

Building evidence for conservation globally

# Journal of Threatened Taxa



10.11609/jott.2024.16.11.26063-26186

[www.threatenedtaxa.org](http://www.threatenedtaxa.org)

26 November 2024 (Online & Print)

16 (11): 26063-26186

ISSN 0974-7907 (Online)

ISSN 0974-7893 (Print)

Open Access





## Publisher

**Wildlife Information Liaison Development Society**[www.wild.zooreach.org](http://www.wild.zooreach.org)

Host

**Zoo Outreach Organization**[www.zooreach.org](http://www.zooreach.org)

Srivari Illam, No. 61, Karthik Nagar, 10th Street, Saravanampatty, Coimbatore, Tamil Nadu 641006, India  
Registered Office: 3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore, Tamil Nadu 641006, India

Ph: +91 9385339863 | [www.threatenedtaxa.org](http://www.threatenedtaxa.org)

Email: sanjay@threatenedtaxa.org

## EDITORS

## Founder &amp; Chief Editor

**Dr. Sanjay Molur**Wildlife Information Liaison Development (WILD) Society & Zoo Outreach Organization (ZOO),  
43/2 Varadarajulu Nagar, 5<sup>th</sup> Street West, Ganapathy, Coimbatore, Tamil Nadu 641006, India

## Deputy Chief Editor

**Dr. Neelesh Dahanukar**

Noida, Uttar Pradesh, India

## Managing Editor

**Mr. B. Ravichandran**, WILD/ZOO, Coimbatore, Tamil Nadu 641006, India

## Associate Editors

**Dr. Mandar Paingankar**, Government Science College Gadchiroli, Maharashtra 442605, India**Dr. Ulrike Streicher**, Wildlife Veterinarian, Eugene, Oregon, USA**Ms. Priyanka Iyer**, ZOO/WILD, Coimbatore, Tamil Nadu 641006, India

## Editorial Board

**Dr. Russel Mittermeier**

Executive Vice Chair, Conservation International, Arlington, Virginia 22202, USA

**Prof. Mewa Singh Ph.D., FASc, FNA, FNASC, FNAPsy**Ramanna Fellow and Life-Long Distinguished Professor, Biopsychology Laboratory, and  
Institute of Excellence, University of Mysore, Mysuru, Karnataka 570006, India; Honorary  
Professor, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore; and Adjunct  
Professor, National Institute of Advanced Studies, Bangalore**Stephen D. Nash**Scientific Illustrator, Conservation International, Dept. of Anatomical Sciences, Health Sciences  
Center, T-8, Room 045, Stony Brook University, Stony Brook, NY 11794-8081, USA**Dr. Fred Pluthero**

Toronto, Canada

**Dr. Priya Davidar**

Sigur Nature Trust, Chadapatti, Mavinhalia PO, Nilgiris, Tamil Nadu 643223, India

**Dr. John Fellowes**Honorary Assistant Professor, The Kadoorie Institute, 8/F, T.T. Tsui Building, The University of  
Hong Kong, Pokfulam Road, Hong Kong**Prof. Dr. Mirco Solé**Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Vice-coordenador  
do Programa de Pós-Graduação em Zoologia, Rodovia Ilhéus/Itabuna, Km 16 (45662-000)  
Salobrinho, Ilhéus - Bahia - Brasil**Dr. Rajeev Raghavan**

Professor of Taxonomy, Kerala University of Fisheries &amp; Ocean Studies, Kochi, Kerala, India

## English Editors

**Mrs. Mira Bhojwani**, Pune, India**Dr. Fred Pluthero**, Toronto, Canada**Mr. P. Ilangovan**, Chennai, India**Ms. Sindhura Stothra Bhashyam**, Hyderabad, India

## Web Development

**Mrs. Latha G. Ravikumar**, ZOO/WILD, Coimbatore, India

## Typesetting

**Mrs. Radhika**, ZOO, Coimbatore, India**Mrs. Geetha**, ZOO, Coimbatore India

## Fundraising/Communications

**Mrs. Payal B. Molur**, Coimbatore, India

## Subject Editors 2021–2023

## Fungi

Dr. B. Shivaraju, Bengaluru, Karnataka, India

Dr. R.K. Verma, Tropical Forest Research Institute, Jabalpur, India

Dr. Vatsavaya S. Raju, Kakatiya University, Warangal, Andhra Pradesh, India

Dr. M. Krishnappa, Jnana Sahyadri, Kuvenpura University, Shimoga, Karnataka, India

Dr. K.R. Sridhar, Mangalore University, Mangalagangotri, Mangalore, Karnataka, India

Dr. Gunjan Biswas, Vidyasagar University, Midnapore, West Bengal, India

Dr. Kiran Ramchandra Ranadive, Annasaheb Magar Mahavidyalaya, Maharashtra, India

## Plants

Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India

Dr. N.P. Balakrishnan, Ret. Joint Director, BSI, Coimbatore, India

Dr. Shonil Bhagwat, Open University and University of Oxford, UK

Prof. D.J. Bhat, Retd. Professor, Goa University, Goa, India

Dr. Ferdinand Boero, Università del Salento, Lecce, Italy

Dr. Dale R. Calder, Royal Ontario Museum, Toronto, Ontario, Canada

Dr. Cleofas Cervancia, Univ. of Philippines Los Baños College Laguna, Philippines

Dr. F.B. Vincent Florens, University of Mauritius, Mauritius

Dr. Merlin Franco, Curtin University, Malaysia

Dr. V. Irudayaraj, St. Xavier's College, Palayamkottai, Tamil Nadu, India

Dr. B.S. Kholia, Botanical Survey of India, Gangtok, Sikkim, India

Dr. Pankaj Kumar, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, USA

Dr. V. Sampath Kumar, Botanical Survey of India, Howrah, West Bengal, India

Dr. A.J. Solomon Raju, Andhra University, Visakhapatnam, India

Dr. Vijayasanchari Raman, University of Mississippi, USA

Dr. B. Ravi Prasad Rao, Sri Krishnadevaraya University, Anantapur, India

Dr. K. Ravikumar, FRLHT, Bengaluru, Karnataka, India

Dr. Aparna Watve, Pune, Maharashtra, India

Dr. Qiang Liu, Kishuangbanna Tropical Botanical Garden, Yunnan, China

Dr. Noor Azhar Mohamed Shazili, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia

Dr. M.K. Vasudeva Rao, Shiv Ranjani Housing Society, Pune, Maharashtra, India

Prof. A.J. Solomon Raju, Andhra University, Visakhapatnam, India

Dr. Mander Datar, Agharkar Research Institute, Pune, Maharashtra, India

Dr. M.K. Janarthanan, Goa University, Goa, India

Dr. K. Karthigeyan, Botanical Survey of India, India

Dr. Errol Vela, University of Montpellier, Montpellier, France

Dr. P. Lakshminarasimhan, Botanical Survey of India, Howrah, India

Dr. Larry R. Noblick, Montgomery Botanical Center, Miami, USA

Dr. K. Haridasan, Pallavur, Palakkad District, Kerala, India

Dr. Analinda Manila-Fajard, University of the Philippines Los Baños, Laguna, Philippines

Dr. P.A. Sinu, Central University of Kerala, Kasaragod, Kerala, India

Dr. Afroz Alam, Banasthali Vidyapith (accredited A grade by NAAC), Rajasthani, India

Dr. K.P. Rajesh, Zamorin's Guruvayurappan College, GA College PO, Kozhikode, Kerala, India

Dr. David E. Boufford, Harvard University Herbaria, Cambridge, MA 02138-2020, USA

Dr. Ritesh Kumar Choudhary, Agharkar Research Institute, Pune, Maharashtra, India

Dr. A.G. Pandurangan, Thiruvananthapuram, Kerala, India

Dr. Navendu Page, Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India

Dr. Kannan C.S. Warrier, Institute of Forest Genetics and Tree Breeding, Tamil Nadu, India

## Invertebrates

Dr. R.K. Avasthi, Rohtak University, Haryana, India

Dr. D.B. Bastawade, Maharashtra, India

Dr. Partha Pratim Bhattacharjee, Tripura University, Suryamaninagar, India

Dr. Kailash Chandra, Zoological Survey of India, Jabalpur, Madhya Pradesh, India

Dr. Ansie Dippenaar-Schoeman, University of Pretoria, Queenswood, South Africa

Dr. Rory Dow, National Museum of Natural History Naturalis, The Netherlands

Dr. Brian Fisher, California Academy of Sciences, USA

Dr. Richard Gallon, Ilandudno, North Wales, LL30 1UP

Dr. Hemant V. Ghate, Modern College, Pune, India

Dr. M. Monwar Hossain, Jahangirnagar University, Dhaka, Bangladesh

Mr. Jatishwar Singh Irungbam, Biology Centre CAS, Branišovská, Czech Republic.

