontoxic to plants (Eganathan et al. 2000). In this study, no response was found against the application of NAA in both stem cuttings and air layering. Jose et al. (2011) recorded a high percentage of rooting in *Humboldtia bourdillonii*, an allied endemic species, using 500 mg/l of NAA. This may be due to the inherent physiological differences of the species.

It was observed that the rooting response treated with 1,500 mg/l of IAA and IBA were recorded with formation of maximum number of roots and survival. The highest survival percentage of air layers (60%) was recorded in stem treated with 1,500 mg/l IBA and 42.8 % in IAA. A similar type of result was reported in *Elaeocarpus venustus* (Soorangkattan et al. 2021). According to Eganathan et al. (2000), saplings raised

via air-layering exhibit greater adaptability to field conditions. A higher rooting success was reported by Kamila & Panda (2019) when using 5,000 mg/l of IBA in *Lasiococca comberi*. Woody forest species like *Myrica esculenta* (Purohit et al. 2004) and *Quercus glauca* (Purohit et al. 2005) were easily multiplied through air layering. The rooting response varies depending on the type of cuttings used and the season may be due to the activities of hydrolytic enzymes which are reported to be highly active during monsoon and post monsoon months (Nanda 1975; Blake & Bentley 1985).

The present study showed that the application of IBA and IAA may result in rooting of stem cuttings, and air layering experiments of the endangered woody species *Humboldtia unijuga* var. *trijuga*, which could be used successfully for mass propagation, and for reintroduction programs. Also, the plants survived well in the nursery (Tables 1 & 2) and even some of the air-layered saplings flowered (Image 1E). This feature showed a good indication that these plants reintroduced in their native habitat, may survive.

CONCLUSION

The present study revealed a mass multiplication technique through stem rooting and air layering by the application of auxins to conserve this critically endangered species. The stem cuttings and layering samples pre-treated with 1,000 & 1,500 mg/l of IBA, and IAA showed the maximum response. The present study may provide a cost-effective technique for mass production of genetically identical mature planting materials for reintroduction programmes. This technique could support the long-term survival of this species in the wild.

REFERENCES

Abidin, N. & F. Metali (2015). Effects of different types and concentrations of auxins on juvenile stem cuttings for propagation of potential medicinal *Dillenia suffruticosa* (Griff. Ex Hook. F. and Thomson) Martelli shrub. *Research Journal of Botany* 10(3): 73–87. <https://doi.org/10.3923/rjb.2015.73.87>

Ali, M., A.R. Malik & K.R. Sharma (2008). Vegetative propagation of *Berberis aristata* DC. An endangered Himalayan shrub. *Journal of Medicinal Plants Research* 2(12): 374–377.

Behera, L.K., A.A. Mehta, C.A. Dholariya, M. Sukhadia, R.P. Gunaga & S.M. Patel (2020). Vegetative propagation of Guggul (*Commiphora wightii* (Arn.) Bhan.): a commercially important and threatened medicinal plant species. *e-planet* 18: 164–169.

Bertoni, G. (2011). Indole butyric acid-derived auxin and plant development. *The Plant Cell* 23(3): 845. <https://doi.org/10.1105/tpc.111.230312>

Blake, T.J. & C.V. Bentley (1986). Clonal propagation of forest trees by rooting of cuttings. International Energy Agency, Forest Energy, CPB-2, Cooperative Project B2. Uppsatseroch Resultat-Sveriges, Lantbruks universitet, 49 pp.

Carmona, R., A.A. D'Oliveira, D.F.N. Ferreira, T.E. DCosta, L.C. Carvalho & H.M. Gonçalves (2022). Air layering in *Caryocar Brasiliense* — effect of stem diameter. *Ciência Rural* 52: e20201040. <https://doi.org/10.1590/0103-8478cr20201040>

Duarte, E.R., Gonzalez R.B., R. Rubenich & S.P. Rocha (2018). Vegetative propagation method for ex situ conservation of *Sida ramoniana* Krapov. (Malvaceae): an endemic species with medicinal potential in danger of extinction. *International Journal of Agriculture and Biology* 20(12): 2779–2784.

Eganathan, P., C.S. Rao & A. Anand (2000). Vegetative propagation of the mangrove tree species by cuttings and air layering. *Wetlands Ecology and Management* 8: 281–286. <https://doi.org/10.1023/A:1008481222718>

Hartman, H.T., D.E. Kester, F.T. Davies & R.L. Geneve (2011). *Hartmann and Kester's Plant Propagation: Principles and Practices*, 8th Edition. Prentice Hall, New Jersey.

