

Building evidence for conservation globally

Journal of Threatened Taxa

Open Access

10.11609/jott.2025.17.1.26331-26442

www.threatenedtaxa.org

26 January 2025 (Online & Print)

17(1): 26331-26442

ISSN 0974-7907 (Online)

ISSN 0974-7893 (Print)

zooreach® 40

Publisher

Wildlife Information Liaison Development Societywww.wild.zooreach.org

Host

Zoo Outreach Organizationwww.zooreach.org

Srivari Illam, No. 61, Karthik Nagar, 10th Street, Saravanampatti, Coimbatore, Tamil Nadu 641035, India

Registered Office: 3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore, Tamil Nadu 641006, India

Ph: +91 9385339863 | www.threatenedtaxa.org

Email: sanjay@threatenedtaxa.org

EDITORS

Founder & Chief Editor

Dr. Sanjay Molur

Wildlife Information Liaison Development (WILD) Society & Zoo Outreach Organization (ZOO), Coimbatore, Tamil Nadu 641006, India

Deputy Chief Editor

Dr. Neelesh Dahanukar

Noida, Uttar Pradesh, India

Assistant Editor

Dr. Chaithra Shree J., WILD/ZOO, Coimbatore, Tamil Nadu 641006, India

Managing Editor

Mr. B. Ravichandran, WILD/ZOO, Coimbatore, Tamil Nadu 641006, India

Associate Editors

Dr. Mandar Paingankar, Government Science College Gadchiroli, Maharashtra 442605, India**Dr. Ulrike Streicher**, Wildlife Veterinarian, Eugene, Oregon, USA**Ms. Priyanka Iyer**, ZOO/WILD, Coimbatore, Tamil Nadu 641006, India

Editorial Board

Dr. Russel Mittermeier

Executive Vice Chair, Conservation International, Arlington, Virginia 22202, USA

Prof. Mewa Singh Ph.D., FASc, FNA, FNASc, FNAPsy

Ramanna Fellow and Life-Long Distinguished Professor, Biopsychology Laboratory, and Institute of Excellence, University of Mysore, Mysuru, Karnataka 570006, India; Honorary Professor, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore; and Adjunct Professor, National Institute of Advanced Studies, Bangalore

Stephen D. Nash

Scientific Illustrator, Conservation International, Dept. of Anatomical Sciences, Health Sciences Center, T-8, Room 045, Stony Brook University, Stony Brook, NY 11794-8081, USA

Dr. Fred Pluthero

Toronto, Canada

Dr. Priya Davidar

Sigur Nature Trust, Chadapatti, Mavinhalia PO, Nilgiris, Tamil Nadu 643223, India

Dr. John Fellowes

Honorary Assistant Professor, The Kadoorie Institute, 8/F, T.T. Tsui Building, The University of Hong Kong, Pokfulam Road, Hong Kong

Prof. Dr. Mirco Solé

Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Vice-coordenador do Programa de Pós-Graduação em Zoologia, Rodovia Ilhéus/Itabuna, Km 16 (45662-000) Salobrinho, Ilhéus - Bahia - Brasil

Dr. Rajeev Raghavan

Professor of Taxonomy, Kerala University of Fisheries & Ocean Studies, Kochi, Kerala, India

English Editors

Mrs. Mira Bhojwani, Pune, India**Dr. Fred Pluthero**, Toronto, Canada**Mr. P. Ilangovan**, Chennai, India**Ms. Sindhura Stothra Bhashyam**, Hyderabad, India

Web Development

Mrs. Latha G. Ravikumar, ZOO/WILD, Coimbatore, India

Typesetting

Mrs. Radhika, ZOO, Coimbatore, India**Mrs. Geetha**, ZOO, Coimbatore India

Fundraising/Communications

Mrs. Payal B. Molur, Coimbatore, India

Subject Editors 2021–2023

Fungi

Dr. B. Shivaraju, Bengaluru, Karnataka, India

Dr. R.K. Verma, Tropical Forest Research Institute, Jabalpur, India

Dr. Vatsavaya S. Raju, Kakatiya University, Warangal, Andhra Pradesh, India

Dr. M. Krishnappa, Jnana Sahyadri, Kuvenpu University, Shimoga, Karnataka, India

Dr. K.R. Sridhar, Mangalore University, Mangalagangotri, Mangalore, Karnataka, India

Dr. Gunjan Biswas, Vidyasagar University, Midnapore, West Bengal, India

Dr. Kiran Ramchandra Ranadive, Annasaheb Magar Mahavidyalaya, Maharashtra, India

Plants

Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India

Dr. N.P. Balakrishnan, Ret. Joint Director, BSI, Coimbatore, India

Dr. Shonil Bhagwat, Open University and University of Oxford, UK

Prof. D.J. Bhat, Retd. Professor, Goa University, Goa, India

Dr. Ferdinand Boero, Università del Salento, Lecce, Italy

Dr. Dale R. Calder, Royal Ontario Museum, Toronto, Ontario, Canada

Dr. Cleofas Cervancia, Univ. of Philippines Los Baños College Laguna, Philippines