Dr. Ian J. Kitching, Natural History Museum, Cromwell Road, UK

Dr. George Mathew, Kerala Forest Research Institute, Peechi, India

For Focus, Scope, Aims, and Policies, visit [https://threatenedtaxa.org/index.php/JoTT/aims\\_scope](https://threatenedtaxa.org/index.php/JoTT/aims_scope)For Article Submission Guidelines, visit <https://threatenedtaxa.org/index.php/JoTT/about/submissions>For Policies against Scientific Misconduct, visit [https://threatenedtaxa.org/index.php/JoTT/policies\\_various](https://threatenedtaxa.org/index.php/JoTT/policies_various)

continued on the back inside cover

Cover: Mixed media with fine liners, colour pencils, and watercolour background of an Indian funnel web spider. © Elakshi Mahika Molur.



## Unregulated wild orchid trade in Manipur: an analysis of the Imphal Valley markets from the Indo-Burma hotspot

Kamei Kambuikhonlu Kabuini<sup>1</sup>  & Maibam Dhanaraj Meitei<sup>2</sup> 

<sup>1,2</sup> Department of Environmental Science, Manipur University, Canchipur, Manipur 795003, India.

<sup>1</sup> [kameikambui@gmail.com](mailto:kameikambui@gmail.com), <sup>2</sup> [maibam.meitei@yahoo.in](mailto:maibam.meitei@yahoo.in) (corresponding author)

**Abstract:** Unsustainable and illegal trade of wild orchids at local and international markets is a well-known conservation issue throughout the world. Local as well as international trade of wild orchids is under-reported and under-researched. The study assessed wild orchids traded in markets of the Imphal Valley, the northeastern Indian state of Manipur in 2022–23. Eighty-two wild orchid species from 33 genera were observed to be traded including the wild orchid species, viz., *Paphiopedilum hirsutissimum*, *Renanthera imschootiana*, and *Vanda coerulea*, protected under the Wildlife (Protection) Act, 1972 of India. The local wild orchid trade in Imphal is unregulated, unchecked and unmonitored, which is a serious concern for the conservation of wild orchid species in Manipur and within the Indo-Burma hotspot.

**Keywords:** CITES, Imphal valley, local wild orchid trade, Orchidaceae, orchid sanctuaries, *Renanthera imschootiana*, *Vanda coerulea*, wild orchids.

**Editor:** Pankaj Kumar, Florida International University & Fairchild Tropical Botanic Garden, Miami, USA. **Date of publication:** 26 November 2024 (online & print)

**Citation:** Kabuini, K.K. & M.D. Meitei (2024). Unregulated wild orchid trade in Manipur: an analysis of the Imphal Valley markets from the Indo-Burma hotspot. *Journal of Threatened Taxa* 16(11): 26078–26088. <https://doi.org/10.11609/jott.9329.16.11.26078-26088>

**Copyright:** © Kabuini & Meitei 2024. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

**Funding:** None.

**Competing interests:** The authors declare no competing interests.

**Author details:** KAMEI KAMBUIKHONLU KABUINI was a master's student in the Department of Environmental Science, Manipur University. She has worked on her dissertation entitled "Unregulated commercialization of wild orchids in Manipur: An analysis of Imphal Valley markets". DR. MAIBAM DHANARAJ MEITEI is a faculty in the Department of Environmental Science, School of Human and Environmental Sciences, Manipur University, Canchipur, India. His research area is focussed on wetland studies, environmental pollution monitoring, phytotechnology and bioresource management.

**Author contributions:** MDM framed the concept of the project; KKK performed the survey; MDM and KKK were involved in analysis, manuscript writing, editing and finalizing the manuscript. All authors have read and approved the final version of the manuscript.

**Acknowledgements:** Kamei Kambuikhonlu Kabuini acknowledges the cooperation provided by orchid collectors and sellers during market survey. Authors also thank the local buyers for their cooperation during data collection. Authors also thank the Department of Environmental Science, Manipur University for providing the infrastructure facility.



## INTRODUCTION

With an estimated 28,484 species, orchids account for 10% of angiosperms and represent the most diverse group of flowering plants, as well as the most threatened (Kumar 2024). Habitat loss coupled with climate change pose serious threats for orchids which are terrestrial, epiphytic and lithophytic (Barman & Devadas 2013; Brummitt et al. 2015). Orchids represent a significant illegally traded horticultural crop because of their beauty, rarity and popularity (Ballantyne & Pickering 2012; Phelps & Webb 2015; Hinsley et al. 2016). Consequently, all orchid species are included in the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) in Appendix I and II, where the trade of Orchidaceae family is either legally regulated or prohibited (UNEP-WCMC 2018). Additionally, the International Union for Conservation of Nature (IUCN) has listed 2023 orchid species in the 'Threatened' category (IUCN 2024).

Around 1484 orchid species are reported from India and the northeastern states of Arunachal Pradesh, Assam, Manipur, Meghalaya, Mizoram, Nagaland, Sikkim, and Tripura represent an important orchid hotspot with a total of 856 species (Kumar et al. 2022). From the Indian subcontinent, the usage of orchids for medicine is reported since ancient times with different orchids mentioned in Ayurveda (Bose et al. 2017). Today, illegal trade of wild orchid species in northern India intended for their use in local traditional medicine and international trade for the Chinese herbal medicine is pushing different rare and threatened species towards extinction (Hinsley et al. 2018). Around 1295 species belonging to 179 genera found in India are listed in the Appendix II of CITES (De 2022). Moreover, as a result of high demand in the Indian market, orchid cut flowers worth INR 2321.84 lakhs were imported in 2018–19 (De 2020). Despite the increasing demand in India for both local and international trade, most of the orchid dealers haven't explored the concepts of mass scale multiplication techniques. The native sellers largely depend on the harvest from wild to meet the supply chain (TRAFFIC 2022; WWF-India 2022). In the northeastern state of Manipur, deforestation in the hills for jhum and charcoal harvesting, forest fire and illegal overexploitation for trade are the major threats to orchids. The state is home to 407 orchid taxa belonging to 95 genera (Mao & Deori 2018). The mass scale orchid production using micropropagation is still lacking in the state. Therefore, majority of the trade is based on wild collection from tropical and subtropical forests of

Manipur. Hence, in order to highlight the problem of unmonitored wild orchid trade, a project was undertaken to identify major wild orchid selling areas in the Imphal valley region of Manipur and document the wild orchid species traded locally during 2022–23.

## MATERIALS AND METHODS

### Study area

Manipur is a state in the northeastern India region (24.663°E & 93.906°N) of the Indo-Burma hotspot. The state with an area of 22,327 km<sup>2</sup> can be sub-divided into two regions; central oval shaped Imphal or Manipur Valley (constituting 10%) and surrounding hills (Image 1). The 2,238 km<sup>2</sup> valley is surrounded by hills with a maximum elevation of 2,994 m (Laiba 1992). The region is dominated by tropical moist deciduous vegetation and records an annual rainfall of 1,500–1,700 mm. The minimum temperature ranges 2–21 °C and maximum of 23–36 °C, respectively.

### Market survey

The market surveys were performed in Khwairamband, Pishumthong, Naoremthong, Lamlong, Sekmai, and Bishnupur markets of the Imphal Valley during September–November, 2022 and February–April, 2023 (Image 1; Table 1). The markets were visited on a weekly basis during early morning hours (Image 2). The information's were collected based on a semi structured questionnaire (Q1) and field photographs of wild orchids along with the sellers were taken with due permission. Moreover, prior permission was obtained from sellers for participation under the assurance of anonymity and confidentiality. Ten female sellers (individuals mainly from Kangpokpi and Senapati districts) from 10 vendors were questioned. During the survey, information's such as local name of wild orchids, collection methods, frequency of collection, collection season, location of orchid habitat, rarity in wild, preference by buyers, demand in market and price in market were gathered. Later, wild orchids were identified using available standard literature wealth on orchids of Manipur (Deb 1961; Mao 1999; Kumar & Kumar 2005; Nanda et al. 2013; Mao & Deori 2018; Rao & Kumar 2018). The scientific names of wild orchids were cross checked using the online website (WFO Plant List 2024) of the Royal Botanic Garden, Kew and Missouri Botanical Garden (accessed on 6 September 2024). Further, information's on endemicity and threatened status of wild orchids were gathered and compiled (IUCN 2024).