Honnay, O. & B. Bossuyt (2005). Prolonged clonal growth: escape route or route to extinction? *Oikos* 108: 427–432. <https://www.jstor.org/stable/3548459>

Hussain, A., A.G. Pandurangan & R. Remya (2013). Clonal propagation through stem cuttings and air layering in *Dysoxylum malabaricum* Bedd. ex Hiern. — an endemic and rare tree species of the Western Ghats. *Indian Journal of Forestry* 36(2): 187–190.

Hussain, A. & C. Anilkumar (2016). Clonal propagation through stem cuttings and air layering in *Syzygium caryophyllum* (L.) Alston an endemic tree species of the Western Ghats and Sri Lanka. *Journal of Non Timber Forest Products* 23: 85–87.

Jothish, P.S. & C. Anilkumar (2023). Report on Population Biology of *Humboldtia unijuga* var. *trijuga*, an Endemic and Endangered Tree Species of the Southern Western Ghats and its Conservation. SERB, Government of India, 32 pp.

Jeruto, P., C. Mutai, G. Ouma, C. Lukhoba, R.L. Nyamaka & S.D. Manani (2010). Ethnobotanical survey and propagation of some endangered medicinal plants from south Nandi district of Kenya. *Journal of Animal & Plant Sciences* 8(3): 1016–1043.

Jose, P.A., N. Mohanan & A. Hussain (2010). Clonal propagation of *Humboldtia vahliana* Wt. — an endemic tree of southern Western Ghats. *Ecology Environment and Conservation* 16: 365–368.

Jose, P.A., A.G. Pandurangan & A. Hussain (2011). Ex-situ conservation through macro propagation of *Humboldtia bourdillonii* Prain — a critically endangered tree of southern Western Ghats, India. *Annals of Forestry* 19: 179–184.

Joseph, J. & V. Chandrasekharan (1984). New Variety of *Humboldtia unijuga* Bedd. From south India. *Journal of Bombay Natural Historical Society* 81: 729–730.

Kamila, P.K. & P.C. Panda (2019). Large-scale vegetative propagation of *Lasiococca comberi* by air layering. *Journal of Tropical Forest Science* 31(1): 37–42. <https://doi.org/10.26525/jtfs2019.31.1.037042>

Kharkwal, A.C., R. Kushwaha, O. Prakash, R.K. Ogra, A. Bhattacharya, P.K. Nagar & P.S. Ahuja (2008). An efficient method of propagation of *Podophyllum hexandrum* an endangered medicinal plant of the Western Himalayas under ex-situ conditions. *Journal of Natural Medicines* 62: 211–216. <https://doi.org/10.1007/s11418-007-0217-9>

Lemay, V., G. Gateble & S. McCoy (2009). Vegetative propagation of two endemic species of *Cloezia Brongn. & Gris* for conservation and mining revegetation activities in New Caledonia. *New forests* 37(1): 1–8. <https://doi.org/10.1007/s11056-008-9103-x>

Nanda, K.K. (1975). Physiology of adventitious root formation. *Indian Journal of Plant Physiology* 12: 99–107.

Pacurari, D.I., I. Perrone & C. Bellini (2014). Auxin is a central player in the hormone cross-talks that control adventitious rooting. *Physiologia Plantarum* 151(1): 83–96. <https://doi.org/10.1111/plp.12171>

Purohit, V.K., S. Nandi, L. Palni, N. Bag & D.S. Rawat (2004). Successful air layering in *Myrica esculenta* — a simple and clonal method of propagation. *National Academy Science Letters* 27: 205–208.

Purohit, V.K., L. Palni, M.S. Rikhari & S.K. Nandi (2005). Rooting of air layered shoots of *Quercus glauca* Thunb. and subsequent performance of such plants and seedlings under different microclimatic conditions. *Indian Forester* 131(6): 786–796. <https://doi.org/10.36808/if/2005/v131i6/1762>

Ramos-Palacios, R., A. Orozco-Segovia, M.E. Sánchez-Coronado & V.L. Barradas (2012). Vegetative propagation of native species potentially useful in the restoration of Mexico City's vegetation. *Revista Mexicana de Biodiversidad* 83(3): 809–816. <https://doi.org/10.7550/mb.21610>

Sanjappa, M. (1986). A revision of the Genus *Humboldtia* Vahl (Leguminosae-Caesalpinoideae). *Blumea* 31: 329–339.