Dr. F.B. Vincent Florens, University of Mauritius, Mauritius

Dr. Merlin Franco, Curtin University, Malaysia

Dr. V. Irudayaraj, St. Xavier's College, Palayamkottai, Tamil Nadu, India

Dr. B.S. Kholia, Botanical Survey of India, Gangtok, Sikkim, India

Dr. Pankaj Kumar, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, USA

Dr. V. Sampath Kumar, Botanical Survey of India, Howrah, West Bengal, India

Dr. A.J. Solomon Raju, Andhra University, Visakhapatnam, India

Dr. Vijayasankar Raman, University of Mississippi, USA

Dr. B. Ravi Prasad Rao, Sri Krishnadevaraya University, Anantapur, India

Dr. K. Ravikumar, FRLHT, Bengaluru, Karnataka, India

Dr. Aparna Watve, Pune, Maharashtra, India

Dr. Qiang Liu, Xishuangbanna Tropical Botanical Garden, Yunnan, China

Dr. Noor Azhar Mohamed Shazili, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia

Dr. M.K. Vasudeva Rao, Shiv Ranjan Housing Society, Pune, Maharashtra, India

Prof. A.J. Solomon Raju, Andhra University, Visakhapatnam, India

Dr. Manda Datar, Agharkar Research Institute, Pune, Maharashtra, India

Dr. M.K. Janarthanam, Goa University, Goa, India

Dr. K. Karthigeyan, Botanical Survey of India, India

Dr. Errol Vela, University of Montpellier, Montpellier, France

Dr. P. Lakshminarasiham, Botanical Survey of India, Howrah, India

Dr. Larry R. Noblick, Montgomery Botanical Center, Miami, USA

Dr. K. Haridasan, Pallavur, Palakkad District, Kerala, India

Dr. Analinda Manila-Fajard, University of the Philippines Los Baños, Laguna, Philippines

Dr. P.A. Siru, Central University of Kerala, Kasaragod, Kerala, India

Dr. Afroz Alam, Banasthali Vidyapith (accredited A grade by NAAC), Rajasthan, India

Dr. K.P. Rajesh, Zamorin's Guruvayurappan College, GA College PO, Kozhikode, Kerala, India

Dr. David E. Boufford, Harvard University Herbaria, Cambridge, MA 02138-2020, USA

Dr. Ritesh Kumar Choudhary, Agharkar Research Institute, Pune, Maharashtra, India

Dr. A.G. Pandurangan, Thiruvananthapuram, Kerala, India

Dr. Navendu Page, Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India

Dr. Kannan C.S. Warrier, Institute of Forest Genetics and Tree Breeding, Tamil Nadu, India

Invertebrates

Dr. R.K. Avasthi, Rohtak University, Haryana, India

Dr. D.B. Bastawade, Maharashtra, India

Dr. Partha Pratim Bhattacharjee, Tripura University, Suryamaninagar, India

Dr. Kailash Chandra, Zoological Survey of India, Jabalpur, Madhya Pradesh, India

Dr. Ansie Dippenaar-Schoeman, University of Pretoria, Queenswood, South Africa

Dr. Rory Dow, National Museum of natural History Naturalis, The Netherlands

Dr. Brian Fisher, California Academy of Sciences, USA

Dr. Richard Gallon, Llandudno, North Wales, LL30 1UP

Dr. Hemant V. Ghate, Modern College, Pune, India

Dr. M. Monwar Hossain, Jahangirnagar University, Dhaka, Bangladesh

For Focus, Scope, Aims, and Policies, visit https://threatenedtaxa.org/index.php/JoTT/aims_scopeFor Article Submission Guidelines, visit <https://threatenedtaxa.org/index.php/JoTT/about/submissions>For Policies against Scientific Misconduct, visit https://threatenedtaxa.org/index.php/JoTT/policies_various

continued on the back inside cover

Cover: Illuminating the cruelty of Pangolin trade in India for the purpose of black magic, for the sanctity of protection. Using an animal's shell, ripping its armor against the world to protect oneself. When does one become the evil they are trying to ward off? — Acrylic on wood. © Maya Santhanakrishnan.

Management challenges in marine protected areas: a field note from the Malvan Marine Sanctuary, India

Neenu Somaraj

The Conservator of Forests, Dhule, Maharashtra 424001, India.
neenu03planetearth@gmail.com

Abstract: Marine protected area (MPA) is an umbrella term for the protection and conservation of coastal biodiversity. MPAs are expected to work as an effective tool for marine biodiversity conservation and fishery management. As India has an extensive coastline of 7,517 km that supports approximately 250 million people for their livelihood, the existence of prosperous coastal and marine ecosystems is imperative for the sustainable economic growth of the country. In India, MPA is part of the protected area network notified under the Wildlife Protection Act, of 1972. In view of the socio-economic angle of the MPA, conserving the specific marine habitat and sustaining commercial activities like fishing pose tremendous challenges in achieving conservation goals. In this context, this paper evaluates the management challenges of the Malvan Marine Sanctuary located in Maharashtra State of India and subsequently discusses the possible solutions for effectively managing the sanctuary.