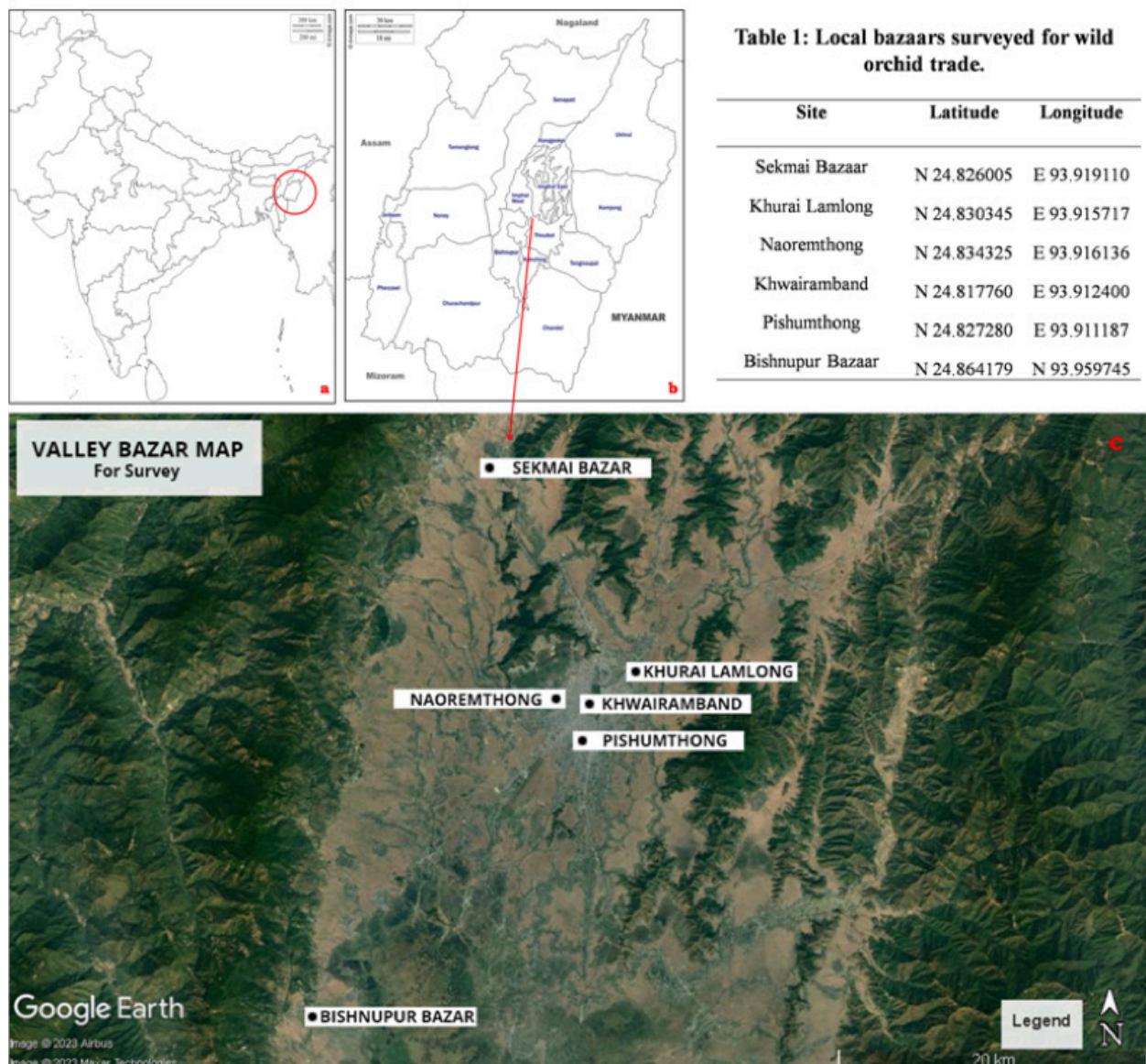



Image 1. a—Map of India | b—Manipur | c—the Imphal valley region with local bazaars surveyed for wild orchid trade documentation during 2022–2023.

### Household survey

To assess the viability of wild orchids in local households, 15 local cultivators from 15 different localities of the Imphal Valley, viz., Thoubal, Kakching, Keishampat, Keishamthong, Wangoi, Namdunlong, Ragailong, Langthabal khoupum, Thongju, Khagempali, Singjamei, Chingmeirong, Kyamgei, and Sagoltongba were interviewed using semi-structured questionnaire (Q2). The buyer's questionnaire consisted of questions such as preferences of orchid, purchasing frequency, the total number of orchids purchased so far, number of orchids that died during household cultivation, the price range of orchids bought, knowledge of rare orchids and

government role in orchid conservation in the state, etc.

### Data analysis

The information obtained from wild orchid sellers and cultivators was analysed in the Department of Environmental Science, Manipur University. Further, the survival rate of wild orchids under cultivation in local households and knowledge of local buyers on the threatened and rare status of wild orchids were calculated from questionnaire data using Microsoft Excel 2010 for windows.

## RESULTS AND DISCUSSION

### Socio-demographic characteristics of orchid collectors and sellers

The wild orchid collectors and sellers belong to local tribal ethnic groups of Manipur (mainly from Kuki and Naga ethnic communities). For the individuals, wild orchid collection and their trade is a means of livelihood. The interview of local sellers revealed that the families involved in the trade during the study period were from economically weaker sections. As such, the trade of wild orchids, wild edibles, and horticultural plants collected from the jungles of Manipur serves as a significant income source for the individuals. More or less, they are agriculturalist or horticulturalists, or individuals devoted to floriculture.

### Collection of wild orchids from jungles of Manipur

The orchid collection was mainly performed by villagers between 30 and 50 years old. Although the sellers were from Kangpokpi and Senapati Districts during the survey, the collectors mentioned that wild orchids came from all hill districts of Manipur, viz., Tamenglong, Churachandpur, Ukhru, Tengnoupal, Kamjong, Pherzawl, Noney, and Chandel. Moreover, the orchid sellers interviewed were involved in trade for a minimum of 2–3 years. For local trade, wild orchid collection is performed throughout the year irrespective of flowering seasons. The epiphytic orchids were collected by experienced climbers gathering orchids by hand or using a long bamboo pole with a machete attached at the top to detach orchids from trunks and branches of tall trees. Another destructive method predominantly used by collectors is felling of host trees and gathering of all wild orchids, irrespective of demand. For terrestrial orchids, tubers were unearthed and whole plants were collected. As such, with no knowledge of sustainability among collectors, orchid habitats are often destroyed to a point with little chance for regeneration after harvest seasons. In addition, orchid collectors have little knowledge about threatened status of wild orchids. This has led to depletion of many orchid bio-resources in its natural habitats which are endemic or rare in the region.

### Wild orchids traded in the Imphal Valley markets

During the survey, it was observed that Pishumthong bazaar is the main hub for local wild orchid trade in the valley (Image 1). On average, 4–5 local sellers were observed during market visits. The sellers were from Kangpokpi and Senapati Districts of Manipur. Further

monitoring of other busy local bazaars at Naoremthong, Lamlong, Sekmai, and Bishnupur showed no reports of wild orchid traders opening their vendors during the study period. A total of 82 wild orchid species from 33 genera were locally traded during the study period, 2022–2023 (Table 2; Image 3). Orchids such as *Bulbophyllum reptans*, *Coelogyne alba*, *Coelogyne articulata*, *Liparis resupinata*, and *Pholidota imbricata* were marketed between price range of INR 30–50, respectively. The low-price range is associated with less fondness of local buyers. Hence, they are in low demand according to sellers. Moreover, wild orchids such as *Bulbophyllum* spp., *Liparis* spp., *Oberonia* spp., with unattractive flowers are rarely bought. The unattractive nature is concentrated on the color and size of flowers as per the buyer's opinion. On the contrary, the price of species such as *Cleisostoma simondii*, *Cymbidium bicolor*, *Cymbidium elegans*, *Dendrobium wardianum*, *Schoenorchis fragrans*, *Vanda alpina*, and *V. coerulea* ranged from INR 100–500, respectively. The higher price is associated with repeat purchases by local buyers and their rarity as per the seller's opinion. Further, most orchid species in high demand have captivating (large and colorful) unique flowers. The species such as *Coelogyne barbata*, *Cymbidium devonianum*, *C. elegans*, *C. lowianum*, *Dendrobium crepidatum*, *D. devonianum*, *D. falconeri*, *D. lituiflorum*, *D. parishii*, *D. polyanthum*, *Papilionanthe vandarum*, *Phaius flavus*, *Phalaenopsis marriottiana*, *P. taenialis*, *Pleione praecox*, *Renanthera imschootiana*, *Rhynchostylis retusa*, *Thunia alba*, *Vanda ampullacea*, and *V. coerulea* were some of the widely exploited and preferred wild orchids by local buyers as per sellers. As such, sellers fix the prices of wild orchids depending on their demand or rarity.