Soorangkattan, S., K.D. Nalluchamy, A. Nagarajan, B. Thulasinathan, M. Jayabalan, J.B. Muthuramalingam & M. Krishnasamy (2021). In-situ conservation of endangered tree species (*Elaeocarpus venustus* Bedd.) habitated in Agasthiyamalai Biosphere Reserve, Southern Western Ghats, India. *Environmental Science and Pollution Research* 28: 33958–33966. <https://doi.org/10.1007/s11356-021-13227-8>

Vijayan, A., V.B. Liju, J.V. Reena, B. Parthipan & C. Renuka (2007). Traditional remedies of Kani tribes of Kottoor reserve forest, Agasthyavanam, Thiruvananthapuram, Kerala. *Indian Journal of Traditional Knowledge* 6: 589–594.

World Conservation Monitoring Centre (1998). *Humboldtia unijuga* var. *trijuga*. The IUCN Red List of Threatened Species 1998: e.T31190A9606724. <https://doi.org/10.2305/IUCN.UK.1998.RLTS.T31190A9606724.en>. Accessed on 10.ix.2025.

Mr. Jatishwor Singh Irungbam, Biology Centre CAS, Branišovská, Czech Republic.
Dr. Ian J. Kitching, Natural History Museum, Cromwell Road, UK
Dr. George Mathew, Kerala Forest Research Institute, Peechi, India
Dr. John Noyes, Natural History Museum, London, UK
Dr. Albert G. Orr, Griffith University, Nathan, Australia
Dr. Sameer Padhye, Katholieke Universiteit Leuven, Belgium
Dr. Nancy van der Poorten, Toronto, Canada
Dr. Karen Schnabel, NIWA, Wellington, New Zealand
Dr. R.M. Sharma, (Retd.) Scientist, Zoological Survey of India, Pune, India
Dr. Manju Siliwal, WILD, Coimbatore, Tamil Nadu, India
Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India
Dr. K.A. Subramanian, Zoological Survey of India, New Alipore, Kolkata, India
Dr. P.M. Sureshan, Zoological Survey of India, Kozhikode, Kerala, India
Dr. R. Varatharajan, Manipur University, Imphal, Manipur, India
Dr. Eduard Vives, Museu de Ciències Naturals de Barcelona, Terrassa, Spain
Dr. James Young, Hong Kong Lepidopterists' Society, Hong Kong
Dr. R. Sundararaj, Institute of Wood Science & Technology, Bengaluru, India
Dr. M. Nithyanandan, Environmental Department, La Al Kuwait Real Estate. Co. K.S.C., Kuwait
Dr. Himender Bharti, Punjabi University, Punjab, India
Mr. Purnendu Roy, London, UK
Mr. Saito Motoki, The Butterfly Society of Japan, Tokyo, Japan
Dr. Sanjay Sondhi, TITLI TRUST, Kalpavriksh, Dehradun, India
Dr. Nguyen Thi Phuong Lien, Vietnam Academy of Science and Technology, Hanoi, Vietnam
Dr. Nitin Kulkarni, Tropical Research Institute, Jabalpur, India
Dr. Robin Wen Jiang Ngiam, National Parks Board, Singapore
Dr. Lional Monod, Natural History Museum of Geneva, Genève, Switzerland.
Dr. Asheesh Shivam, Nehru Gram Bharti University, Allahabad, India
Dr. Rosana Moreira da Rocha, Universidade Federal do Paraná, Curitiba, Brasil
Dr. Kurt R. Arnold, North Dakota State University, Saxony, Germany
Dr. James M. Carpenter, American Museum of Natural History, New York, USA
Dr. David M. Claborn, Missouri State University, Springfield, USA
Dr. Karen Schnabel, Marine Biologist, Wellington, New Zealand
Dr. Amazonas Chagas Júnior, Universidade Federal de Mato Grosso, Cuiabá, Brasil
Mr. Monsoon Jyoti Gogoi, Assam University, Silchar, Assam, India
Dr. Heo Chong Chin, Universiti Teknologi MARA (UiTM), Selangor, Malaysia
Dr. R.J. Shiel, University of Adelaide, SA 5005, Australia
Dr. Siddharth Kulkarni, The George Washington University, Washington, USA
Dr. Priyadarshan Dharma Rajan, ATREE, Bengaluru, India
Dr. Phil Alderslade, CSIRO Marine And Atmospheric Research, Hobart, Australia
Dr. John E.N. Veron, Coral Reef Research, Townsville, Australia
Dr. Daniel Whitmore, State Museum of Natural History Stuttgart, Rosenstein, Germany.
Dr. Yu-Feng Hsu, National Taiwan Normal University, Taipei City, Taiwan
Dr. Keith V. Wolfe, Antioch, California, USA
Dr. Siddharth Kulkarni, The Hormiga Lab, The George Washington University, Washington, D.C., USA
Dr. Tomas Ditrich, Faculty of Education, University of South Bohemia in Ceske Budejovice, Czech Republic
Dr. Mihaly Foldvari, Natural History Museum, University of Oslo, Norway
Dr. V.P. Uniyal, Wildlife Institute of India, Dehradun, Uttarakhand 248001, India
Dr. John T.D. Caleb, Zoological Survey of India, Kolkata, West Bengal, India
Dr. Priyadarshan Dharma Rajan, Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Bangalore, Karnataka, India