Keywords: Coastal ecosystem, corals, fishery management, government policy, legislation, mangroves, management, marine biodiversity, marine conservation, sustainable management, wildlife.

Editor: Deepak Samuel, National Centre for Sustainable Coastal Management, Chennai, India.

Date of publication: 26 January 2025 (online & print)

Citation: Somaraj, N. (2025). Management challenges in marine protected areas: a field note from the Malvan Marine Sanctuary, India. *Journal of Threatened Taxa* 17(1): 26401-26408. <https://doi.org/10.11609/jott.8851.17.1.26401-26408>

Copyright: © Somaraj 2025. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: This research study is not funded by any organisation.

Competing interests: The authors declare no competing interests.

Author details: NEENU SOMARAJ is an Indian Forest Service Officer (IFS) of the 2010 batch of the Maharashtra State Government. She is presently posted as the conservator of forests in Dhule circle of the Maharashtra State. She has dealt with the administration, management and conservation of forest and wildlife. While working as the deputy conservator of forests, Mangrove Cell and as the joint director of Mangrove Foundation, Mumbai, she had field exposure in managing the mangrove and marine biodiversity resources in the Maharashtra State.

Acknowledgements: Contribution of Dr Sheetal Panchpande, Shri. Rohit Sawant, Smt. Durga Thigale and Dr Manas Manjrekar of the Mangrove and Marine Biodiversity Conservation Foundation, Maharashtra for gathering relevant literature is sincerely acknowledged. Photo credits is given to Mr. Rohit Sawant. I thank the Mangrove Cell, Mangrove Foundation and the Maharashtra Forest Department for assigning the responsibility of Malvan Marine Sanctuary during the period from 2019–2022 in the official capacity as Deputy Conservator of Forests, Mangrove Cell, Mumbai.

INTRODUCTION

A marine protected area (MPA) refers to a designated coastal /marine area backed by legislation or other effective means aimed at its long-term conservation. Some MPAs are designed to exclude all anthropogenic activities including fishing, while others are managed with a specific objective such as fishery management, species conservation, or for recreational activities (Day et al. 2012). MPAs are expected to work as an effective tool for marine biodiversity conservation (Agardy et al. 2011). Scientific studies confirmed that well-managed marine protected areas can significantly increase the population density and biomass of several species (Halpern 2003; Selig & Bruno 2010). Unfortunately, over-exploitation of marine resources, pollution, unsustainable fishery, ocean acidification, and global warming put such a peculiar ecosystem under tremendous pressure (Dardi & Shanthakumar 2023). Hence, the conservation of marine ecosystems has become a global priority now. Interestingly, Aichi Biodiversity target 11 under the Convention on Biological Diversity (CBD) proposed to conserve 10 % of coastal and marine areas by 2020 (CBD 2020). Countries are presently working on conserving at least 30 % of their land, fresh waters, and oceans by 2030 as well (HAC 2021) also referred to as the 30 x 30 initiative.

India has an extensive coastline with a length of 7,517 km, supporting approximately 250 million people for their livelihood and integrated development (UNISDR/UNDP 2012). Healthy and prosperous coastal and marine ecosystems are imperative for the sustainable economic growth of the country. India's coastal and marine ecosystems are under threat (Sivakumar et al. 2012). Unsustainable fishing, poor anchoring practices, and unregulated tourism impose severe harm to marine biodiversity. India's protected area network comprises national parks, sanctuaries, conservation reserves and community reserves. MPAs are also part of these protected area networks notified under the Wildlife Protection Act, 1972. Likewise, the Environment (Protection) Act, 1986 was enacted to protect the environment and prevent pollution. Coastal Regulation Zone Notification (Years—1991, 2011, & 2019) issued under the provision of the Environment (Protection) Act, categorized India's coastal areas into various zones as CRZ I to IV of which, CRZ 1A, referred to as ecologically sensitive areas (ESA) are demarcated to conserve and protect coastal areas and marine waters. MPAs are placed under CRZ IA as ESA along with four ecosystems, three habitats, two geomorphological features, and the

archaeological and heritage sites. Similarly, the Biological Diversity Act of 2002 and subsequent Biological Diversity Rules, 2004, and the guidelines thereof ensure the conservation of marine biodiversity, sustainable use, and equitable sharing of its components, protecting traditional knowledge, and the intellectual property rights of dependent communities. This includes biodiversity heritage sites (BHS), areas designated for their unique and rich biodiversity that require conservation to maintain their ecological significance. The Wildlife (Protection) Act, 1972 protects at the species level and the landscape level. Species enlisted in schedules I–IV of this act are being protected irrespective of their location. All species are being equally protected within the notified protected areas. The act provides stringent regulation by restricting unnecessary human interference inside the national parks and sanctuaries. Given the socio-economic angle of the MPA, protecting the specific marine habitat, and sustaining commercial activities like fishing pose tremendous challenges in achieving conservation goals, particularly in a thickly populated country like India. Nonetheless, zoning in MPAs like core zones, buffer zones, and critical wildlife habitats ensures legitimate interaction with humans and marine living without compromising the conservation priorities. In this context, this review paper will highlight the management challenges and discuss the possible solutions for the effective management of the Malvan Marine Sanctuary located in Maharashtra State of India. For writing this research paper, information from numerous sources was utilized. These include the field interactions that the author had with various stakeholders of the sanctuary; available secondary sources of information on the sanctuary; and lastly, the management plan of the Malvan Marine Sanctuary.