Further, seven threatened species were collected from wild habitats and traded locally (Table 3). Moreover, three wild orchid species, viz., *P. hirsutissimum*, *R. imschootiana*, and *V. coerulea* which are protected under the Schedule VI of the Wildlife (Protection) Act, 1972 of India was commonly and frequently traded (Image 3). Strict application of rules and regulations was not observed from the concerned authorities on this issue of legally protected wild orchid trade reported from the Imphal Valley. The statement is supported by local sellers freely trading orchids that are protected by the domestic legislation of India. Moreover, endemic species such as *Arachnis senapatiianum* was also found traded. As such, the act of threatened and endemic wild orchid collection from their habitats without any regulation will pose a serious risk to population of such orchids in Manipur. Similar to the study, research on

Table 2. Wild orchid species locally traded in the Imphal valley region of Manipur during 2022–2023.

|    | Scientific name                                                             | Habit                  | Flowering season  | Price (INR per piece) |
|----|-----------------------------------------------------------------------------|------------------------|-------------------|-----------------------|
| 1  | <i>Acampe rigida</i> (Buch.-Ham. ex Sm.) P.F.Hunt                           | Epiphyte               | May–June          | 100–250               |
| 2  | <i>Acanthephippium striatum</i> Lindl.                                      | Terrestrial            | May–September     | 50–200                |
| 3  | <i>Aerides multiflora</i> Roxb.                                             | Epiphyte               | May–June          | 250                   |
| 4  | <i>Aerides odorata</i> Lour.                                                | Epiphyte               | April–May         | 50–100                |
| 5  | <i>Aerides rosea</i> Lodd. ex Lindl. & Paxton                               | Epiphyte               | May–July          | 250                   |
| 6  | <i>Anthogonium gracile</i> Wall. ex Lindl.                                  | Terrestrial            | July              | 250                   |
| 7  | <i>Arachnis senapatiianum</i> (Phukan & A.A.Mao) Kocyan & Schuit.           | Epiphyte               | May–June          | 200                   |
| 8  | <i>Arundina graminifolia</i> (D.Don.) Hochr.                                | Terrestrial            | March–August      | 300                   |
| 9  | <i>Bulbophyllum affine</i> Lindl.                                           | Epiphyte               | June              | 100–300               |
| 10 | <i>Bulbophyllum lobbii</i> Lindl.                                           | Epiphyte               | August–September  | 150                   |
| 11 | <i>Bulbophyllum odoratissimum</i> (Sm.) Lindl. ex Wall.                     | Epiphyte               | May               | 150                   |
| 12 | <i>Bulbophyllum reptans</i> (Lindl.) Lindl. ex Wall.                        | Epiphyte               | January–February  | 30–50                 |
| 13 | <i>Bulbophyllum rothschildianum</i> (O'Brien) J.J.Sm.                       | Epiphyte               | August            | 250                   |
| 14 | <i>Calanthe masuca</i> (D.Don) Lindl.                                       | Terrestrial            | August–September  | 200                   |
| 15 | <i>Calanthe puberula</i> Lindl.                                             | Terrestrial            | August–October    | 200                   |
| 16 | <i>Cephalantheropsis longipes</i> Hook.f.                                   | Terrestrial            | November–December | 150                   |
| 17 | <i>Chiloschista parishii</i> Seidenf.                                       | Epiphyte               | April–June        | 100–200               |
| 18 | <i>Cleisostoma racemiferum</i> (Lindl.) Garay                               | Epiphyte               | July              | 50–200                |
| 19 | <i>Cleisostoma simondii</i> (Gagnep.) Seidenf.                              | Epiphyte               | July–September    | 150–400               |
| 20 | <i>Coelogyne alba</i> (Lindl.) Rchb.f.                                      | Epiphyte               | June–July         | 30–50                 |
| 21 | <i>Coelogyne articulata</i> (Lindl.) Rchb.f.                                | Epiphyte               | April–May         | 30–50                 |
| 22 | <i>Coelogyne barbata</i> Lindl. ex Griff.                                   | Epiphyte               | October           | 150–300               |
| 23 | <i>Coelogyne corymbosa</i> Lindl.                                           | Epiphyte               | May–June          | 100                   |
| 24 | <i>Coelogyne punctulata</i> Lindl.                                          | Epiphyte               | March             | 100–200               |
| 25 | <i>Crepidium purpureum</i> (Lindl.) Szlach.                                 | Terrestrial            | June–July         | 200                   |
| 26 | <i>Cymbidium aloifolium</i> (L.) Sw.                                        | Terrestrial            | May–June          | 150                   |
| 27 | <i>Cymbidium bicolor</i> Lindl.                                             | Epiphyte               | April–May         | 100–500               |
| 28 | <i>Cymbidium devonianum</i> Paxton                                          | Epiphyte               | May               | 100–350               |
| 29 | <i>Cymbidium eburneum</i> Lindl.                                            | Epiphyte or lithophyte | March–April       | 250                   |
| 30 | <i>Cymbidium elegans</i> Lindl.                                             | Epiphyte or lithophyte | October–June      | 100–500               |
| 31 | <i>Cymbidium iridioides</i> D.Don                                           | Epiphyte or lithophyte | September–October | 200                   |
| 32 | <i>Cymbidium lancifolium</i> Hook.                                          | Epiphyte or lithophyte | May–June          | 100–300               |
| 33 | <i>Cymbidium lowianum</i> (Rchb.f.) Rchb.f.                                 | Epiphyte or lithophyte | April–May         | 200–300               |
| 34 | <i>Dendrobium amoenum</i> Wall. ex Lindl.                                   | Epiphyte               | May–August        | 50–150                |
| 35 | <i>Dendrobium aphyllum</i> (Roxb.) C.E.C.Fisch.                             | Epiphyte               | April–May         | 50–100                |
| 36 | <i>Dendrobium calocephalum</i> (Z.H.Tsi & S.C.Chen) Schuit. & Peter B.Adams | Epiphyte               | August            | 300                   |
| 37 | <i>Dendrobium chrysanthum</i> Wall                                          | Epiphyte               | September–October | 50–300                |
| 38 | <i>Dendrobium chrysotoxum</i> Lindl.                                        | Epiphyte               | April–May         | 100–300               |
| 39 | <i>Dendrobium crepidatum</i> Lindl. & Paxton                                | Epiphyte               | April–May         | 50–100                |
| 40 | <i>Dendrobium denneanum</i> Kerr                                            | Epiphyte               | May–June          | 50–100                |
| 41 | <i>Dendrobium densiflorum</i> Lindl.                                        | Epiphyte               | April–May         | 50–100                |
| 42 | <i>Dendrobium devonianum</i> Paxton                                         | Epiphyte               | April–May         | 50–200                |
| 43 | <i>Dendrobium falconeri</i> Hook.                                           | Epiphyte               | April–May         | 50–100                |

|    | Scientific name                                                             | Habit                  | Flowering season  | Price (INR per piece) |
|----|-----------------------------------------------------------------------------|------------------------|-------------------|-----------------------|
| 44 | <i>Dendrobium formosum</i> Roxb. ex Lindl.                                  | Epiphyte               | May–June          | 50–150                |
| 45 | <i>Dendrobium heterocarpum</i> Wall. ex Lindl.                              | Epiphyte               | March             | 100–300               |
| 46 | <i>Dendrobium jenkinsii</i> Wall. ex Lindl.                                 | Epiphyte               | April–May         | 50–150                |
| 47 | <i>Dendrobium lituiflorum</i> Lindl.                                        | Epiphyte               | April–May         | 50–100                |
| 48 | <i>Dendrobium moschatum</i> (Banks) Sw.                                     | Epiphyte               | May–June          | 50–300                |
| 49 | <i>Dendrobium ochreatum</i> Lindl.                                          | Epiphyte               | April–May         | 50–150                |
| 50 | <i>Dendrobium parishii</i> H.Low.                                           | Epiphyte               | May–June          | 50–100                |
| 51 | <i>Dendrobium polyanthum</i> Wall. ex Lindl.                                | Epiphyte               | May–June          | 100–250               |
| 52 | <i>Dendrobium thyrsiflorum</i> B.S.Williams                                 | Epiphyte               | April–May         | 150                   |
| 53 | <i>Dendrobium wardianum</i> R.Warner                                        | Epiphyte               | April–May         | 200–500               |
| 54 | <i>Eria coronaria</i> (Lindl.) Rchb.f.                                      | Epiphyte or lithophyte | November          | 100–250               |
| 55 | <i>Liparis resupinata</i> Ridl.                                             | Epiphyte               | November–December | 30–50                 |
| 56 | <i>Oberonia acaulis</i> Griff.                                              | Epiphyte               | November–December | 30–50                 |
| 57 | <i>Oberonia jenkinsiana</i> Griff. ex. Lindl.                               | Epiphyte               | December–January  | 50                    |
| 58 | <i>Oberonia mucronata</i> (D.Don) Ormerod & Seidenf.                        | Epiphyte               | September–October | 50–100                |
| 59 | <i>Oberonia teres</i> Kerr                                                  | Epiphyte               | May               | 50–100                |
| 60 | <i>Paphiopedilum hirsutissimum</i> (Lindl. ex Hook.) Stein                  | Epiphyte               | October–November  | 350–500               |
| 61 | <i>Papilionanthe vandarum</i> (Rchb.f.) Garay                               | Epiphyte               | September–October | 50–200                |
| 62 | <i>Phaius flavus</i> (Blume) Lindl.                                         | Terrestrial            | April–June        | 100–300               |
| 63 | <i>Phaius tankervilleae</i> (Banks) Blume                                   | Terrestrial            | March–May         | 150                   |
| 64 | <i>Phalaenopsis marriottiana</i> (Rchb.f.) Kocyan & Schuit.                 | Epiphyte               | April–August      | 100–150               |
| 65 | <i>Phalaenopsis taenialis</i> (Lindl.) Christenson & Pradhan                | Epiphyte               | April–July        | 150–350               |
| 66 | <i>Pholidota imbricata</i> Lindl.                                           | Epiphyte               | June–July         | 30–50                 |
| 67 | <i>Pinalia acervata</i> (Lindl.) Kuntze                                     | Epiphyte               | May–June          | 50–200                |
| 68 | <i>Pinalia spicata</i> (D.Don) S.C.Chen & J.J.Wood                          | Epiphyte               | July–August       | 100                   |
| 69 | <i>Pleione praecox</i> (Sm.) D.Don                                          | Epiphyte               | September–October | 100–300               |
| 70 | <i>Polystachya concreta</i> (Jacq.) Garay & H.R.Sweet                       | Epiphyte               | August–September  | 50–100                |
| 71 | <i>Renanthera imschootiana</i> Rolfe                                        | Epiphyte               | April–May         | 100–250               |
| 72 | <i>Rhynchostylis retusa</i> (L.) Blume                                      | Epiphyte               | April             | 150–300               |
| 73 | <i>Schoenorchis fragrans</i> (C.S.P. Parish & Rchb.f.) Seidenf. & Smitinand | Epiphyte               | July–August       | 350–500               |
| 74 | <i>Schoenorchis gemmata</i> (Lindl.) J.J.Sm.                                | Epiphyte               | May               | 150–350               |
| 75 | <i>Spathoglottis pubescens</i> Lindl.                                       | Terrestrial            | August–September  | 200–300               |
| 76 | <i>Thunia alba</i> (Lindl.) Rchb.f.                                         | Epiphyte               | June–July         | 100–300               |
| 77 | <i>Uncifera obtusifolia</i> Lindl.                                          | Epiphyte               | February–March    | 50–200                |
| 78 | <i>Vanda alpina</i> (Lindl.) Lindl.                                         | Epiphyte               | June              | 100–500               |
| 79 | <i>Vanda ampullacea</i> (Roxb.) L.M.Gardiner                                | Epiphyte               | April–May         | 100–300               |
| 80 | <i>Vanda bicolor</i> Griff.                                                 | Epiphyte               | August–October    | 100–150               |
| 81 | <i>Vanda coerulea</i> Griff. ex Lindl.                                      | Epiphyte               | March–May         | 100–500               |
| 82 | <i>Vanda cristata</i> Wall. ex Lindl.                                       | Epiphyte               | August–October    | 150                   |