Fishes

Dr. Topiltzin Contreras MacBeath, Universidad Autónoma del estado de Morelos, México
Dr. Heok Hee Ng, National University of Singapore, Science Drive, Singapore
Dr. Rajeev Raghavan, St. Albert's College, Kochi, Kerala, India
Dr. Robert D. Sluka, Chiltern Gateway Project, A Rocha UK, Southall, Middlesex, UK
Dr. E. Vivekanandan, Central Marine Fisheries Research Institute, Chennai, India
Dr. Davor Zanella, University of Zagreb, Zagreb, Croatia
Dr. A. Biju Kumar, University of Kerala, Thiruvananthapuram, Kerala, India
Dr. Akhilesh KV, ICAR-Central Marine Fisheries Research Institute, Mumbai Research Centre, Mumbai, Maharashtra, India
Dr. J.A. Johnson, Wildlife Institute of India, Dehradun, Uttarakhand, India
Dr. R. Ravinesh, Gujarat Institute of Desert Ecology, Gujarat, India

Amphibians

Dr. Sushil K. Dutta, Indian Institute of Science, Bengaluru, Karnataka, India
Dr. Annemarie Ohler, Muséum national d'Histoire naturelle, Paris, France

Reptiles

Dr. Gernot Vogel, Heidelberg, Germany
Dr. Raja Vyas, Vadodara, Gujarat, India
Dr. Pritpal S. Soorae, Environment Agency, Abu Dhabi, UAE.
Prof. Dr. Wayne J. Fuller, Near East University, Mersin, Turkey
Prof. Chandrashekher U. Rironker, Goa University, Taleigao Plateau, Goa, India
Dr. S.R. Ganesh, Chennai Snake Park, Chennai, Tamil Nadu, India
Dr. Himansu Sekhar Das, Terrestrial & Marine Biodiversity, Abu Dhabi, UAE

Journal of Threatened Taxa is indexed/abstracted in Bibliography of Systematic Mycology, Biological Abstracts, BIOSIS Previews, CAB Abstracts, EBSCO, Google Scholar, Index Copernicus, Index Fungorum, JournalSeek, National Academy of Agricultural Sciences, NewJour, OCLC WorldCat, SCOPUS, Stanford University Libraries, Virtual Library of Biology, Zoological Records.

NAAS rating (India) 5.64

Birds

Dr. Hem Sagar Baral, Charles Sturt University, NSW Australia
Mr. H. Biju, Coimbatore, Tamil Nadu, India
Dr. Chris Bowden, Royal Society for the Protection of Birds, Sandy, UK
Dr. Priya Davidar, Pondicherry University, Kalapet, Puducherry, India
Dr. J.W. Duckworth, IUCN SSC, Bath, UK
Dr. Rajah Jayopal, SACON, Coimbatore, Tamil Nadu, India
Dr. Rajiv S. Kalsi, M.L.N. College, Yamuna Nagar, Haryana, India
Dr. V. Santharam, Rishi Valley Education Centre, Chittoor Dt., Andhra Pradesh, India
Dr. S. Balachandran, Bombay Natural History Society, Mumbai, India
Mr. J. Praveen, Bengaluru, India
Dr. C. Srinivasulu, Osmania University, Hyderabad, India
Dr. K.S. Gopi Sundar, International Crane Foundation, Baraboo, USA
Dr. Gombobaatar Sundev, Professor of Ornithology, Ulaanbaatar, Mongolia
Prof. Reuven Yosef, International Birding & Research Centre, Eilat, Israel
Dr. Taej Mundkur, Wetlands International, Wageningen, The Netherlands
Dr. Carol Inskip, Bishop Auckland Co., Durham, UK
Dr. Tim Inskip, Bishop Auckland Co., Durham, UK
Dr. V. Gokula, National College, Tiruchirappalli, Tamil Nadu, India
Dr. Arkady Lelej, Russian Academy of Sciences, Vladivostok, Russia
Dr. Simon Dowell, Science Director, Chester Zoo, UK
Dr. Mário Gabriel Santiago dos Santos, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, Vila Real, Portugal
Dr. Grant Connette, Smithsonian Institution, Royal, VA, USA
Dr. P.A. Azeez, Coimbatore, Tamil Nadu, India