Malvan Marine Sanctuary

Malvan Marine Sanctuary (MMS) represents a unique combination of some of the richest and most varied marine ecosystems on the western coast of India. It is identified as one of the Critically Vulnerable Coastal Areas (CVCA) in the Coastal Regulation Zone (CRZ) notifications 2011 and 2019. The notification of the MMS was issued in the year 1987 by the state government of Maharashtra. It is located at 16.006 N & 73.466 E in Malvan Taluka of Sindhudurg District of Maharashtra. The sanctuary has a 'Core Zone' of 3.182 km² comprising the seascape, Sindhudurg Fort, and Padmagad Island which demands stringent protection. The rest of the 25.940 km² area falls under the 'Buffer Zone' category where restricted activities are permitted.

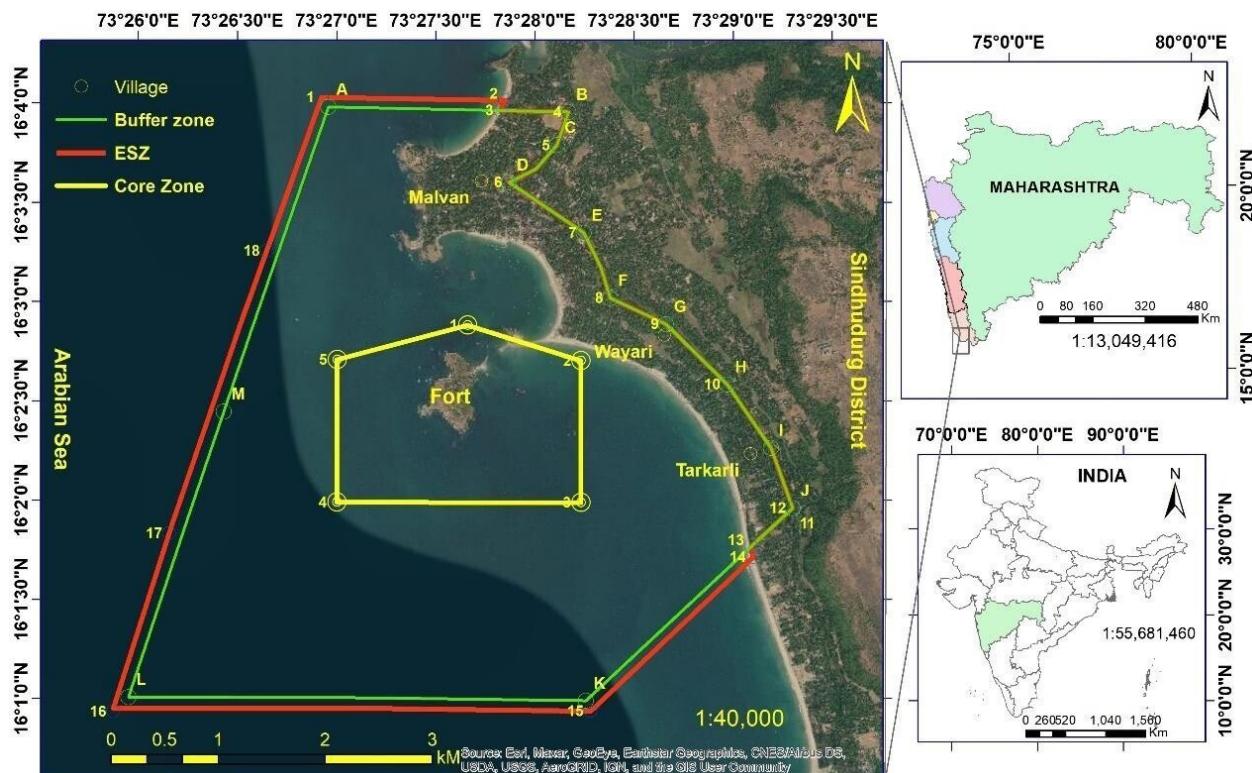


Image 1. Map of Malvan Marine Sanctuary (Source: Malvan Marine Sanctuary Management Plan 2020).

The sanctuary borders Malvan Port on the northeastern side, sandy beaches on the eastern side, Mandal Rock of the Malvan Port on the southern side, and Malvan Rock on the western side.

Climate

Malvan falls in a tropical monsoon region with less variation in the temperature during the day and throughout the season. December is the coldest month with a mean daily maximum temperature at 32.7 °C and a mean daily minimum temperature of 18.7°C. On the other hand, April is the hottest month (34°C). The relative humidity during the south-west monsoon is very high (86–90 %). The annual average rainfall is 2,916 mm. The average wind speed in the region is in the range of 6.6–17.9 kmph. The coastal currents are clockwise or shoreward from February to September, while anti-clockwise from November to January and transitional in October.

