

Building evidence for conservation globally

10.11609/jott.2024.16.8.25639-25790

[www.threatenedtaxa.org](http://www.threatenedtaxa.org)

# Journal of Threatened TAXA

26 August 2024 (Online & Print)

16(8): 25639-25790

ISSN 0974-7907 (Online)

ISSN 0974-7893 (Print)



Open Access





43/2 Varadarajulu Nagar, 5<sup>th</sup> Street West, Ganapathy, Coimbatore, Tamil Nadu 641006, India  
Registered Office: 3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore, Tamil Nadu 641006, India  
Ph: +91 9385339863 | [www.threatenedtaxa.org](http://www.threatenedtaxa.org)  
Email: sanjay@threatenedtaxa.org

**EDITORS****Founder & Chief Editor****Dr. Sanjay Molur**Wildlife Information Liaison Development (WILD) Society & Zoo Outreach Organization (ZOO),  
43/2 Varadarajulu Nagar, 5<sup>th</sup> Street West, Ganapathy, Coimbatore, Tamil Nadu 641006, India**Deputy Chief Editor****Dr. Neelesh Dahanukar**

Noida, Uttar Pradesh, India

**Managing Editor****Mr. B. Ravichandran**, WILD/ZOO, Coimbatore, Tamil Nadu 641006, India**Associate Editors****Dr. Mandar Paingankar**, Government Science College Gadchiroli, Maharashtra 442605, India**Dr. Ulrike Streicher**, Wildlife Veterinarian, Eugene, Oregon, USA**Ms. Priyanka Iyer**, ZOO/WILD, Coimbatore, Tamil Nadu 641006, India**Dr. B.A. Daniel**, ZOO/WILD, Coimbatore, Tamil Nadu 641006, India**Editorial Board****Dr. Russel Mittermeier**

Executive Vice Chair, Conservation International, Arlington, Virginia 22202, USA

**Prof. Mewa Singh Ph.D., FASc, FNA, FNAsc, FNAPsy**

Ramanna Fellow and Life-Long Distinguished Professor, Biopsychology Laboratory, and Institute of Excellence, University of Mysore, Mysuru, Karnataka 570006, India; Honorary Professor, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore; and Adjunct Professor, National Institute of Advanced Studies, Bangalore

**Stephen D. Nash**

Scientific Illustrator, Conservation International, Dept. of Anatomical Sciences, Health Sciences Center, T-8, Room 045, Stony Brook University, Stony Brook, NY 11794-8081, USA

**Dr. Fred Pluthero**

Toronto, Canada

**Dr. Priya Davidar**

Sigur Nature Trust, Chadapatti, Mavinahalli PO, Nilgiris, Tamil Nadu 643223, India

**Dr. Martin Fisher**

Senior Associate Professor, Battcock Centre for Experimental Astrophysics, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, UK

**Dr. John Fellowes**

Honorary Assistant Professor, The Kadoorie Institute, 8/F, T.T. Tsui Building, The University of Hong Kong, Pokfulam Road, Hong Kong

**Prof. Dr. Mirco Solé**

Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Vice-coordenador do Programa de Pós-Graduação em Zoologia, Rodovia Ilhéus/Itabuna, Km 16 (45662-000) Salobrinho, Ilhéus - Bahia - Brasil

**Dr. Rajeev Raghavan**

Professor of Taxonomy, Kerala University of Fisheries &amp; Ocean Studies, Kochi, Kerala, India

**English Editors****Mrs. Mira Bhojwani**, Pune, India**Dr. Fred Pluthero**, Toronto, Canada**Mr. P. Ilangovan**, Chennai, India**Ms. Sindhura Stothra Bhashyam**, Hyderabad, India**Web Development****Mrs. Latha G. Ravikumar**, ZOO/WILD, Coimbatore, India**Typesetting****Mrs. Radhika**, ZOO, Coimbatore, India**Mrs. Geetha**, ZOO, Coimbatore India**Fundraising/Communications****Mrs. Payal B. Molur**, Coimbatore, India**Subject Editors 2020–2022****Fungi****Dr. B. Shivaraju**, Bengaluru, Karnataka, India**Dr. R.K. Verma**, Tropical Forest Research Institute, Jabalpur, India**Dr. Vatsavaya S. Raju**, Kakatiya University, Warangal, Andhra Pradesh, India**Dr. M. Krishnappa**, Jnana Sahyadri, Kuvenpu University, Shimoga, Karnataka, India**Dr. K.R. Sridhar**, Mangalore University, Mangalagangotri, Mangalore, Karnataka, India**Dr. Gunjan Biswas**, Vidyasagar University, Midnapore, West Bengal, India**Dr. Kiran Ramchandra Ranadive**, Annasaheb Magar Mahavidyalaya, Maharashtra, India**Plants****Dr. G.P. Sinha**, Botanical Survey of India, Allahabad, India**Dr. N.P. Balakrishnan**, Ret. Joint Director, BSI, Coimbatore, India**Dr. Shonil Bhagwat**, Open University and University of Oxford, UK**Prof. D.J. Bhat**, Retd. Professor, Goa University, Goa, India**Dr. Ferdinand Boero**, Università del Salento, Lecce, Italy**Dr. Dale R. Calder**, Royal Ontario Museum, Toronto, Ontario, Canada**Dr. Cleofas Cervancia**, Univ. of Philippines Los Baños College Laguna, Philippines**Dr. F.B. Vincent Florens**, University of Mauritius, Mauritius**Dr. Merlin Franco**, Curtin University, Malaysia**Dr. V. Irudayaraj**, St. Xavier's College, Palayamkottai, Tamil Nadu, India**Dr. B.S. Kholia**, Botanical Survey of India, Gangtok, Sikkim, India**Dr. Pankaj Kumar**, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, USA**Dr. V. Sampath Kumar**, Botanical Survey of India, Howrah, West Bengal, India**Dr. A.J. Solomon Raju**, Andhra University, Visakhapatnam, India**Dr. Vijayasankar Raman**, University of Mississippi, USA**Dr. B. Ravi Prasad Rao**, Sri Krishnadevaraya University, Anantapur, India**Dr. K. Ravikumar**, FRLHT, Bengaluru, Karnataka, India**Dr. Aparna Watve**, Pune, Maharashtra, India**Dr. Qiang Liu**, Xishuangbanna Tropical Botanical Garden, Yunnan, China**Dr. Noor Azhar Mohamed Shazili**, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia**Dr. M.K. Vasudeva Rao**, Shiv Ranjan Housing Society, Pune, Maharashtra, India**Prof. A.J. Solomon Raju**, Andhra University, Visakhapatnam, India**Dr. Mander Datar**, Agharkar Research Institute, Pune, Maharashtra, India**Dr. M.K. Janarthanam**, Goa University, Goa, India**Dr. K. Karthigeyan**, Botanical Survey of India, India**Dr. Errol Vela**, University of Montpellier, Montpellier, France**Dr. P. Lakshminarasiham**, Botanical Survey of India, Howrah, India**Dr. Larry R. Noblick**, Montgomery Botanical Center, Miami, USA**Dr. K. Haridasan**, Pallavur, Palakkad District, Kerala, India**Dr. Analinda Manila-Fajard**, University of the Philippines Los Baños, Laguna, Philippines**Dr. P.A. Siru**, Central University of Kerala, Kasaragod, Kerala, India**Dr. Afroz Alam**, Banasthali Vidyapith (accredited A grade by NAAC), Rajasthan, India**Dr. K.P. Rajesh**, Zamorin's Guruvayurappan College, GA College PO, Kozhikode, Kerala, India**Dr. David E. Boufford**, Harvard University Herbaria, Cambridge, MA 02138-2020, USA**Dr. Ritesh Kumar Choudhary**, Agharkar Research Institute, Pune, Maharashtra, India**Dr. A.G. Pandurangan**, Thiruvananthapuram, Kerala, India**Dr. Navendu Page**, Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India**Dr. Kannan C.S. Warrier**, Institute of Forest Genetics and Tree Breeding, Tamil Nadu, India**Invertebrates****Dr. R.K. Avasthi**, Rohtak University, Haryana, India**Dr. D.B. Bastawade**, Maharashtra, India**Dr. Partha Pratim Bhattacharjee**, Tripura University, Suryamaninagar, India**Dr. Kailash Chandra**, Zoological Survey of India, Jabalpur, Madhya Pradesh, India**Dr. Ansie Dippenaar-Schoeman**, University of Pretoria, Queenswood, South Africa**Dr. Rory Dow**, National Museum of natural History Naturalis, The Netherlands**Dr. Brian Fisher**, California Academy of Sciences, USA**Dr. Richard Gallon**, Ilandudno, North Wales, LL30 1UP**Dr. Hemant V. Ghate**, Modern College, Pune, India**Dr. M. Monwar Hossain**, Jahangirnagar University, Dhaka, BangladeshFor Focus, Scope, Aims, and Policies, visit [https://threatenedtaxa.org/index.php/JoTT/aims\\_scope](https://threatenedtaxa.org/index.php/JoTT/aims_scope)For Article Submission Guidelines, visit <https://threatenedtaxa.org/index.php/JoTT/about/submissions>For Policies against Scientific Misconduct, visit [https://threatenedtaxa.org/index.php/JoTT/policies\\_various](https://threatenedtaxa.org/index.php/JoTT/policies_various)