wild orchid collection and their commercial trade in illegal local and international markets is reported from different countries such as Vietnam (Bullough et al. 2021), Thailand, Lao PDR, & Myanmar (Phelps 2015),

Nepal (Subedi et al. 2014), and China (Gale et al. 2019) etc. The research showed that illegal international trade of wild orchids is common in these countries. The illegal activities in turn posed a remarkable threat in the



Image 2. Wild orchid vendors at Pishumthong bazaar of Manipur.  
© Kamei Kambuikhonlu Kabuini.

conservation of the different wild orchids in their natural habitats.

#### Status of the wild orchids cultivated in local households

The interviews of local buyers showed that wild orchid customer base is diverse, encompassing people of various ages and genders, both young and old. The price of orchids they bought ranged from INR 30–500, respectively. The pricing of wild orchid is unpredictable. It was observed that survival rate varies significantly across different wild orchids when they were brought under cultivation and unexperienced buyers see varying levels of success in maintaining these plants (Figure 1). The reasons for low survival rates are change of habitat coupled with improper management due to lack of knowledge on orchid cultivation, diseases, and pest. The wild orchids grow in a particular habitat which is in the deep moist jungles of Manipur. Therefore, their removal and transplanting elsewhere forces the orchids to adapt to an entirely new set of environment where plants might not succeed. Among common host trees, buyers used Mango *Mangifera indica*, Pomelo *Citrus maxima*, Lemon *Citrus limon*, Plumeria *Plumeria rubra*, Bottle Brush *Callistemon citrinus*, and Hibiscus *Hibiscus*

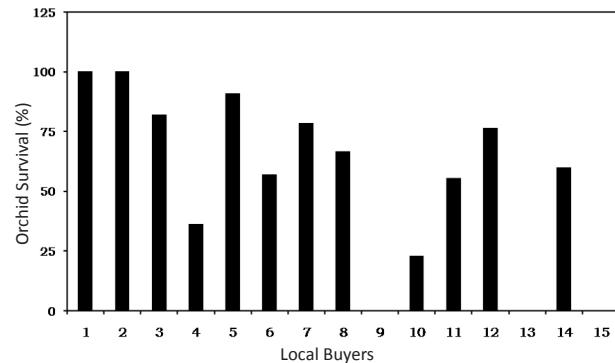



Figure 1. Wild orchid survival percentage among local orchid buyers of the Imphal Valley region.

*rosa-sinensis*. However, most of the wild orchids were in plastic or terracotta pots, since majority of households didn't have good size trees (Image 4). Further, most orchids observed during the visits were not in their best health. Among buyers, only 33% had the knowledge of threatened and rare wild orchids. Most of the local buyers do not have basic awareness on legal restrictions surrounding the purchase and sale of wild orchids protected by domestic legislation. The results revealed a significant gap in awareness regarding the legality of wild orchid trade among surveyed participants.

#### Suggestive measures for conservation

From the market survey, it is evident that local trade of wild orchids in Manipur takes place without any inhibition in the Imphal Valley. Therefore, it becomes necessary that continuous monitoring of such situation should be a part of the concerned authorities' action plan for orchid conservation. The following measures are suggested for the conservation of wild orchids in Manipur region of the Indo-Burma hotspot:

(i) In situ conservation is the most desirable conservation strategy for wild orchids. The Government of Manipur needs to expand the Protected Areas Network (PAN) to include important orchid habitats in the state. For example, State Governments of Arunachal Pradesh, Sikkim, Karnataka, and West Bengal have designated various orchid rich areas as "Orchid Sanctuaries" under the Wildlife Protection Act, 1972 (amended in 1992). The actions will control smuggling or poaching of wild orchids. Further, there are options to establish community conservation reserves with collaboration of government agencies and local communities (Ngashangva 2021).

(ii) Initial ecological restoration of already degraded orchid rich habitats must be a priority of the concerned authority. The initiatives for afforestation of degraded



**Image 3.** Some of the wild orchid species: a—*Renanthera imschootiana* | b—*Pleione praecox* | c—*Dendrobium chrysanthum* | d—*Liparis resupinata* | e—*Cymbidium elegans* | f—*Vanda coerulea* which are traded in local bazaars of the Imphal Valley region. © Kamei Kambuikhonlu Kabuini.



**Image 4.** Cultivated orchids in local households of the Imphal Valley region. © Kamei Kambuikhonlu Kabuini.

areas with suitable host trees must be taken up.

(iii) Similar to Khonghampat Orchidarium, which is the only orchid *ex-situ* conservation center of Manipur, the state need more *ex situ* conservation centers in hill districts where wild orchid habitats are found.

(iv) It is time that a long-term population monitoring programme must be conducted by concerned authority to assess the health of wild orchid population.

(v) Endemic species such as *A. senapatianum* need

immediate attention and actions. Their exploitation in an unsustainable way must be completely stopped by using various orchid conservation strategies.

(vi) Research is absent on wild orchid trade of Manipur in local and international markets. There is an urgent need of in-depth research that analyses the volume of local wild orchid market in Manipur and their illegal international trade via Myanmar.

(vii) The concerned authorities must continuously

**Table 3. Wild orchid species which are threatened or protected by the Indian domestic legislation.**

|   | Species                                                    | Rare/ Threatened | Legally protected in state and country* (Yes/No) |
|---|------------------------------------------------------------|------------------|--------------------------------------------------|
| 1 | <i>Dendrobium chrysotoxum</i> Lindl.                       | Threatened       | No                                               |
| 2 | <i>Dendrobium densiflorum</i> Lindl.                       | Threatened       | No                                               |
| 3 | <i>Dendrobium falconeri</i> Hook. (Th)                     | Threatened       | No                                               |
| 4 | <i>Dendrobium parishii</i> H.Low.                          | Threatened       | No                                               |
| 5 | <i>Paphiopedilum hirsutissimum</i> (Lindl. ex Hook.) Stein | Rare             | Yes                                              |
| 6 | <i>Renanthera imschootiana</i> Rolfe                       | Threatened       | Yes                                              |
| 7 | <i>Vanda coerulea</i> Griff ex Lindl.                      | Threatened       | Yes                                              |

\* The Wildlife (Protection) Act, 1972.

and strictly monitor local wild orchid markets and their international trade. Further, strict actions must be taken up against illegal trade if carried out in the state. For example, trade of scheduled species such as *Paphiopedilum hirsutissimum*, *Renanthera imschootiana*, and *Vanda coerulea* is illegal.

(viii) Training programmes on mass scale multiplication of wild orchids for trade using tissue culture techniques and establishment of micropropagation units in the state will reduce stress on wild orchid population. Further, it will improve economy of the state.