Marine biodiversity

MMS has a relatively rich distribution of corals. There are more than 25 species of both reef-building and non-reef-building corals recorded in and around the MMS (SDMRI & BNHS 2017). The corals are mostly slow-growing species that belong to genera like *Porites*,

Pavona, and *Leptastrea*. Malvan Sanctuary is home to more than 32 species of seaweeds including 12 species of Rhodophyceae, 11 species of Chlorophyceae, and nine species of Phaeophyceae (Rode & Sabale 2015). Phytoplankton forms the primary source of the marine food chain. A study conducted by Hardikar et al. (2017) observed 57 phytoplankton species falling under five classes namely diatoms (40 spp.), dinoflagellates (9 spp.), Chlorophyceae (5 spp.), Cyanophyceae (2 spp.), and Dictyochophyceae (1 sp.).

There are seven species of sea snakes such as Beaked Sea Snake *Hydrophis schistosus*, Short Sea Snake *H. curtus*, Annulated Sea Snake *H. cyanocinctus*, Malacca Sea Snake *H. caeruleescens*, Pelagic Sea Snake *Pelamis platurus*, Viper-headed Sea Snake *H. viperinus*, and Little File Snake *Acrochordus granulatus* found in the Malvan seascape (Dakshin Foundation 2016). They are often caught as bycatch in fisheries leading to large mortalities. Sea snakes are a protected species in India and are listed under Schedule IV of the Wildlife (Protection) Act, 1972. Of the total seven species of sea turtles found globally, four species are known to occur in the MMS region, namely, Green turtle *Chelonia mydas*, Hawksbill *Eretmochelys imbricata*, Loggerhead *Caretta caretta*, and Olive Ridley *Lepidochelys olivacea* are known to regularly nest along the coast of the Sindhudurg District

(Somaraj 2020).

The presence of seven species of marine mammals has been recorded directly and indirectly along the Malvan shore. Indian Ocean Humpback Dolphin *Sousa plumbea* and Indo-Pacific Finless Porpoise *Neophocaena phocaenoides* are the frequently sighted marine mammals within the sanctuary area. In addition to these, Bottlenose Dolphin *Tursiops truncates*, Spinner Dolphin *Stenella longirostris*, Bryde's Whale *Balaenoptera edeni*, Blue Whale *B. musculus*, and Sperm Whale *Physeter macrocephalus* have been reported around the sanctuary by Konkan Cetacean Research Team (KCRT) as a part of the Government of India- Global Environment Facility-United Nations Development Programme (GoI-GEF-UNDP) project in 2014–15 (KCRT 2015).

Barman et al. (2007) recorded 108 species of fish belonging to 48 families in 13 orders in MMS. Among them, four 'Vulnerable' species—*Congresox talabonoides*, *Muraenesox cinereus*, *Tenualosa ilisha*, and *Arius thalassinus*—and two 'Near Threatened' species—*Chiloscyllium griseum* and *Scoliodon laticaudus*—are found in the sanctuary. The fishes of the family Carangidae are the dominating group among the important edible fishes.

Congregation of Whale Sharks is also reported from Malvan waters (Premjothi et al. 2016). Though good diversity of mangroves is observed in the Malvan region along the creeks, only two species of mangroves namely *Avicennia marina* and *Sonneratia alba* have been observed in the sanctuary area, particularly at Sindhudurg Fort and Rock Garden. As the sanctuary area is an abode to both terrestrial and migratory birds, it is designated as an Important Bird Area (IBA) by Birdlife International and BNHS, Mumbai.

MANAGEMENT CHALLENGES

1. Legal Status: The sanctuary was notified under the Wildlife Protection Act, of 1972. As a matter of legal procedures prescribed in the Act, all the existing rights inside the notified area had to be settled before proceeding with the final notification. Since the core zone of the sanctuary includes both the Sindhudurg Fort and the Padmagad Island, private rights over 17.68 ha of land have to be acquired by the government within two years from the date of notification of the sanctuary. Such acquisition of the private land and settlement of rights did not happen due to strict opposition from the affected local communities. Fishermen community marked strong dissent against the creation of the sanctuary as they fear it will take away their traditional fishing rights and livelihood options existing in the area. Apart from

this, the prior concurrence of the union government is also required since the sanctuary is created in the territorial waters. Furthermore, the limits of the area of the territorial waters to be included in the sanctuary shall be determined in consultation with the chief naval hydrographer of the union government after adopting adequate measures to protect the livelihood interests of the local fishermen. This is yet to be done due to the pending settlement process. As a result, the boundary of the core and buffer zone is not properly demarcated in the field. This poses a major impediment to enforcing the regulatory measures in the sanctuary area for the authorities.