Mammals

Dr. Giovanni Amori, CNR - Institute of Ecosystem Studies, Rome, Italy
Dr. Anwaruddin Chowdhury, Guwahati, India
Dr. David Mallon, Zoological Society of London, UK
Dr. Shomita Mukherjee, SACON, Coimbatore, Tamil Nadu, India
Dr. Angie Appel, Wild Cat Network, Germany
Dr. P.O. Nameer, Kerala Agricultural University, Thrissur, Kerala, India
Dr. Ian Redmond, UNEP Convention on Migratory Species, Lansdown, UK
Dr. Heidi S. Riddle, Riddle's Elephant and Wildlife Sanctuary, Arkansas, USA
Dr. Karin Schwartz, George Mason University, Fairfax, Virginia.
Dr. Lala A.K. Singh, Bhubaneswar, Orissa, India
Dr. Mewa Singh, Mysore University, Mysore, India
Dr. Paul Racey, University of Exeter, Devon, UK
Dr. Honnavalli N. Kumara, SACON, Anaikatty P.O., Coimbatore, Tamil Nadu, India
Dr. Nishith Dharaiya, HNG University, Patan, Gujarat, India
Dr. Spartaco Gippoliti, Socio Onorario Società Italiana per la Storia della Fauna "Giuseppe Altobello", Rome, Italy
Dr. Justus Joshua, Green Future Foundation, Tiruchirappalli, Tamil Nadu, India
Dr. H. Raghuram, The American College, Madurai, Tamil Nadu, India
Dr. Paul Bates, Harison Institute, Kent, UK
Dr. Jim Sanderson, Small Wild Cat Conservation Foundation, Hartford, USA
Dr. Dan Challender, University of Kent, Canterbury, UK
Dr. David Mallon, Manchester Metropolitan University, Derbyshire, UK
Dr. Brian L. Cypher, California State University-Stanislaus, Bakersfield, CA
Dr. S.S. Talmale, Zoological Survey of India, Pune, Maharashtra, India
Prof. Karan Bahadur Shah, Budhanilkantha Municipality, Kathmandu, Nepal
Dr. Susan Cheyne, Borneo Nature Foundation International, Palangkaraya, Indonesia
Dr. Hemanta Kafley, Wildlife Sciences, Tarleton State University, Texas, USA

Other Disciplines

Dr. Aniruddha Belsare, Columbia MO 65203, USA (Veterinary)
Dr. Mandar S. Paingankar, University of Pune, Pune, Maharashtra, India (Molecular)
Dr. Jack Tordoff, Critical Ecosystem Partnership Fund, Arlington, USA (Communities)
Dr. Ulrike Streicher, University of Oregon, Eugene, USA (Veterinary)
Dr. Hari Balasubramanian, EcoAdvisors, Nova Scotia, Canada (Communities)
Dr. Rayanna Helleni Santos Bezerra, Universidade Federal de Sergipe, São Cristóvão, Brazil
Dr. Jamie R. Wood, Landcare Research, Canterbury, New Zealand
Dr. Wendy Collinson-Jonker, Endangered Wildlife Trust, Gauteng, South Africa
Dr. Rajeshkumar G. Jani, Anand Agricultural University, Anand, Gujarat, India
Dr. O.N. Tiwari, Senior Scientist, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
Dr. L.D. Singla, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
Dr. Rupika S. Rajakaruna, University of Peradeniya, Peradeniya, Sri Lanka
Dr. Bharat Baviskar, Wild-CER, Nagpur, Maharashtra 440013, India

Reviewers 2021–2023

Due to paucity of space, the list of reviewers for 2021–2023 is available online.

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.