continued on the back inside cover

Cover: Watercolour illustrations—Striped Tiger *Danaus genutia*, Common Silverline *Cigaritis vulcanus*, Tamil Lacewing *Cethosia mahratta*. © Mayur Nandikar.



## Diversity and distribution of large centipedes (Chilopoda: Scolopendromorpha) in Nui Chua National Park, Vietnam

Son X. Le<sup>1</sup> , Thinh T. Do<sup>2</sup> , Thuc H. Nguyen<sup>3</sup>  & Binh T.T. Tran<sup>4</sup> 

<sup>1-3</sup> Joint Vietnam - Russia Tropical Science and Technology Research Centre, 63 Nguyen Van Huyen Road, Nghia Do, Cau Giay, Hanoi, Vietnam.

<sup>1</sup> VNU University of Sciences, Vietnam National University, 334 Nguyen Trai Road, Thanh Xuan District, Hanoi, Vietnam.

<sup>4</sup> Hanoi University of Education, 136 Xuan Thuy, Cau Giay District, Hanoi, Vietnam.

<sup>1</sup>lesonenv86@yahoo.com (corresponding author), <sup>2</sup>dotathinh16@gmail.com, <sup>3</sup>nguyenthucst76@gmail.com, <sup>4</sup>binhtt@hnue.edu.vn

**Abstract.** Field surveys on large centipedes of Nui Chua National Park, south-central part of Vietnam, were conducted in September 2023 and February 2024. As a result, a total of 12 species/subspecies belonging to five genera and two families of the order Scolopendromorpha were recorded. Of two families, Scolopendridae has nine species in four genera, while Cryptopidae has only two species in one genus. In addition, the distribution pattern of the large centipedes is discussed based on the season (rainy versus dry), altitudes, and different habitats.

**Keywords:** Altitudes, biodiversity, bioinvestigation, distribution, habitats, scolopendromorph, season, south-central Vietnam, taxon.

**Vietnamese:** Các đợt điều tra về rết lớn tại Vườn quốc gia Núi Chúa được thực hiện vào tháng 9 năm 2023 và tháng 2 năm 2024. Kết quả đã ghi nhận được 12 loài và phân loài thuộc 5 giống, 2 họ của bộ rết lớn Scolopendromorpha. Trong đó, họ Scolopendridae đã ghi nhận được 9 loài, họ Cryptopidae đã ghi nhận được 2 loài cùng một giống. Bên cạnh đó, nghiên cứu cũng phân tích, đánh giá về đặc điểm phân bố của các loài theo các mùa (mùa mưa và mùa khô) trong năm, theo độ cao và các sinh cảnh khác nhau.

**Editor:** Gregory D. Edgecombe, Natural History Museum, London UK.

**Date of publication:** 26 August 2024 (online & print)

**Citation:** Le, S.X., T.T. Do, T.H. Nguyen & B.T.T. Tran (2024). Diversity and distribution of large centipedes (Chilopoda: Scolopendromorpha) in Nui Chua National Park, Vietnam. *Journal of Threatened Taxa* 16(8): 25742-25747. <https://doi.org/10.11609/jott.9089.16.8.25742-25747>

**Copyright:** © Le et al. 2024. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

**Funding:** (1) Joint Vietnam - Russia Tropical Science and Technology Research Centre under the project ST.D1.02/24 "Taxonomy, biodiversity and genetic relationship of large centipedes (Chilopoda: Scolopendromorpha) in Vietnam". (2) - Nagao Environment Foundation of Japan under the project "Exploring the diversity and distribution of the large centipedes (Chilopoda, Scolopendromorpha) in Nui Chua National Park, southcentral Vietnam"

**Competing interests:** The authors declare no competing interests.

**Author details:** SON X. LE, THINH T. DO, THUC H. NGUYEN are currently working for Institute of Tropical Ecology, Joint Vietnam-Russia Tropical Science and Technology Research Center (Hanoi, Vietnam). They are focusing on taxonomy, systematics and ecology of centipedes and other soil animals in Vietnam. BINH T.T. TRAN is currently working for Department of Biology, Hanoi University of Education (Hanoi, Vietnam). She is also focusing on taxonomy, systematics and ecology of centipedes and other soil animals in Vietnam.

**Author contributions:** All authors equally contribute to the current paper, including sample collecting, analyzing, photographing and manuscript writing.

**Acknowledgements:** This work was funded by project ST.D1.02/24 "Taxonomy, biodiversity and genetic relationship of large centipedes (Chilopoda: Scolopendromorpha) in Vietnam" of the Joint Vietnam-Russia Tropical Science and Technology Research Centre, and supported by the Nagao Environment Foundation of Japan under the project "Exploring the diversity and distribution of the large centipedes (Chilopoda, Scolopendromorpha) in Nui Chua National Park, southcentral Vietnam". The management board of the Nui Chua NP was acknowledged for their kindly allowing us to conduct field surveys.



## INTRODUCTION

Centipedes are the largest group of terrestrial carnivorous invertebrates and have an important role in balancing the ecosystem or controlling harmful organisms (Lewis 1981). Therefore, it is very essential to have a better understanding of this group. The large centipede fauna (Scolopendromorpha) in Vietnam was initially studied by foreign researchers such as Attems (1930) and Schileyko (1992, 1995, 2007). Recently, Vietnamese systematists started to conduct more research on the taxonomy and diversity of scolopendromorph centipedes, such as Tran et al. (2013), Vu et al (2020, 2022), and Le et al. (2018, 2021, 2023).