(ix) The lack of awareness is an important issue in the society, which must be immediately tackled by the concerned authorities. As such, various conservation awareness programmes must be initiated to sensitize the common mass on the issue and invite the locals to be a part of conservation programmes.

## REFERENCES

Ballantyne, M. & C. Pickering (2012). Ecotourism as a threatening process for wild orchids. *Journal of Ecotourism* 11(1): 34–47. <https://doi.org/10.1080/14724049.2011.628398>

Barman, D. & R. Devadas (2013). Climate change on orchid population and conservation strategies: a review. *Journal of Crop and Weed* 9(2): 1–12.

Bose, B., H. Choudhury, P. Tandon & S. Kumar (2017). Studies on secondary metabolite profiling, anti-inflammatory potential, in vitro photo protective and skin-aging related enzyme inhibitory activities of *Malaxis acuminata*, a threatened orchid of nutraceutical importance. *Journal of Photochemistry & Photobiology B: Biology* 173: 686–695. <https://doi.org/10.1016/j.jphotobiol.2017.07.010>

Brummitt, N.A., S.P. Bachman, J. Griffiths-Lee, M. Lutz, J.F. Moat, A. Farjon, J.S. Donaldson & C. Hilton-Taylor (2015). Green plants in the red: a baseline global assessment for the IUCN sampled Red List index for plants. *PLoS ONE* 10(8): 0135152. <https://doi.org/10.1371/journal.pone.0135152>

Bullough, L.A., N. Nguyê, R. Drury & A. Hinsley (2021). Orchid obscurity: understanding domestic trade in wild-harvested orchids in Viet Nam. *Frontiers in Ecology and Evolution* 9: 631795. <https://doi.org/10.3389/fevo.2021.631795>

De, L.C. (2020). Export and import scenario of orchids in India. *Journal of Agriculture and Forest Meteorology Research* 3(5): 402–404.

De, L.C. (2022). *Indian Orchids in Cites Appendices*. ICAR-NRC for Orchids, Delhi, 108–162 pp.

Deb, D.B. (1961). Monocotyledonous plants of Manipur territory. *The Bulletin of the Botanical Survey of India* 3(2): 126–129. <https://doi.org/10.20324/nelumbo/v3/1961/76534>

Gale, S.W., P. Kumar, A. Hinsley, M.L. Cheuk, J. Gao, H. Liu, Z.-L. Liu & S.J. Williams (2019). Quantifying the trade in wild-collected ornamental orchids in south China: diversity, volume and value gradients underscore the primacy of supply. *Biological Conservation* 238: 108204. <https://doi.org/10.1016/j.biocon.2019.108204>

Hinsley, A., A. Nuno, M. Ridout, F.A.V.S. John & D.L. Roberts (2016). Estimating the extent of cites noncompliance among traders and end-consumers; lessons from the global orchid trade. *Conservation Letters* 10(5): 602–609. <https://doi.org/10.1111/conl.12316>

Hinsley, A., H.J. De Boer, M.F. Fay, S.W. Gale, L.M. Gardiner, R.S. Gunasekara, P. Kumar, S. Masters, D. Metusala, D.L. Roberts, S. Veldman, S. Wong & J. Phelps (2018). A review of the trade in orchids and its implications for conservation. *Botanical Journal of the Linnean Society* 186: 435–455. <https://doi.org/10.1093/botj/box083>

IUCN (2024). The IUCN Red list of threatened species. Orchid specialist Group. IUCN, Gland, Switzerland. <https://www.orchidspecialistgroup.com/>. Assessed on 6 September 2024.

Kumar, C.S. & P.C.S. Kumar (2005). An Orchid Digest of Manipur, northeastern India. *Rheedia* 15(1): 1–70.

Kumar, P. (2024). Notes on Asian Orchidaceae – I: *Cremastra appendiculata* var. *appendiculata* and *Hemipilia nana*. *Feddes Repertorium* 135(3): 258–269. <https://doi.org/10.1002/fedr.202300042>

Kumar, S., R.S. Devi, R. Choudhury, M. Mahapatra, S.K. Biswal, N. Kaur, J. Tudu & S. Rath (2022). Orchid diversity, conservation, and sustainability in northeastern India, pp. 111–139. In: Furze, J.N., S. Eslamian, S.M. Raafat & K. Swing (eds). *Earth Systems Protection and Sustainability*. Springer, 337 pp.

Laiba, M.T. (1992). *The Geography of Manipur*, 1<sup>st</sup> Edition. Imphal, India, 376 pp.

Mao, A.A. (1999). Notes on orchids of Senapati and surrounding hills, Manipur, India. *The Journal of the Orchid Society of India* 13(1–2): 55–58.

Mao, A.A. & C. Deori (2018). *Checklist of orchids of Manipur - A pictorial handbook*. Forest Department, Government of Manipur and Botanical Survey of India, Government of India, Imphal, India, 287 pp.

Nanda, Y., S.H. Bishwajit, R.A. Nageswara & S.P. Vij (2013). Contributions to the orchid flora of Manipur (India) - 1. *Pleione* 7(2): 560–566.

Ngashangva, N (2021). Conserving orchids through community participation in a Manipur village. Mongabay. In: Mongabay, California, US. <https://india.mongabay.com/2021/02/commentary-conserving-orchids-through-community-participation-in-a-manipur-village/>

conserving-orchids-through-community-participation-in-a-manipur-village/. Assessed on 18 October 2024.

**Phelps, J. (2015).** A blooming trade: illegal trade of ornamental orchids in mainland Southeast Asia (Thailand, Lao PDR, Myanmar). In: TRAFFIC, Cambridge, UK. <https://www.traffic.org/publications/reports/a-blooming-trade-illegal-trade-of-ornamental-orchids-in-mainland-southeast-asia/>. Assessed on 17 June 2024.

**Phelps, J. & E.L. Webb (2015).** "Invisible" wildlife trades: southeast Asia's undocumented illegal trade in wild ornamental plants. *Biological Conservation* 186: 296–305. <https://doi.org/10.1016/j.biocon.2015.03.030>

**Rao, A.N. & V. Kumar (2018).** Updated checklist of orchid flora of Manipur. *Turczaninowia* 21(4): 109–134. <https://doi.org/10.14258/turczaninowia.21.4.12>.

**Subedi, A., B. Kunwar, Y. Choi, Y. Dai, T. van Andel, R.P. Chaudhary, H.J. de Boer & B. Gravendeel (2014).** Collection and trade of wild-harvested orchids in Nepal. *Journal of Ethnobiology and Ethnomedicine* 9: 64. <https://doi.org/10.1186/1746-4269-9-64>

**The Wildlife Protection Act of India (1972).** The Wildlife Protection Act of India 1972. MoEFCC, GOI, India. <http://www.moef.nic.in/sites/default/files/wildlife1.pdf>. Electronic version assessed 21 July 2024.

**TRAFFIC (2022).** Factsheet on orchids in India's illegal wildlife trade. In: TRAFFIC, Cambridge, UK. <https://www.traffic.org/publications/reports/factsheet-on-orchids-in-indias-illegal-wildlife-trade/>. Assessed on 18 October 2024

**UNEP-WCMC (2018).** CITES Trade Statistics Derived from the CITES Trade Database. UNEP World Conservation Monitoring Centre, Cambridge, UK. Assessed on 20 July 2024.

**WFO Plant List (2024).** WFO Plant List snapshots of the Taxonomy. <https://wfoplantlist.org/>. Assessed on 6 September 2024.

**WWF-India (2022).** Protected orchids of India. In: India water Portal. <https://www.indiawaterportal.org/climate-change/climate/protected-orchids-india/>. Assessed on 18 October 2024.

#### Supplementary Q1: Interview for data collection (sellers)

1. Name:
2. Age
3. Gender
4. Locality
5. Orchid collected from:
6. Did you get permission from the concerned department?
7. If so, what?
8. If not, why?
9. List of collected orchid:
10. Collection season:
11. Do you collect only orchid?
12. How much is collected?
13. How often do you collect?
14. Status of the orchid in its natural habitat? Abundant/ scarce.
15. How far do you have to walk to collect the orchid?
16. How often do you not find the orchid?
17. Harvesting technique (a). cutting whole tree. (b). climb and collect.
18. Health of the orchid at the time of harvesting?
19. What measure do you take up to improve the health of the orchid before selling?
20. Do you harvest every orchid that you find regardless of its demand?
21. Do you harvest only those orchids that are in high demand?
22. What changes can you see the population of orchid in its natural habitat?
23. How much is the demand of the orchid in the market?
24. Most sold species.
25. Least sold species.
26. What do you do with the orchids that are not sold in the market?
27. How many customers do you have?
28. How many of them are regular customer?
29. Do you have customer from outside of the state or country?
30. Do you have any knowledge on rare orchid?
31. Any measures taken up to conserve the rare orchid sp.?
32. Do you run a nursery?
33. If yes, how many sp. do you have in your nursery?