People's apprehensions about the sanctuary are still not faded away as was demonstrated while implementing the GOI-GEF-UNDP project in Sindhudurg in the year 2012. The sanctuary opponents viewed any conservation activities of the forest department with suspicion and considered it a covert attempt to impose restrictions on the sanctuary. The locals even do not want any signage of the Forest Department which establishes the existence of the MMS in Malvan. Strong protest without any dilution in its severity was observed even while proposing an eco-sensitive zone (EEZ) around the sanctuary in 2020 and the UNDP-GCF Project in 2022. Consequently, any implementation of the Wildlife (Protection) Act 1972 in its appropriate form has not materialized in the sanctuary other than prohibiting the killing/ hunting of any protected species in the sanctuary.

2. Livelihood dependency: The buffer zone of the sanctuary is extended to the Gram Panchayats of Tarkarli and Wayari and Malvan Nagar (town) Parishad. The sphere of influence includes seven villages, i.e., Dhuriwada, Gawandiwada, Rajkot, Makarebag-Medha, Dandi, Wayari, Tarkarli, and their seaward side. In the seven villages falling under the sanctuary area as mentioned above, the per capita income of the district is INR 1,30,987 (as per the 2011 census) against the Maharashtra State's average of INR 2,15,000 (District Statistical Department 2015). The average income of a fisherman can vary between INR 1,500 and INR 50,000 per month based on the catch and method of fishing (Somaraj 2020). The middlemen earn more than the active fishermen. At present, there are 19 fishery societies with 14,779 active members. The total population of Malvan city is 18,648 as per the 2011 census. Fishing and tourism are key drivers of the rural economy in Malvan with its dependence on natural resources viz., coral reefs, dolphins, and turtles. The fishing communities

Image 2. A diver with ghost net. © Rohit Sawant.

Image 3. Traditional fishing (Rampan) in the Malvan Marine Sanctuary. © Rohit Sawant.

have over-reliance on the sanctuary as Malvan is a major fishing harbour. The buffer zone of the sanctuary includes transport routes and approaches to Malvan harbour. The traditional fishing practices observed in the sanctuary are shore seine (Rampan) and Cast Net (Shendi). Mechanized fishing gear such as gill nets, hooks, and line are also in use. More destructive fishing using Trawl nets and Purse Seine operates outside the sanctuary with adherence to the Maharashtra Marine Fisheries Regulation Act, 1981. Fishing has provided livelihood for boat owners, drivers, 'tandel' (navigator), 'khalashi' (labour), traders, transport service providers, ice manufacturers, supplier, and marketers. A sizable number of fisherwomen population is also involved in post-harvest operations of fishery produce, i.e., salting and drying of fish. They use the beaches in the buffer zone of the sanctuary for fish drying (Rajagopalan 2008).

As the fish catch was depleting over a period, fishermen started migrating to the tourism sector. It provides multiple job opportunities in SCUBA diving, snorkelling, dolphin safari, and other water sports (De et al. 2020). Besides, boat owners, shopkeepers, and restaurants also depend upon tourism along Malvan Beach. The data retrieved from the Maharashtra Maritime Board (MMB) revealed that more than four lakh tourists visited Malvan annually in 2018–19 (Somaraj 2020). Unlike fishery, tourism service providers earn higher economic returns with less amount of actual effort once the line of business is established well. Thus, the majority of the people have resource dependency on the sanctuary area for fishing and tourism. This makes regulating the entry and movement of people within the sanctuary difficult.

3. Management: The sanctuary is managed by the Maharashtra State Forest Department. It is under the administrative control of the Mangrove Cell of Maharashtra. It is managed by the range forest officer (RFO), Mangrove Cell who also has jurisdiction in the entire Sindhudurg District. Considering the extent of the sanctuary and threats, more manpower and logistics are required for the effective management of the area. The lack of skilled staff equipped for the management of marine ecosystems is a constraint since forest field personnel are traditionally trained to manage terrestrial landscapes. Moreover, they are bound to departmental transfers and it makes a fresh start for the administrator recurrently. Strict implementation of the wildlife-related laws in the sanctuary prohibits fishing, trespassing of boats (fishing and tourism), anchoring of fishing vessels, and functioning of Malvan Port. People residing in the core area need to be rehabilitated outside. Hence, local communities and people's representatives have been regularly agitating for the de-notification of this sanctuary due to reservations about restricted movement and livelihood opportunities. The affected communities demanded written consent from the park management for their free movement and commercial activities which cannot be fulfilled legally.

4. Lack of clarity: There are no specific laws for the administration of the MPA in India. Both marine and terrestrial protected areas are on the same pedestal under the Wildlife Act. Usually, the MPA is located at the intersection between fishery activities and biodiversity conservation. Hence, the scope of management in a marine landscape is not similar to that in a terrestrial area. Moreover, the absence of distinct measurable

management objectives in the MPA under the existing wildlife laws creates confusion and dilemmas among various stakeholders. Hence implementation of the activities for example, boundary demarcation, proper zonation as core and buffer zones, and imposing restrictions are far more challenging in the sanctuary due to the lack of cooperation from the communities and coordination with other public departments.