Nui Chua National Park (NP) in Ninh Thuan province, south-central Vietnam, has been recognized as a World Biosphere Reserve since 2021 (Figure 1). This is in recognition by the international community of its natural landscape, biodiversity, and indigenous cultural values. The biosphere reserve has a total area of 106,000 ha, including forests, seas, and semi-deserts. With the core area being Nui Chua National Park, this region possesses much biodiversity value for its rare species of animals and plants. In addition, it has a harsh climate, low rainfall, and hot weather all year round, creating for Nui Chua a natural landscape with unique characteristics of the dry climate region of Ninh Thuan. This is also a unique and rare characteristic of Vietnam and southeastern Asia. However, up to now, large centipedes in the Nui Chua NP area are still poorly known. According to Tran et al. (2013), *Scolopendra morsitans* is the only species recorded in Ninh Thuan province. The recorded location is about 20 km south-west of Nui Chua NP.

This study aims to provide the species composition of the large centipedes and their distribution pattern in Nui Chua NP.

## MATERIAL AND METHODS

Field surveys were carried out in September 2023 and February 2024 in different habitats in Nui Chua NP, including natural broadleaf forests (NF), planted forests (PF) and coniferous forests (CF). Samples were also collected at different altitudes (including below 300 m, 300–600 m, and 600–1,000 m) according to Vu (2012) and Bain & Hurley (2011).

Centipede samples were collected by pitfall trapping (Mesibov & Churchill 2003), leaf-sifting (Górny & Grum 1993) and manually collecting from rotting trees, under rocks, and forest litter. A total of 156 samples were

collected during the two field surveys. All specimens were preserved in 75–80 % ethanol and kept at the Joint Vietnam-Russia Tropical Science and Technology Research Centre (VRTC).

Specimens were identified using Attems (1930), Schileyko (2007, 2020), Siriut et al. (2016), and Vu et al. (2020). Ecological indices including the number of species, Shannon-Weaver ( $H'$ ), and uniformity ( $J'$ ) were calculated using the software Primer ver. 7.0 for each habitat type and altitude. A similarity index was calculated using the software R ver. 4.0.4.

## RESULTS AND DISCUSSION

### Diversity composition and distribution of Scolopendromorpha

From 156 specimens collected in the Nui Chua NP, 12 species/subspecies of five genera belonging to two families were identified. Eleven species were new records to the fauna of Nui Chua, including *Scolopendra morsitans*, *S. subspinipes*, *S. dehaani*, *S. japonica*, *Scolopendra* sp., *Ostostigmus spinosus*, *O. scaber*, *O. multidens*, *Asanada brevicornis*, *Ethmostimus rubripes platycephalus*, *Cryptops* (*Cryptops*) sp., and *Cryptops* (*Paracryptops*) *indicus* (Table 1).

With the harsh climate in the area, the rainy season is of short duration, from September to November, while the dry season lasts from December to August of the following year. The seasonal diversity of large centipedes in the Nui Chua NP area does not differ significantly. In the rainy season, 10 species were recorded, while in the dry season nine species were recorded. Centipedes are likely to be more active in the rainy season than in the dry season. This is evident from the number of specimens collected in each season, with 106 specimens found during the rainy season compared to 50 during the dry season. This phenomenon can be explained by the characteristic of centipedes to prefer to live in humid environments.

Three species, *Scolopendra morsitans*, *S. dehaani*, and *Scolopendra* sp., were recorded only in the rainy season, while *Scolopendra japonica* and subspecies *Ethmostimus rubripes platycephalus* were found only in the dry season.

Among the habitats, the NF is the most diverse one in terms of species and collected specimens (12 species and 123 individuals). The PF habitat is less diverse with five species and 27 individuals. The lowest number of species and collected specimens was recorded in the CF habitat (four species and only six individuals). This result

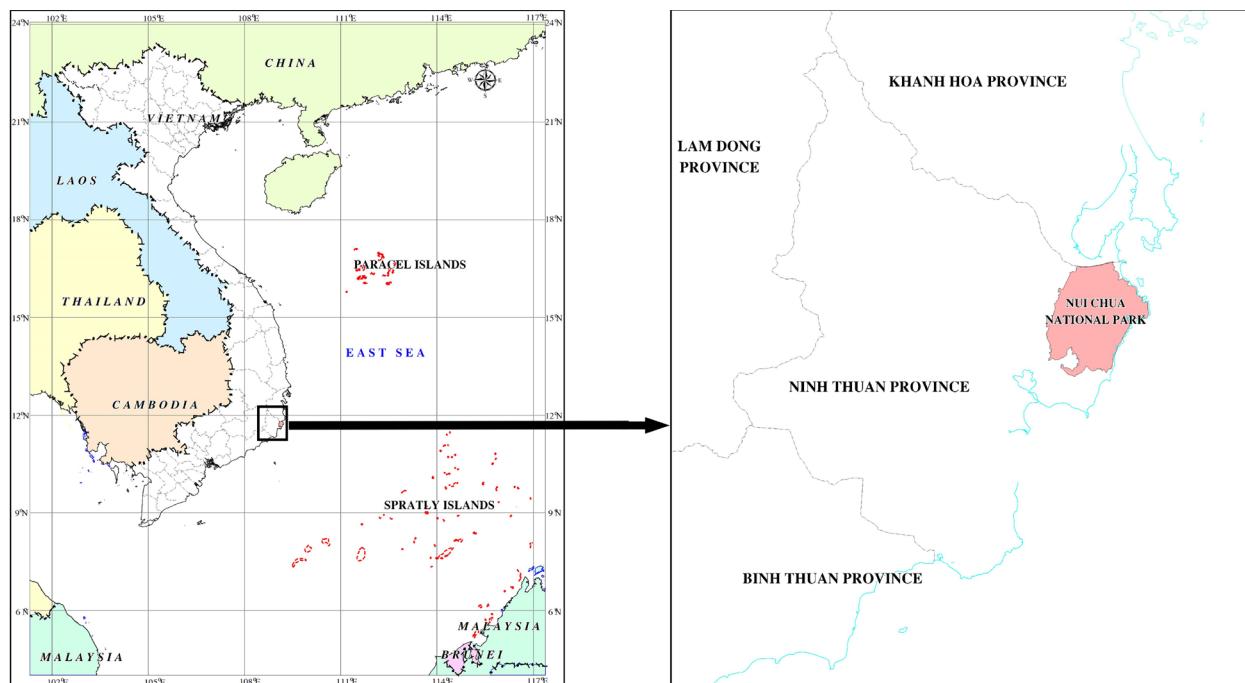



Figure 1. Location of Nui Chua National Park, Vietnam.