Print copies of the Journal are available at cost. Write to:
The Managing Editor, JoTT,
c/o Wildlife Information Liaison Development Society,
3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore,
Tamil Nadu 641006, India
ravi@threatenedtaxa.org & ravi@zooreach.org

Articles

Floral inventory and habitat significance of riparian ecosystem along the banks of Chithari River, Kasaragod, Kerala, India

– Sreehari K. Mohan, Shyamkumar Puravankara & P. Biju, Pp. 27407–27425

Propagation through stem cutting and air layering of a Critically Endangered tree *Humboldtia unijuga* Bedd. var. *trijuga* J.Joseph & V.Chandras. (Magnoliopsida: Fabales: Fabaceae)

– Scaria Shintu & P.S. Jothish, Pp. 27426–27432

Niche characterization and distribution of Sikkim Himalayan *Begonia* (Begoniaceae), India: a niche modeling approach

– Aditya Pradhan, Dibyendu Adhikari & Arun Chettri, Pp. 27433–27443

Diversity of snakes (Reptilia: Serpentes) in the Tezpur University Campus, Assam, India

– Mahari Jiumin Basumatary, Anubhav Bhuyan & Robin Doley, Pp. 27444–27455

Diversity and status of shorebirds in the estuaries of Algiers, northern Algeria

– Imad Eddine Rezouani, Belkacem Aimene Boulaouad, Selmane Chabani, Khalil Draidi & Badis Bakhouche, Pp. 27456–27463

Communities attitudes and conservation strategies for flying foxes *Pteropus* spp. (Mammalia: Chiroptera: Pteropodidae): a case study from Sabah, Malaysia Borneo

– Lawrence Alan Bansa, Marcela Pimid, Liesbeth Frias, Sergio Guerrero-Sánchez & Noor Haliza Hasan, Pp. 27464–27487

Communications

Leaf architecture of threatened *Aquilaria cumingiana* (Decne.) Ridley and *Aquilaria malaccensis* Lam. (Thymelaeales: Thymelaeaceae) using morphometrics analysis

– Rhea Lou R. Germo, Christian C. Estrologo & Gindol Rey A. Limbaro, Pp. 27488–27495

First record of *Euclimacia nodosa* (Westwood, 1847) and two species of the genus *Mantispilla* Enderlein, 1910 (Neuroptera: Mantispidae) from the sub-Himalayan foothills of West Bengal, India

– Abhirup Saha, Ratnadeep Sarkar, Subhajit Das, Prapti Das & Dhiraj Saha, Pp. 27496–27505

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print)

September 2025 | Vol. 17 | No. 9 | Pages: 27407–27550

Date of Publication: 26 September 2025 (Online & Print)

DOI: [10.11609/jott.2025.17.9.27407-27550](https://doi.org/10.11609/jott.2025.17.9.27407-27550)

Butterfly diversity in Jitpur Simara Sub-metropolitan City, Bara District, Nepal: a preliminary checklist

– Alisha Mulmi, Prakriti Chataut & Mahamad Sayab Miya, Pp. 27506–27516

First documented case of flunixin residue in a Himalayan Vulture *Gyps himalayensis* Hume, 1869 (Aves: Accipitridae: Accipitridae) in India: conservation and veterinary implications

– Soumya Sundar Chakraborty, Debal Ray, Apurba Sen, P.J. Harikrishnan, Nabi Kanta Jha & Rounaq Ghosh, Pp. 27517–27522

Review

MaxENT tool for species modelling in India: an overview

– S. Suresh Ramanan, A. Arunachalam, U.K. Sahoo & Kalidas Upadhyaya, Pp. 27523–27534

Short Communications

Vocalisations of Rusty-spotted Cats *Prionailurus rubiginosus* (I. Geoffroy Saint-Hilaire, 1831) (Mammalia: Carnivora: Felidae) in Frankfurt Zoo

– Vera Pfannerstill, Johannes Köhler & Sabrina Linn, Pp. 27535–27539

Effect of schistosomiasis on captive elephants in Madhya Pradesh, India

– Onkar Anchal & K.P. Singh, Pp. 27540–27543

Notes

Recent additions and taxonomic changes in the liverwort and hornwort flora of India

– Shuvadeep Majumdar & Monalisa Dey, Pp. 27544–27547

First photographic record of the Smooth-coated Otter *Lutra perspicillata* in Polavaram Forest Range, Andhra Pradesh, India

– Arun Kumar Gorati, Ritesh Vishwakarma, Anukul Nath & Parag Nigam, Pp. 27548–27550

Publisher & Host

Threatened Taxa