RECOMMENDATIONS

1. Rationalization of the Boundary

On account of People's agitation and the suggestions given in the management effectiveness evaluation (MEE) report of the Ministry of Environment Forest and Climate Change, the administration decided to carry out a feasibility study to understand the status of marine biodiversity in and around the sanctuary to identify the potential areas to be included in the sanctuary. Accordingly, Shinde et al. (2023) reported the following outcomes:

- The study area along Malvan beach is classified under three categories, i.e., potential protected areas (PAs), conservation priority areas, and sensitive areas based on biodiversity richness and anthropogenic threats.

- Areas with relatively high biodiversity richness and less degree of threats such as Kawda complex, seven rock complex, and lighthouse complex are included in the potential PAs. Similarly, Chiwla Beach Complex and Sargassum Forest Complex are classified under the conservation priority areas due to high anthropogenic pressure. Sensitive areas are under severe threat and hence currently have low species richness. King's Garden area near the Sindhudurg Fort which is part of the core area of the Malvan sanctuary is classified under the sensitive areas.

- Potential PAs may be considered for the re-notification as a sanctuary and the conservation priority area may be incorporated as a buffer zone or eco sensitive zone to check the unregulated fishing and water-based tourism activities. On the other hand, sensitive areas can be excluded from the sanctuary to safeguard the occupational interests of the local communities.

2. Habitat conservation and species recovery programs

- The coral reef ecosystem is highly fragile in Malvan Sanctuary due to coral bleaching and human disturbances. Coral transplantation, artificial reef deployment, establishing coral nurseries shall be

explored for the restoration of this ecosystem. As a maiden attempt at coral transplantation as part of the UNDP-GOI project in 2014 was successful, a similar intervention is being planned in the GOI-GCF project in the sanctuary in the near term.

- Illegal harvesting and trade of scheduled species listed under the Wildlife Protection Act, 1972 shall be strictly prohibited.

- The stranding of marine mammals and sea turtles is frequent along the Malvan coast, particularly in the monsoon season. A well-trained rescue team and a temporary treatment centre for stranded animals need to be established in Malvan for the treatment and recovery of injured animals.

- Mandatory uses of bycatch reduction devices (BRD) inside the sanctuary help in the reduction of bycatch and thus save the juvenile fish fauna. Trials during the GOI-GEF-UNDP project in 2014–15 showed that on average about 5–6 l of diesel was saved during one-day trips with square mesh cod end, as compared with the traditional cod end.

- Sensitization of fishermen is necessary to avoid dumping ghost nets in the sea thereby reducing incidents of marine animals getting entangled in the ghost net and getting killed.

3. Sustainable livelihood development

Local communities heavily depend on the sanctuary for fishing and for water-based tourism activities. Hence, they need to be well informed about the importance of the sanctuary for sustaining their livelihood. Local communities having a high sense of ownership can eventually decide the success and failure of the sanctuary.

- As an option for alternative income generation, creek-based aquaculture, i.e., fish cage culture, oysters and mussels farming, crab farming, and marine ornamental fish hatcheries should be encouraged among the locals with technical and budgetary support from the state government. Such projects have already been initiated at the village level under the GOI-GEF-UNDP projects of 2014 in the Sindhudurg District and were found to be beneficial to the rural economy. Similarly, the ongoing UNDP-GCF project aims to enhance the resilience of the coastal communities through sustainable livelihood opportunities and capacity building. These activities will not only improve the household income but will also help in developing harmony between people and the management.

- Permit system for snorkelling and scuba diving should be strictly followed in the sanctuary area and

a diving license should be issued to the shops by the district government authorities. Scuba diving needs to be permitted only in designated areas with adequate depth. The average depth in which scuba diving is presently practiced is less than 3–4 m which is not ideal for the same (IISDA 2017). New dive sites might be created outside the sanctuary by sinking wrecks in sandy patches. These wrecks would help in coral regeneration and act as FADs (fish aggregating devices).

Dolphin watches and sea turtle festivals in the hatchery sites are gaining popularity. It should be allowed under the strict supervision of the park management or concerned department according to the norms and regulations. Trained villagers as hatchery watchers in hatching sites would help keep a check on people's interference in the turtle-hatching beaches.

4. Administration and Management

A dedicated team is required for the management of the sanctuary. Manpower should be increased by creating new posts such as a beat guard for looking after the protection as well as the ecotourism under the supervision of a forest round officer (RO) and a range forest officer (RFO). Specialized posts such as research officers, marine biologists, boat drivers, etc. can be recruited on a contractual basis. Joint patrolling with the help of the Fisheries Department, Police and Indian Coast Guard needs to be regularly done to check IUU (Illegal unregulated and unreported) fishing. Capacity building for the front-line staff on map reading, diving, surveying, and wildlife laws is also essential for better management. Adequate budgetary provisions need to be made in advance as roughly INR 4 crore (around USD 480,000) is required for the management of the sanctuary annually after the reorganization (Somaraj 2020).