Table 1. Species composition and distribution of scolopendromorphs in Nui Chua National Park, Ninh Thuan province.

| Taxon                                                                     | Season    |            | Elevation range (m) |           |           | Habitat    |           |          |
|---------------------------------------------------------------------------|-----------|------------|---------------------|-----------|-----------|------------|-----------|----------|
|                                                                           | Dry       | Rain       | 0–300               | 300–600   | 600–1,000 | NF         | PF        | CF       |
| Family Scolopendridae Pocock, 1895                                        |           |            |                     |           |           |            |           |          |
| Genus <i>Scolopendra</i> Linnaeus, 1758                                   |           |            |                     |           |           |            |           |          |
| 1 <i>Scolopendra morsitans</i> Linnaeus, 1758                             |           | +(6)       | +(4)                | +(2)      |           | +(2)       |           | +(4)     |
| 2 <i>Scolopendra subspinipes</i> Leach, 1815                              | +(13)     | +(2)       | +(4)                | +(7)      | +(4)      | +(15)      |           |          |
| 3 <i>Scolopendra dehaani</i> Brandt, 1840                                 |           | +(1)       | +(1)                |           |           | +(1)       |           |          |
| 4 <i>Scolopendra japonica</i> Koch, 1878                                  | +(2)      |            |                     |           | +(2)      | +(2)       |           |          |
| 5 <i>Scolopendra</i> sp.                                                  |           | +(2)       | +(2)                |           |           | +(2)       |           |          |
| Genus <i>Otostigmus</i> Porat, 1876                                       |           |            |                     |           |           |            |           |          |
| 6 <i>Otostigmus spinosus</i> Porat, 1876                                  | +(4)      | +(26)      | +(24)               | +(3)      | +(3)      | +(19)      | +(11)     |          |
| 7 <i>Otostigmus scaber</i> Porat, 1876                                    | +(6)      | +(3)       | +(2)                | +(1)      | +(6)      | +(9)       |           |          |
| 8 <i>Otostigmus multidens</i> Haase, 1887                                 | +(9)      | +(5)       | +(3)                | +(4)      | +(7)      | +(12)      | +(2)      |          |
| Genus <i>Asanada</i> Meinert, 1886                                        |           |            |                     |           |           |            |           |          |
| 9 <i>Asanada brevicornis</i> Meinert, 1886                                | +(7)      | +(24)      | +(19)               | +(12)     |           | +(26)      | +(4)      | +(1)     |
| Genus <i>Ethmostigmus</i> Newport, 1845                                   |           |            |                     |           |           |            |           |          |
| 10 <i>Ethmostigmus rubripes platycephalus</i> (Newport, 1845)             | +(1)      |            |                     |           | +(1)      | +(1)       |           |          |
| Family Cryptopidae Kohlrausch, 1881                                       |           |            |                     |           |           |            |           |          |
| Genus <i>Cryptops</i> Leach, 1815                                         |           |            |                     |           |           |            |           |          |
| 11 <i>Cryptops</i> ( <i>Cryptops</i> ) sp.                                | +(6)      | +(33)      | +(28)               | +(7)      | +(4)      | +(28)      | +(10)     | +(1)     |
| 12 <i>Cryptops</i> ( <i>Paracryptops</i> ) <i>indicus</i> Silvestri, 1924 | +(2)      | +(4)       | +(3)                | +(3)      |           | +(6)       |           |          |
| <b>Total number of individuals</b>                                        | <b>50</b> | <b>106</b> | <b>90</b>           | <b>39</b> | <b>27</b> | <b>123</b> | <b>27</b> | <b>6</b> |
| <b>Total species</b>                                                      | <b>9</b>  | <b>10</b>  | <b>10</b>           | <b>8</b>  | <b>7</b>  | <b>12</b>  | <b>5</b>  | <b>3</b> |

NF—natural broadleaf forests | PF—planted forests | CF—coniferous forests | +—present | The number in parentheses indicates samples collected.

is similar to previous research in other areas, in which the CF habitat has a lower number of species in comparison with the other habitats (Le & Vu 2018; Le et al. 2021). This is even more clearly shown in Nui Chua NP, where the terrain and climate are typical, and coniferous forests are concentrated mainly on the coast, so only species with wide distribution and adaptability can be found. There are only two species, *Asanada brevicornis* and *Cryptops* (*Cryptops*) sp. recorded in all three habitats; *Scolopendra morsistans*, *Otostigmus spinosus*, and *Otostigmus multidens* were recorded in two habitats; the remaining species were only recorded in NF.

Regarding topological distribution, the highest species diversity was recorded in the elevation range of less than 300 m (10 species), while other elevation ranges had lower diversity, with eight species recorded in the elevation of 300–600 m, and seven in the elevation of 600–1,000 m. Five species were recorded at all three different altitudes, including *Scolopendra subspinipes*, *Otostigmus spinosus*, *O. scaber*, *O. multidens*, and *Cryptops* (*Cryptops*) sp. Two species, *Scolopendra dehaani* and *Scolopendra* sp., were recorded only at altitudes below 300 m, while *Scolopendra japonica* and *Ethmostigmus rubripes platycephalus* were recorded only at altitudes of 600–1,000 m. The remaining species were recorded at two altitude ranges below 600 m.

### Taxon diversity

Only two families, Scolopendridae and Cryptopidae, were recorded in Nui Chua National Park. Of these, Scolopendridae had a higher diversity in terms of the number of recorded genera and species (four genera and 10 species). Cryptopidae had only one genus and two species recorded (Figure 2). This result is similar to previous studies on large centipede fauna in Vietnam (Tran et al. 2013, 2018; Le & Vu 2018; Nguyen et al. 2019).

Of five genera (Figure 3), *Scolopendra* was the genus with the highest number of species (five species, accounting for 42% of the total number of species), followed by *Otostigmus* with three species (accounting for 25%). The remaining two genera, *Asanada* and *Ethmostigmus*, had only one species each (accounting for 8%).

### Biological indicators

The results of the biological indicators are presented in Table 2, in which the NF habitat had the highest  $H'$  index of 2.06, this value showing that the diversity in this habitat was quite high. In contrast, the CF habitat had very poor diversity ( $H' = 0.87$ ). The PF habitat presented an average diversity ( $H' = 1.21$ ). For the altitude, all

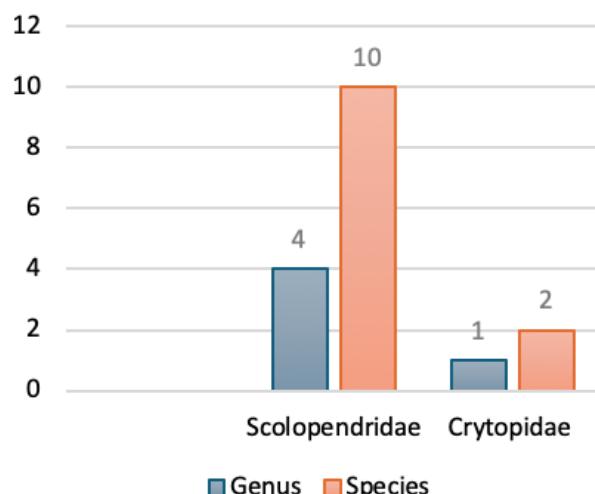



Figure 2. Family taxon diversity - Number of species in families.