Signature of the informant

**Supplementary Q2: Interview for data collection (buyers)**

1. Name:
2. Age:
3. Gender:
4. Locality:
5. Profession:
6. What is the selling point?
7. What are the preferences when you buy?
8. How often do you buy?
9. Number of different orchids you have purchased.
10. Price range of the orchids bought.
11. Is the price expensive/reasonable?
12. Condition of the orchids at the time of purchasing.
13. Number of Orchids Planted.
14. Number of Orchids survived.
15. Possible reasons for the death.
16. Measures taken up to revive dying orchids.
17. Orchids with repeated purchase.
18. Reasons for repeated purchase.
19. Reasons for buying.
  - For Commercialization
  - For Personal use
20. Planting area      a) Pots    b) Trees
21. Do you have any knowledge regarding rare orchid species trade?
22. Number of rare orchids collected so far.
23. Do you know the practice adopted by the collectors for harvesting?
24. How often do you see orchids naturally growing in your locality?
25. Have you resold the orchids you have purchased?
26. How many have you resold?
27. Do you follow any propagating method to increase the number of orchid species for reselling purpose?
28. Rate at which you resold.
29. How much is the demand?
30. Do you know that the orchid trade in Manipur is via illegal way?
31. If so, what should be the mechanism to regulate the conditions? (Personal view)
32. Any comment on the conservation of orchids in the natural habitats. (Mechanisms you wish to propose)
33. Do you think that orchid conservation is possible by planting the species in households of valley?
34. Do you think orchid trade should be regulated by the government?

Signature of the informant





Dr. John Noyes, Natural History Museum, London, UK  
Dr. Albert G. Orr, Griffith University, Nathan, Australia  
Dr. Sameer Padhye, Katholieke Universiteit Leuven, Belgium  
Dr. Nancy van der Poorten, Toronto, Canada  
Dr. Karen Schnabel, NIWA, Wellington, New Zealand  
Dr. R.M. Sharma, (Retd.) Scientist, Zoological Survey of India, Pune, India  
Dr. Manju Siliwal, WILD, Coimbatore, Tamil Nadu, India  
Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India  
Dr. K.A. Subramanian, Zoological Survey of India, New Alipore, Kolkata, India  
Dr. P.M. Sureshan, Zoological Survey of India, Kozhikode, Kerala, India  
Dr. R. Varatharajan, Manipur University, Imphal, Manipur, India  
Dr. Eduard Vives, Museu de Ciències Naturals de Barcelona, Terrassa, Spain  
Dr. James Young, Hong Kong Lepidopterists' Society, Hong Kong  
Dr. R. Sundararaj, Institute of Wood Science & Technology, Bengaluru, India  
Dr. M. Nitithyanandan, Environmental Department, La Al Kuwait Real Estate. Co. K.S.C., Kuwait  
Dr. Himender Bharti, Punjabi University, Punjab, India  
Mr. Purnendu Roy, London, UK  
Dr. Saito Motoki, The Butterfly Society of Japan, Tokyo, Japan  
Dr. Sanjay Sondhi, TITLI TRUST, Kalpavriksh, Dehradun, India  
Dr. Nguyen Thi Phuong Lien, Vietnam Academy of Science and Technology, Hanoi, Vietnam  
Dr. Nitin Kulkarni, Tropical Research Institute, Jabalpur, India  
Dr. Robin Wen Jiang Ngiam, National Parks Board, Singapore  
Dr. Lionel Monod, Natural History Museum of Geneva, Genève, Switzerland.  
Dr. Asheesh Shivam, Nehru Gram Bharti University, Allahabad, India  
Dr. Rosana Moreira da Rocha, Universidade Federal do Paraná, Curitiba, Brasil  
Dr. Kuri R. Arnold, North Dakota State University, Saxony, Germany  
Dr. James M. Carpenter, American Museum of Natural History, New York, USA  
Dr. David M. Claborn, Missouri State University, Springfield, USA  
Dr. Karen Schnabel, Marine Biologist, Wellington, New Zealand  
Dr. Amazonas Chagas Júnior, Universidade Federal de Mato Grosso, Cuiabá, Brasil  
Mr. Monsoon Jyoti Gogoi, Assam University, Silchar, Assam, India  
Dr. Heo Chong Chin, Universiti Teknologi MARA (UiTM), Selangor, Malaysia  
Dr. R.J. Shiel, University of Adelaide, SA 5005, Australia  
Dr. Siddharth Kulkarni, The George Washington University, Washington, USA  
Dr. Priyadarshan Dharma Rajan, ATREE, Bengaluru, India  
Dr. Phil Alderslade, CSIRO Marine And Atmospheric Research, Hobart, Australia  
Dr. John E.N. Veron, Coral Reef Research, Townsville, Australia  
Dr. Daniel Whitmore, State Museum of Natural History Stuttgart, Rosenstein, Germany.  
Dr. Yu-Feng Hsu, National Taiwan Normal University, Taipei City, Taiwan  
Dr. Keith V. Wolfe, Antioch, California, USA  
Dr. Siddharth Kulkarni, The Hormiga Lab, The George Washington University, Washington, D.C., USA  
Dr. Tomas Ditrich, Faculty of Education, University of South Bohemia in Ceske Budejovice, Czech Republic  
Dr. Mihaly Foldvari, Natural History Museum, University of Oslo, Norway  
Dr. V.P. Uniyal, Wildlife Institute of India, Dehradun, Uttarakhand 248001, India  
Dr. John T.D. Caleb, Zoological Survey of India, Kolkata, West Bengal, India  
Dr. Priyadarshan Dharma Rajan, Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Bangalore, Karnataka, India

#### Fishes

Dr. Neelesh Dahanukar, IISER, Pune, Maharashtra, India  
Dr. Topiltzin Contreras MacBeath, Universidad Autónoma del estado de Morelos, México  
Dr. Heok Hee Ng, National University of Singapore, Science Drive, Singapore  
Dr. Rajeev Raghavan, St. Albert's College, Kochi, Kerala, India  
Dr. Robert D. Sluka, Chiltern Gateway Project, A Rocha UK, Southall, Middlesex, UK  
Dr. E. Vivekanandan, Central Marine Fisheries Research Institute, Chennai, India  
Dr. Davor Zanella, University of Zagreb, Zagreb, Croatia  
Dr. A. Biju Kumar, University of Kerala, Thiruvananthapuram, Kerala, India  
Dr. Akhilesh K.V., ICAR-Central Marine Fisheries Research Institute, Mumbai Research Centre, Mumbai, Maharashtra, India  
Dr. J.A. Johnson, Wildlife Institute of India, Dehradun, Uttarakhand, India  
Dr. R. Ravinesh, Gujarat Institute of Desert Ecology, Gujarat, India

#### Amphibians

Dr. Sushil K. Dutta, Indian Institute of Science, Bengaluru, Karnataka, India  
Dr. Annemarie Ohler, Muséum national d'Histoire naturelle, Paris, France

#### Reptiles

Dr. Gernot Vogel, Heidelberg, Germany  
Dr. Raju Vyas, Vadodara, Gujarat, India  
Dr. Pritpal S. Soorae, Environment Agency, Abu Dhabi, UAE.  
Prof. Dr. Wayne J. Fuller, Near East University, Mersin, Turkey  
Prof. Chandrashekher U. Rironker, Goa University, Taleigao Plateau, Goa, India  
Dr. S.R. Ganesh, Chennai Snake Park, Chennai, Tamil Nadu, India  
Dr. Himansu Sekhar Das, Terrestrial & Marine Biodiversity, Abu Dhabi, UAE

#### Birds

Dr. Hem Sagar Baral, Charles Sturt University, NSW Australia  
Mr. H. Biju, Coimbatore, Tamil Nadu, India  
Dr. Chris Bowden, Royal Society for the Protection of Birds, Sandy, UK  
Dr. Priya Davidar, Pondicherry University, Kalapet, Puducherry, India  
Dr. J.W. Duckworth, IUCN SSC, Bath, UK  
Dr. Rajah Jayopal, SACON, Coimbatore, Tamil Nadu, India  
Dr. Rajiv S. Kalsi, M.L.N. College, Yamuna Nagar, Haryana, India  
Dr. V. Santharam, Rishi Valley Education Centre, Chittoor Dt., Andhra Pradesh, India  
Dr. S. Balachandran, Bombay Natural History Society, Mumbai, India  
Mr. J. Praveen, Bengaluru, India  
Dr. C. Srinivasulu, Osmania University, Hyderabad, India  
Dr. K.S. Gopi Sundar, International Crane Foundation, Baraboo, USA  
Dr. Gombobaatar Sundev, Professor of Ornithology, Ulaanbaatar, Mongolia  
Prof. Reuven Yosef, International Birding & Research Centre, Eilat, Israel  
Dr. Taej Mundkur, Wetlands International, Wageningen, The Netherlands  
Dr. Carol Inskip, Bishop Auckland Co., Durham, UK  
Dr. Tim Inskip, Bishop Auckland Co., Durham, UK  
Dr. V. Gokula, National College, Tiruchirappalli, Tamil Nadu, India  
Dr. Arkady Lelej, Russian Academy of Sciences, Vladivostok, Russia  
Dr. Simon Dowell, Science Director, Chester Zoo, UK  
Dr. Mário Gabriel Santiago dos Santos, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, Vila Real, Portugal  
Dr. Grant Connette, Smithsonian Institution, Royal, VA, USA  
Dr. P.A. Azeez, Coimbatore, Tamil Nadu, India