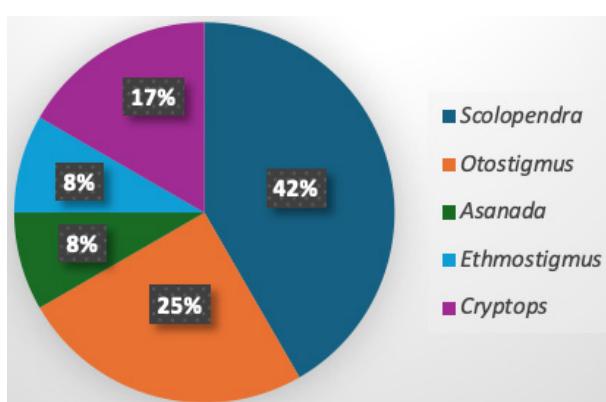
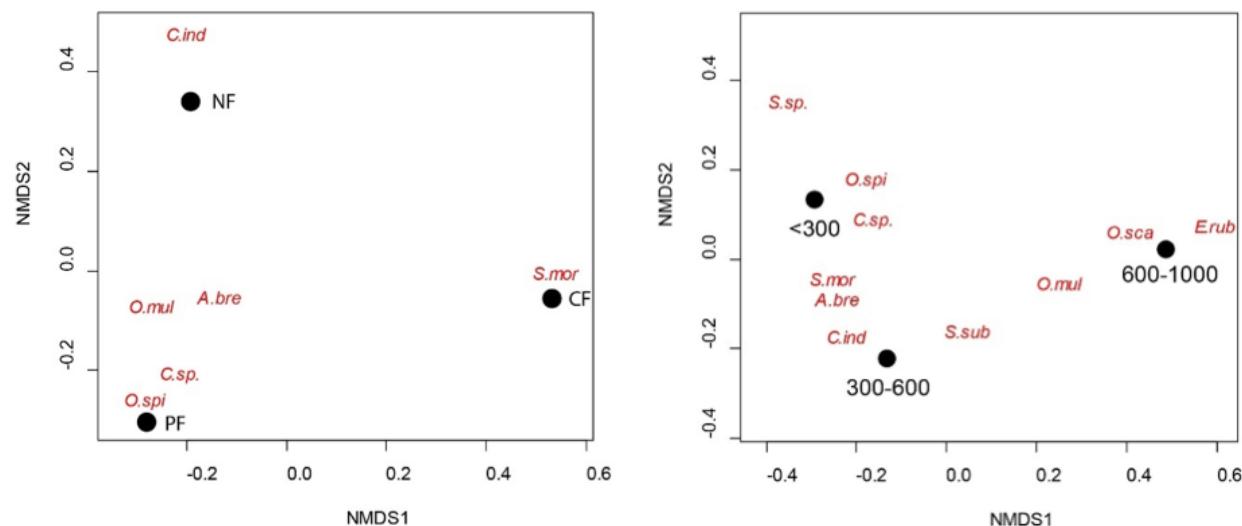




Figure 3. Generic taxon diversity - Percentage of species in genera.

Table 2. Diversity index and uniformity index by habitat and altitude.

| Habitat/elevation (m) | Amount  |            | Index |      |
|-----------------------|---------|------------|-------|------|
|                       | Species | Individual | $J'$  | $H'$ |
| NF                    | 12      | 123        | 0.83  | 2.06 |
| PF                    | 4       | 27         | 0.87  | 1.21 |
| CF                    | 3       | 6          | 0.79  | 0.87 |
| 0–300                 | 10      | 90         | 0.77  | 1.77 |
| 300–600               | 8       | 39         | 0.89  | 1.85 |
| 600–1,000             | 7       | 27         | 0.93  | 1.81 |

three altitudes showed moderate diversity with  $H'$  ranging from 1.77 (0–300 m) to 1.81 (300–600 m). The uniformity index  $J'$  showed that this index did not differ significantly among habitats. The uniformity was highest in the PF habitat (0.87), and lowest in the CF habitat (0.79). Regarding the altitude,  $J'$  index expressed more



**Figure 4.** Non-metric multidimensional scaling (NMDS) analysis: A—by habitat | B—by elevation | *A.bre*—*Asanda brevicornis* | *C.ind*—*Cryptops (Cryptops) indicus* | *C.sp.*—*Cryptops (Cryptops)* sp. | *E.rub*—*Ethmostimus rubripes platycephalus* | *O.mul*—*Otostigmus multidens* | *O.spi*—*Otostigmus spinosus* | *O.sca*—*Otostigmus scaber* | *S.deh*—*Scolopendra dehaani* | *S.jap*—*Scolopendra japonica* | *S.mor*—*Scolopendra morsitans* | *S.sp.*—*Scolopendra* sp. | *S.sub*—*Scolopendra subspinipes*.

difference, whereby it was highest at altitudes of 600–1,000 m, with 0.89, and lowest at altitudes below 300 m with 0.77. Thus, at an altitude of 300 m, although there was the greatest diversity and richness, the uniformity of species is the lowest. This was due to differences in the number of collected specimens such as *Cryptops (Cryptops)* sp. (28 specimens), *Otostigmus spinosus* (24 specimens), while *Scolopendra dehaani* was represented by only one specimen.

The similarities in species composition among habitats and altitudes are shown in Figure 4 by NMDS analysis. According to the results in Figure 4A, the habitats express little similarity in species composition, made plain by the distance among the habitats in the figure. The close relationship of species to habitats is also clearly shown, whereby the species *Cryptops (Cryptops) indicus* is close to the NF, the *Scolopendra morsitans* is close to the CF habitat, three species (*Asanda brevicornis* (Image 1), *Cryptops (Cryptops)* sp., *Otostigmus multidens*, and *Otostigmus spinosus*) are closer to PF, but *Otostigmus spinosus* was the closest. Other species have not been seen to have associations with habitats.

The similarity by altitude (Figure 4B) shows that altitudes below 300 m are closer to altitudes 300–600 m than to altitudes 600–1,000 m. The recorded species also show close relationships with different altitudes. Among them, *Ethmostimus rubripes platycephalus* and *Otostigmus scaber* are closely related at altitudes of 600–1,000 m, *Cryptops (Cryptops)* sp. and *Otostigmus spinosus* are closer to altitudes below 300 m, while

*Cryptops (Cryptops) indicus* and *Scolopendra subspinipes* are closer to altitudes of 300–600 m.

## DISCUSSION

Nui Chua NP is located in the hottest and driest area in Vietnam with a very short rainy season, little annual rainfall, and a long dry season. The species diversity of the large centipedes was not very low (12 species). The results are similar to the diversity of Hoang Lien National Park, Thuong Tien, and Xuan Nha Nature Reserve in the northwestern region of Vietnam, where there is more diversity in habitat types, altitudes, and humid climates, more favourable for the growth and development of centipedes (Nguyen et al. 2018, 2019a,b).

In previous studies, it was noted that the genus *Otostigmus* has the highest diversity, but in this study, *Scolopendra* is shown to be the most diverse genus. Notably, the species *Scolopendra japonica* was recorded, previously mentioned by Siriwit (2016), to be distributed in Sapa (altitude above 1,600 m) in the north of Vietnam, in which the climate is completely different from Nui Chua NP. The geographical distance of the two recorded locations is very far apart, which shows that this species is most likely widely distributed in Vietnam. Additional studies are needed for different regions in Vietnam to confirm its distributional pattern.



© Son X. Le

Image 1. *Asanada brevicornis* Meinert, 1886.

## REFERENCES

Attems, C. (1930). *Myriopoda. 2. Scolopendromorpha*. Das Tierreich 54. De Gruyter, Berlin, Leipzig, 308 pp.

Bain, R. & M. Hurley (2011). A Biogeographic Synthesis of the Amphibians and Reptiles of Indochina. *Bulletin of the American Museum of Natural History* 360: 1–138.

Górny, M. & L. Grum (1993). *Methods in Soil Zoology*. Elsevier Science, 459 pp.

Le, X.S. & T.H. Vu (2018). Preliminary data on species composition and distribution of the Scolopendromorph centipedes (Chilopoda: Scolopendromorpha) in Kon Ka Kinh National Park and Kon Chu Rang Nature Reserve, Gia Lai province. *VNU Journal of Science: Natural Sciences and Technology* 34(4): 16–20. <https://doi.org/10.25073/2588-1140/vnunst.4794>

Le, X.S., T.T.A. Nguyen, T.T.B. Tran & A.D. Nguyen (2021). Diversity and distribution of the large centipedes (Chilopoda: Scolopendromorpha) in the Phia Oac - Phia Den National Park, Vietnam. *Journal of Threatened Taxa* 13(8): 19102–19107. <https://doi.org/10.11609/jott.7451.13.8.19102-19107>

Lewis, J.G.E. (1981). *The Biology of Centipedes*. Cambridge University Press.

Mesibov, R. & T.B. Churchill (2003). Patterns in pitfall captures of millipedes (Diplopoda: Polydesmida: Paradoxosomatidae) at coastal heathland sites in Tasmania. *Australian Zoologist* 32(3): 431–438. <https://doi.org/10.7882/AZ.2002.021>

Nguyen, D.H., D.Q. Do, T.T.B. Tran, T.H. Vu, D.A. Nguyen & X.S. Le (2019b). Data on species composition and distribution of centipedes (Chilopoda: Scolopendromorpha, Scutigeromorpha) Hoang Lien National Park, Vietnam. *Journal of Hanoi National University of Education* 64(10A): 82–89. (In Vietnamese). <https://doi.org/10.25073/2588-1140/vnunst.4794>

Nguyen, D.H., N.A. Hoang, D.Q.C. Tran & T.T.B. Tran (2018). Preliminary data on centipedes (Chilopoda: Scolopendromorpha, Scutigeromorpha) in Thuong Tien Natural Reserve, Hoa Binh province. The 3rd National Conference of Scientists on Biological Research and Teaching in Vietnam: 533–540. (In Vietnamese).

Nguyen, D.H., Q.T.C. Dang, T.T.H. Nguyen, X.S. Le & T.T.B. Tran (2019a).

Diversity of centipedes (Chilopoda: Scolopendromorpha and Scutigeromorpha) in Xuan Nha Nature Reserve, Son La province, Vietnam. *Can Tho University Journal of Science* 11(3): 75–82. <https://www.doi.org/10.22144/ctu.jen.2019.041>

Schileyko, A.A. (1992). Scolopenders of Viet-Nam and some aspects of the system of Scolopendromorpha (Chilopoda: Epimorpha). Part 1. *Arthropoda Selecta* 1: 5–19.

Schileyko, A.A. (1995). The scolopendromorph centipedes of Vietnam (Chilopoda: Scolopendromorpha). Part 2. *Arthropoda Selecta* 4: 73–87.

Schileyko, A.A. (2007). The scolopendromorph centipedes (Chilopoda) of Vietnam, with contributions to the faunas of Cambodia and Laos. Part 3. *Arthropoda Selecta* 16: 71–95.

Schileyko, A.A., V. Vahtera & G.D. Edgecombe (2020). An overview of the extant genera and subgenera of the order Scolopendromorpha (Chilopoda): a new identification key and updated diagnoses. *Zootaxa* 4825(1): 1–64. <https://doi.org/10.11646/zootaxa.4825.1.1>

Siriwut, W., G.D. Edgecombe, C. Sutcharit, P. Tongkerd & S. Panha (2016). A taxonomic review of the centipede genus *Scolopendra* Linnaeus, 1758 (Scolopendromorpha, Scolopendridae) in mainland southeast Asia, with description of a new species from Laos. *ZooKeys* 590: 1–124. <https://doi.org/10.3897/zookeys.590.7950>

Tran, T.T.B., D.H. Nguyen, T.K.L. Ha & T.H. Vu (2018). Preliminary data on centipedes (Chilopoda: Scolopendromorpha and Scutigeromorpha) in Ta Xua Natural Reserve, Son La Province, Vietnam. *Academia Journal of Biology* 40(1): 100–107. <https://doi.org/10.15625/0866-7160/v40n1.11073>

Tran, T.T.B., X.S. Le & A.D. Nguyen (2013). An annotated checklist of centipedes (Chilopoda) of Vietnam. *Zootaxa* 3722(2): 219–244. <https://doi.org/10.11646/zootaxa.3722.2.6>

Vu, T.L. (2012). *Natural geography of Vietnam, 8th Edition*. Publishing House of Hanoi University of Education, Ha Noi, 340 pp.

Vu, T.H., D.H. Nguyen, X.S. Le, K. Eguchi, A.D. Nguyen & T.T.B. Tran (2020). A review and notes on the phylogenetic relationship of the centipede genus *Ostostigmus* Porat, 1876 (Chilopoda: Scolopendromorpha: Scolopendridae) from Vietnam. *Zootaxa* 4808(3): 401–438. <https://doi.org/10.11646/zootaxa.4808.3.1>

Mr. Jatishwor Singh Irungbam, Biology Centre CAS, Branišovská, Czech Republic.  
Dr. Ian J. Kitching, Natural History Museum, Cromwell Road, UK  
Dr. George Mathew, Kerala Forest Research Institute, Peechi, India  
Dr. John Noyes, Natural History Museum, London, UK  
Dr. Albert G. Orr, Griffith University, Nathan, Australia  
Dr. Sameer Padhye, Katholieke Universiteit Leuven, Belgium  
Dr. Nancy van der Poorten, Toronto, Canada  
Dr. Karen Schnabel, NIWA, Wellington, New Zealand  
Dr. R.M. Sharma, (Retd.) Scientist, Zoological Survey of India, Pune, India  
Dr. Manju Siliwal, WILD, Coimbatore, Tamil Nadu, India  
Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India  
Dr. K.A. Subramanian, Zoological Survey of India, New Alipore, Kolkata, India  
Dr. P.M. Sureshan, Zoological Survey of India, Kozhikode, Kerala, India  
Dr. R. Varatharajan, Manipur University, Imphal, Manipur, India  
Dr. Eduard Vives, Museu de Ciències Naturals de Barcelona, Terrassa, Spain  
Dr. James Young, Hong Kong Lepidopterists' Society, Hong Kong  
Dr. R. Sundararaj, Institute of Wood Science & Technology, Bengaluru, India  
Dr. M. Nithyanandan, Environmental Department, La Al Kuwait Real Estate. Co. K.S.C., Kuwait  
Dr. Himender Bharti, Punjabi University, Punjab, India  
Mr. Purnendu Roy, London, UK  
Dr. Saito Motoki, The Butterfly Society of Japan, Tokyo, Japan  
Dr. Sanjay Sondhi, TITLI TRUST, Kalpavriksh, Dehradun, India  
Dr. Nguyen Thi Phuong Lien, Vietnam Academy of Science and Technology, Hanoi, Vietnam  
Dr. Nitin Kulkarni, Tropical Research Institute, Jabalpur, India  
Dr. Robin Wen Jiang Ngiam, National Parks Board, Singapore  
Dr. Lional Monod, Natural History Museum of Geneva, Genève, Switzerland.  
Dr. Asheesh Shivam, Nehru Gram Bharti University, Allahabad, India  
Dr. Rosana Moreira da Rocha, Universidade Federal do Paraná, Curitiba, Brasil  
Dr. Kurt R. Arnold, North Dakota State University, Saxony, Germany  
Dr. James M. Carpenter, American Museum of Natural History, New York, USA  
Dr. David M. Claborn, Missouri State University, Springfield, USA  
Dr. Karen Schnabel, Marine Biologist, Wellington, New Zealand  
Dr. Amazonas Chagas Júnior, Universidade Federal de Mato Grosso, Cuiabá, Brasil  
Mr. Monsoon Jyoti Gogoi, Assam University, Silchar, Assam, India  
Dr. Heo Chong Chin, Universiti Teknologi MARA (UiTM), Selangor, Malaysia  
Dr. R.J. Shiel, University of Adelaide, SA 5005, Australia  
Dr. Siddharth Kulkarni, The George Washington University, Washington, USA  
Dr. Priyadarshan Dharma Rajan, ATREE, Bengaluru, India  
Dr. Phil Alderslade, CSIRO Marine And Atmospheric Research, Hobart, Australia  
Dr. John E.N. Veron, Coral Reef Research, Townsville, Australia  
Dr. Daniel Whitmore, State Museum of Natural History Stuttgart, Rosenstein, Germany.  
Dr. Yu-Feng Hsu, National Taiwan Normal University, Taipei City, Taiwan  
Dr. Keith V. Wolfe, Antioch, California, USA  
Dr. Siddharth Kulkarni, The Hormiga Lab, The George Washington University, Washington, D.C., USA  
Dr. Tomas Ditrich, Faculty of Education, University of South Bohemia in Ceske Budejovice, Czech Republic  
Dr. Mihaly Foldvari, Natural History Museum, University of Oslo, Norway  
Dr. V.P. Uniyal, Wildlife Institute of India, Dehradun, Uttarakhand 248001, India  
Dr. John T.D. Caleb, Zoological Survey of India, Kolkata, West Bengal, India  
Dr. Priyadarshan Dharma Rajan, Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Bangalore, Karnataka, India