#### Mammals

Dr. Giovanni Amori, CNR - Institute of Ecosystem Studies, Rome, Italy  
Dr. Anwaruddin Chowdhury, Guwahati, India  
Dr. David Mallon, Zoological Society of London, UK  
Dr. Shomita Mukherjee, SACON, Coimbatore, Tamil Nadu, India  
Dr. Angie Appel, Wild Cat Network, Germany  
Dr. P.O. Nameer, Kerala Agricultural University, Thrissur, Kerala, India  
Dr. Ian Redmond, UNEP Convention on Migratory Species, Lansdown, UK  
Dr. Heidi S. Riddle, Riddle's Elephant and Wildlife Sanctuary, Arkansas, USA  
Dr. Karin Schwartz, George Mason University, Fairfax, Virginia.  
Dr. Lala A.K. Singh, Bhubaneswar, Orissa, India  
Dr. Mewa Singh, Mysore University, Mysore, India  
Dr. Paul Racey, University of Exeter, Devon, UK  
Dr. Honnavalli N. Kumara, SACON, Anaikatty P.O., Coimbatore, Tamil Nadu, India  
Dr. Nishith Dharaiya, HNG University, Patan, Gujarat, India  
Dr. Spartaco Gippoliti, Socio Onorario Società Italiana per la Storia della Fauna "Giuseppe Altobello", Rome, Italy  
Dr. Justus Joshua, Green Future Foundation, Tiruchirappalli, Tamil Nadu, India  
Dr. H. Raghuram, The American College, Madurai, Tamil Nadu, India  
Dr. Paul Bates, Harison Institute, Kent, UK  
Dr. Jim Sanderson, Small Wild Cat Conservation Foundation, Hartford, USA  
Dr. Dan Challender, University of Kent, Canterbury, UK  
Dr. David Mallon, Manchester Metropolitan University, Derbyshire, UK  
Dr. Brian L. Cypher, California State University-Stanislaus, Bakersfield, CA  
Dr. S.S. Talmale, Zoological Survey of India, Pune, Maharashtra, India  
Prof. Karan Bahadur Shah, Budhanilkantha Municipality, Kathmandu, Nepal  
Dr. Susan Cheyne, Borneo Nature Foundation International, Palangkaraya, Indonesia  
Dr. Hemanta Kafley, Wildlife Sciences, Tarleton State University, Texas, USA

#### Other Disciplines

Dr. Aniruddha Belsare, Columbia MO 65203, USA (Veterinary)  
Dr. Mandar S. Paingankar, University of Pune, Pune, Maharashtra, India (Molecular)  
Dr. Jack Tordoff, Critical Ecosystem Partnership Fund, Arlington, USA (Communities)  
Dr. Ulrike Streicher, University of Oregon, Eugene, USA (Veterinary)  
Dr. Hari Balasubramanian, EcoAdvisors, Nova Scotia, Canada (Communities)  
Dr. Rayanna Helleni Santos Bezerra, Universidade Federal de Sergipe, São Cristóvão, Brazil  
Dr. Jamie R. Wood, Landcare Research, Canterbury, New Zealand  
Dr. Wendy Collinson-Jonker, Endangered Wildlife Trust, Gauteng, South Africa  
Dr. Rajeshkumar G. Jani, Anand Agricultural University, Anand, Gujarat, India  
Dr. O.N. Tiwari, Senior Scientist, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India  
Dr. L.D. Singla, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India  
Dr. Rupika S. Rajakaruna, University of Peradeniya, Peradeniya, Sri Lanka  
Dr. Bharat Baviskar, Wild-CER, Nagpur, Maharashtra 440013, India

#### Reviewers 2021–2023

Due to paucity of space, the list of reviewers for 2021–2023 is available online.

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.

Print copies of the Journal are available at cost. Write to:  
The Managing Editor, JoTT,  
c/o Wildlife Information Liaison Development Society,  
3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore,  
Tamil Nadu 641006, India  
ravi@threatenedtaxa.org & ravi@zooreach.org

**Journal of Threatened Taxa** is indexed/abstracted in Bibliography of Systematic Mycology, Biological Abstracts, BIOSIS Previews, CAB Abstracts, EBSCO, Google Scholar, Index Copernicus, Index Fungorum, JournalSeek, National Academy of Agricultural Sciences, NewJour, OCLC WorldCat, SCOPUS, Stanford University Libraries, Virtual Library of Biology, Zoological Records.

NAAS rating (India) 5.64

## Articles

### Endemicity and diversity of birds of the Kuvempu University Campus, Shivamogga District, Karnataka: an updated checklist

– M.N. Harisha & B.B. Hosetti, Pp. 26063–26077

### Unregulated wild orchid trade in Manipur: an analysis of the Imphal Valley markets from the Indo-Burma hotspot

– Kamei Kambuikhonlu Kabuini & Maibam Dhanaraj Meitei, Pp. 26078–26088

### Watershed survey of streams in western Bhutan with macroinvertebrates, water chemistry, bacteria and DNA barcodes

– Juliann M. Battle, Bernard W. Sweeney, Bryan Currinder, Anthony Aufdenkampe, Beth A. Fisher & Naimul Islam, Pp. 26089–26103

## Communications

### Indian Leopard predation on the sub-adult Himalayan Griffon Vulture (Accipitridae: Accipitriformes)

– Soumya Sundar Chakraborty, Debal Ray, Apurba Sen, P.J. Harikrishnan, Nabi Kanta Jha & Rounaq Ghosh, Pp. 26104–26109

### Diet composition and diet choice of Lesser Mouse-tailed Bat *Rhinopoma hardwickii* (Gray, 1831) (Rhinopomatidae: Chiroptera)

– Pawan Kumar Misra, Sayma Farheen, ShaktiVardhan Singh & Vadimalai Elangovan, Pp. 26110–26115

### DNA barcoding and distribution of *Osteobrama peninsulae* (Teleostei: Cyprinidae) in India

– Boni Amin Laskar, Asha Kiran Tudu, Shibananda Rath & Laishram Kosygin, Pp. 26116–26123

### Diving into diversity: aquatic beetles of Sukhna Wildlife Sanctuary, Chandigarh, India

– Karmannye Om Chaudhary, Pp. 26124–26130

## Review

### An updated checklist of snakes (Reptilia: Squamata) in northeastern India derived from a review of recent literature

– Bijay Basfore, Manab Jyoti Kalita, Narayan Sharma & Ananda Ram Boro, Pp. 26131–26149

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print)

November 2024 | Vol. 16 | No. 11 | Pages: 26063–26186

Date of Publication: 26 November 2024 (Online & Print)

DOI: [10.11609/jott.2024.16.11.26063-26186](https://doi.org/10.11609/jott.2024.16.11.26063-26186)

## Viewpoint

### Decades of IUCN recommendations for biocontrol of invasive pest on the Guam cycad: you can lead policy-makers to conservation proposals but you cannot make them follow

– Thomas E. Marler, Anders J. Lindström, L. Irene Terry & Benjamin E. Deloso, Pp. 26150–26162

## Short Communications

### Photographic record of Kashmir Gliding Squirrel *Eoglaucomys fimbriatus* (J.E. Gray, 1837) from the Gurez Valley, Jammu & Kashmir, India

– G. Mustufa Lone, Bilal A. Bhat, Mir Shabir Hussain & Arif Nabi Lone, Pp. 26163–26166

### Winter population of raptor species in the Vellore dump yard of Coimbatore City, India

– V. Balaji & R. Venkitachalam, Pp. 26167–26171

## Notes

### Phenotypic variations in Mindoro Warty Pig *Sus oliveri* (Cetartiodactyla: Suidae)

– John Carlo Redeña-Santos, Anna Pauline O. de Guia, Nikki Heherson A. Dagamac & Fernando García Gil, Pp. 26172–26175

### First photographic evidence of the Chinese Pangolin *Manis pentadactyla* (Linnaeus, 1758) in Raimona National Park, Assam, India

– Dipankar Lahkar, M. Firoz Ahmed, Bhanu Sinha, Pranjal Talukdar, Biswajit Basumatary, Tunu Basumatary, Ramie H. Begum, Nibir Medhi, Nitul Kalita & Abishek Harihar, Pp. 26176–26179

### *Habenaria spencei* (Orchidaceae): rediscovery other than its type locality and new distribution record to Karnataka, India

– Shreyas Betageri & Katrahalli Kotresha, Pp. 26180–26184

## Book Review

### Fairies of the day and angels of the night

– Chitra Narayanasami, Pp. 26185–26186

## Publisher & Host



Threatened Taxa