#### Fishes

Dr. Neelesh Dahanukar, IISER, Pune, Maharashtra, India  
Dr. Topiltzin Contreras MacBeath, Universidad Autónoma del estado de Morelos, México  
Dr. Heok Hee Ng, National University of Singapore, Science Drive, Singapore  
Dr. Rajeev Raghavan, St. Albert's College, Kochi, Kerala, India  
Dr. Robert D. Sluka, Chiltern Gateway Project, A Rocha UK, Southall, Middlesex, UK  
Dr. E. Vivekanandan, Central Marine Fisheries Research Institute, Chennai, India  
Dr. Davor Zanella, University of Zagreb, Zagreb, Croatia  
Dr. A. Biju Kumar, University of Kerala, Thiruvananthapuram, Kerala, India  
Dr. Akhilesh K.V., ICAR-Central Marine Fisheries Research Institute, Mumbai Research Centre, Mumbai, Maharashtra, India  
Dr. J.A. Johnson, Wildlife Institute of India, Dehradun, Uttarakhand, India  
Dr. R. Ravinesh, Gujarat Institute of Desert Ecology, Gujarat, India

#### Amphibians

Dr. Sushil K. Dutta, Indian Institute of Science, Bengaluru, Karnataka, India  
Dr. Annemarie Ohler, Muséum national d'Histoire naturelle, Paris, France

#### Reptiles

Dr. Gernot Vogel, Heidelberg, Germany  
Dr. Raju Vyas, Vadodara, Gujarat, India  
Dr. Pritpal S. Soorae, Environment Agency, Abu Dhabi, UAE.  
Prof. Dr. Wayne J. Fuller, Near East University, Mersin, Turkey  
Prof. Chandrashekher U. Rironker, Goa University, Taleigao Plateau, Goa, India  
Dr. S.R. Ganesh, Chennai Snake Park, Chennai, Tamil Nadu, India  
Dr. Himansu Sekhar Das, Terrestrial & Marine Biodiversity, Abu Dhabi, UAE

**Journal of Threatened Taxa** is indexed/abstracted in Bibliography of Systematic Mycology, Biological Abstracts, BIOSIS Previews, CAB Abstracts, EBSCO, Google Scholar, Index Copernicus, Index Fungorum, JournalSeek, National Academy of Agricultural Sciences, NewJour, OCLC WorldCat, SCOPUS, Stanford University Libraries, Virtual Library of Biology, Zoological Records.

NAAS rating (India) 5.64

#### Birds

Dr. Hem Sagar Baral, Charles Sturt University, NSW Australia  
Mr. H. Biju, Coimbatore, Tamil Nadu, India  
Dr. Chris Bowden, Royal Society for the Protection of Birds, Sandy, UK  
Dr. Priya Davidar, Pondicherry University, Kalapet, Puducherry, India  
Dr. J.W. Duckworth, IUCN SSC, Bath, UK  
Dr. Rajah Jayopal, SACON, Coimbatore, Tamil Nadu, India  
Dr. Rajiv S. Kalsi, M.L.N. College, Yamuna Nagar, Haryana, India  
Dr. V. Santharam, Rishi Valley Education Centre, Chittoor Dt., Andhra Pradesh, India  
Dr. S. Balachandran, Bombay Natural History Society, Mumbai, India  
Mr. J. Praveen, Bengaluru, India  
Dr. C. Srinivasulu, Osmania University, Hyderabad, India  
Dr. K.S. Gopi Sundar, International Crane Foundation, Baraboo, USA  
Dr. Gombobaatar Sundev, Professor of Ornithology, Ulaanbaatar, Mongolia  
Prof. Reuven Yosef, International Birding & Research Centre, Eilat, Israel  
Dr. Taej Mundkur, Wetlands International, Wageningen, The Netherlands  
Dr. Carol Inskip, Bishop Auckland Co., Durham, UK  
Dr. Tim Inskip, Bishop Auckland Co., Durham, UK  
Dr. V. Gokula, National College, Tiruchirappalli, Tamil Nadu, India  
Dr. Arkady Lelej, Russian Academy of Sciences, Vladivostok, Russia  
Dr. Simon Dowell, Science Director, Chester Zoo, UK  
Dr. Mário Gabriel Santiago dos Santos, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, Vila Real, Portugal  
Dr. Grant Connette, Smithsonian Institution, Royal, VA, USA  
Dr. P.A. Azeez, Coimbatore, Tamil Nadu, India

#### Mammals

Dr. Giovanni Amori, CNR - Institute of Ecosystem Studies, Rome, Italy  
Dr. Anwaruddin Chowdhury, Guwahati, India  
Dr. David Mallon, Zoological Society of London, UK  
Dr. Shomita Mukherjee, SACON, Coimbatore, Tamil Nadu, India  
Dr. Angie Appel, Wild Cat Network, Germany  
Dr. P.O. Nameer, Kerala Agricultural University, Thrissur, Kerala, India  
Dr. Ian Redmond, UNEP Convention on Migratory Species, Lansdown, UK  
Dr. Heidi S. Riddle, Riddle's Elephant and Wildlife Sanctuary, Arkansas, USA  
Dr. Karin Schwartz, George Mason University, Fairfax, Virginia.  
Dr. Lala A.K. Singh, Bhubaneswar, Orissa, India  
Dr. Mewa Singh, Mysore University, Mysore, India  
Dr. Paul Racey, University of Exeter, Devon, UK  
Dr. Honnavalli N. Kumara, SACON, Anaikatty P.O., Coimbatore, Tamil Nadu, India  
Dr. Nishith Dharaiya, HNG University, Patan, Gujarat, India  
Dr. Spartaco Gippoliti, Socio Onorario Società Italiana per la Storia della Fauna "Giuseppe Altobello", Rome, Italy  
Dr. Justus Joshua, Green Future Foundation, Tiruchirappalli, Tamil Nadu, India  
Dr. H. Raghuram, The American College, Madurai, Tamil Nadu, India  
Dr. Paul Bates, Harison Institute, Kent, UK  
Dr. Jim Sanderson, Small Wild Cat Conservation Foundation, Hartford, USA  
Dr. Dan Challender, University of Kent, Canterbury, UK  
Dr. David Mallon, Manchester Metropolitan University, Derbyshire, UK  
Dr. Brian L. Cypher, California State University-Stanislaus, Bakersfield, CA  
Dr. S.S. Talmale, Zoological Survey of India, Pune, Maharashtra, India  
Prof. Karan Bahadur Shah, Budhanilkantha Municipality, Kathmandu, Nepal  
Dr. Susan Cheyne, Borneo Nature Foundation International, Palangkaraya, Indonesia  
Dr. Hemanta Kafley, Wildlife Sciences, Tarleton State University, Texas, USA

#### Other Disciplines

Dr. Aniruddha Belsare, Columbia MO 65203, USA (Veterinary)  
Dr. Mandar S. Paingankar, University of Pune, Pune, Maharashtra, India (Molecular)  
Dr. Jack Tordoff, Critical Ecosystem Partnership Fund, Arlington, USA (Communities)  
Dr. Ulrike Streicher, University of Oregon, Eugene, USA (Veterinary)  
Dr. Hari Balasubramanian, EcoAdvisors, Nova Scotia, Canada (Communities)  
Dr. Rayanna Helleni Santos Bezerra, Universidade Federal de Sergipe, São Cristóvão, Brazil  
Dr. Jamie R. Wood, Landcare Research, Canterbury, New Zealand  
Dr. Wendy Collinson-Jonker, Endangered Wildlife Trust, Gauteng, South Africa  
Dr. Rajeshkumar G. Jani, Anand Agricultural University, Anand, Gujarat, India  
Dr. O.N. Tiwari, Senior Scientist, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India  
Dr. L.D. Singla, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India  
Dr. Rupika S. Rajakaruna, University of Peradeniya, Peradeniya, Sri Lanka  
Dr. Bharat Baviskar, Wild-CER, Nagpur, Maharashtra 440013, India

#### Reviewers 2021–2023

Due to paucity of space, the list of reviewers for 2021–2023 is available online.

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.

Print copies of the Journal are available at cost. Write to:  
The Managing Editor, JoTT,  
c/o Wildlife Information Liaison Development Society,  
43/2 Varadarajulu Nagar, 5<sup>th</sup> Street West, Ganapathy, Coimbatore,  
Tamil Nadu 641006, India  
ravi@threatenedtaxa.org

## Articles

### The past and current distribution of the lesser-known Indian endemic Madras Hedgehog *Paraechinus nudiventris* (Mammalia: Eulipotyphla: Erinaceidae)

– R. Brawn Kumar & Willam T. Bean, Pp. 25639–25650

### Declining trends of over-summering shorebird populations along the southeastern coasts of Tamil Nadu, India

– H. Byju, H. Maitreyi, N. Raveendran & S. Ravichandran, Pp. 25651–25662

### Seasonal changes in waterbird assemblages in Chambal River at Mukundra Hills National Park, Rajasthan, India

– Arun George, Megha Sharma, Kavin Duraisamy, P.C. Sreelekha Suresh, Bijo Joy, Govindan Veeraswami Gopi, S.A. Hussain & J.A. Johnson, Pp. 25663–25674

### An updated checklist of the skippers (Lepidoptera: Hesperiidae) of Bhutan

– Karma Wangdi, Piet van der Poel & K.C. Sajan, Pp. 25675–25688

### Conservation imperatives for swallowtail butterflies (Lepidoptera: Papilionidae): a case study in the north bank landscape of river Brahmaputra, Bodoland Territorial Region, India

– Kushal Choudhury, Pp. 25689–25699

### The present state of leech fauna (Annelida: Hirudinea) in Dal Lake, Jammu & Kashmir, India

– Niyaz Ali Khan, Zahoor Ahmad Mir & Yahya Bakhtiyar, Pp. 25700–25711

### First report of five monogonont rotifers from Jammu, J&K UT, India, with remarks on their distribution

– Nidhi Sharma, Sarjeet Kour & Aayushi Dogra, Pp. 25712–25719

### Diversity of vascular epiphytes on preferred shade trees in tea gardens of sub-Himalayan tracts in West Bengal, India

– Roshni Chowdhury & M. Chowdhury, Pp. 25720–25729

## Communications

### Identification and chemical composition analysis of salt licks used by Sumatran Elephants *Elephas maximus sumatranus* in Tangkahan, Indonesia

– Kaniwa Berliani, Pindi Patana, Wahdi Azmi, Novita Sari Mastiur Manullang & Cynthia Gozali, Pp. 25730–25736

### Occurrence of a female melanistic leopard *Panthera pardus delacouri* (Linnaeus, 1758) (Mammalia: Carnivora: Felidae) in Ulu Sat Permanent Forest Reserve, Machang, Kelantan, Peninsular Malaysia from camera traps reconnaissance survey 2023

– Wan Hafizin Idzni Wan Mohammad Hizam, Muhammad Hamirul Shah Ab Razak, Hazizi Husain, Aainaa Amir & Kamarul Hambali, Pp. 25737–25741

### Diversity and distribution of large centipedes (Chilopoda: Scolopendromorpha) in Nui Chua National Park, Vietnam

– Son X. Le, Thinh T. Do, Thuc H. Nguyen & Binh T.T. Tran, Pp. 25742–25747

### Diversity of butterfly habitats in and around Udanti-Sitanadi Tiger Reserve, Chhattisgarh, India

– H.N. Tandan, Gulshan Kumar Sahu, Kavita Das, Gulab Chand, Ravi Naidu & Ramanand Agrawal, Pp. 25748–25757

### A short-term impact of enriched CO<sub>2</sub> [eCO<sub>2</sub>] on select growth performance of *Spodoptera littoralis* (Boisd.) (Lepidoptera: Noctuidae) and its host plant *Gossypium barbadense* L. (Malvaceae)

– A.A. Abu ElEla Shahenda & Wael M. ElSayed, Pp. 25758–25764

### Diversity and distribution of springtails (Collembola) from Jharkhand, India

– Koushik Kumar Roy, Guru Pada Mandal & Kusumendra Kumar Suman, Pp. 25765–25773

## Short Communications

### *Lindernia tamilnadensis* (Linderniaceae) from Indo-Gangetic plains: no more endemic to the Deccan

– Umama Khan, Revan Yogesh Chaudhari, Bhupendra Singh Adhikari, Syed Ainul Hussain & Ruchi Badola, Pp. 25774–25778

### Discovery of a new *Myristica* swamp in the northern Western Ghats of India

– Pravin Desai, Vishal Sadekar & Shital Desai, Pp. 25779–25786

## Note

### *Ophioglossum jaykrishnae* S.M.Patil et al. (Pteridophyta: Polypodiophyta: Ophioglossaceae): a new distribution record from Kanha National Park, Madhya Pradesh, India

– Tarun Nayi, Mayur Bhagwat, Sanjay Saini, Soham Haldikar, Ishtayaque Patel, Shivaji Chavan, Nudrat Zawar Sayed & Sunil Kumar Singh, Pp. 25787–25790

## Publisher & Host



Threatened Taxa