5. Modification of the existing laws

Conservation objectives are different in terrestrial protected areas and in MPA. The nature of resource dependency in terrestrial and MPA is also beyond comparison. Hence parallels cannot be drawn between terrestrial and marine sanctuaries/ marine national parks. There should be clear guidelines and management objectives for the MPA which should address both the socio-economic and ecological dimensions of the protected area. Hence an amendment in the Wildlife (Protection) Act, 1972 is required to incorporate specific administrative frameworks for the MPA in India.

CONCLUSION

MMS is met with reluctance from the affected local communities and leads to outright objection in the present scenario. It is mainly attributable to their feeling of victimization and alienation due to the prohibitory nature of wildlife laws. Recently implemented sustainable livelihood programs and capacity building of the stakeholders have helped in changing their perception to a certain extent. Any landscape conservation effort will be fruitful only with community participation and in this case, it will happen only if the boundaries of the sanctuary are reorganized efficiently after consultation with the stakeholders. Such efforts are under the active consideration of the Maharashtra State Government, and it is going to be a win-win situation for both the government and the affected communities. Needless to say, instead of a total ban on commercial activities, a consensus-based 'seascape approach' in MPA in India can win the trust of local communities. Thus, amendments in the Wildlife Protection Act, of 1972 with regard to the MPA are imperative for a sustainable future.

REFERENCES

Agardy, T., G.N. Di Sciara & P. Christie (2011). Mind the gap: addressing the shortcomings of marine protected areas through large-scale marine spatial planning. *Marine Policy* 35(2): 226–232.

Barman, R.P., P. Mukherjee & A. Das (2007). On a collection of fishes from the Malvan Marine Sanctuary, Malvan, Maharashtra, India. *Records of the Zoological Survey of India* 107: 71–87.

Dakshin Foundation (2016). Effects of Fishing Practices on Species Assemblages of Sea Snakes off the Sindhudurg Coast of Maharashtra, India: Final Report, Government of India— Global Environment Facility—United Nations Development Programme (Gol-GEF-UNDP) Sindhudurg Project: 'Mainstreaming Marine and Coastal Biodiversity Conservation into Production Sectors of Sindhudurg Coast, Maharashtra', Bangalore, 32 pp.

Dardi, M. & S. Shanthakumar (2023). Challenges in legal protection of marine protected areas in India: A review of literature. *Actualidad Jurídica Ambiental* n. 133, Sección "Comentarios". <https://doi.org/10.56398/ajacieda.00156>

Day, J., N. Dudley, M. Hockings, G. Holmes, D. Laffoley, S. Stolton, S. Wells & L. Wenzel (2012). *Guidelines for applying the IUCN Protected Area Management Categories to Marine Protected Areas*, 2nd Edition. Gland: IUCN, 34 pp.

De, K., M. Nanajkar, S. Mote & B. Ingole (2020). Coral damage by recreational diving activities in a marine protected area of India: unaccountability leading to 'tragedy of the not so commons'. *Marine Pollution Bulletin* 155: 111190. <https://doi.org/10.1016/j.marpolbul.2020.111190>

Halpern, B.S. (2003). The impact of marine reserves: do reserves work and does reserve size matter? *Ecological Applications* 13(sp1): 117–137.

Hardikar, R., C.K. Haridevi, M. Chowdhury, N. Shinde, R. Anirudh, M.A. Rokade & P.S. Rakesh (2017). Seasonal distribution of phytoplankton and its association with physicochemical parameters in coastal waters of Malvan, west coast of India. *Environment Monitoring and Assessment* 189(4): 151. <https://doi.org/10.1007>

s10661-017-5835-4

HAC (2021). Fifty Countries Announce Bold Commitment to Protect at least 30% of the World's Land and Ocean by 2030. Campaign for Nature, 11 January. High Ambition Coalition for Nature and People <https://www.campaignfornature.org/50-countries-announce-bold-commitment-to-protect-at-least-30-of-the-worldsland-and-ocean-by-2030>

IISDA (2017). Development of Alternative Tourism Destinations along Sindhudurg Coast, Sindhudurg District: Final Report, Gol-GEF-UNDP Sindhudurg Project: 'Mainstreaming Marine and Coastal Biodiversity Conservation into Production Sectors of Sindhudurg Coast, Maharashtra'. Indian Institute of SCUBA Diving & Aquatic Sports, 69 pp.

KCRT (2015). Assessing the biodiversity of marine mammals along the Sindhudurg coastline and to estimate the population size of coastal cetacean species: Final Report, Gol-GEF-UNDP Sindhudurg Project: 'Mainstreaming Marine and Coastal Biodiversity Conservation into Production Sectors of Sindhudurg Coast, Maharashtra'. Konkan Cetacean Research Team, 57 pp.

Premjothi, P.V.R., B.C. Choudury, R. Kaul, S. Subburaman, M. Matwal, D. Joshi, J. Louise & V. Menon (2016). An assessment of the past and present distribution status of the whale shark (*Rhincodon typus*) along the west coast of India. QScience Proceedings (The 4th International Whale Shark Conference). <https://doi.org/10.5339/qproc.2016.iwsc4.43>

Rajagopalan, R. (2008). *Marine Protected Areas in India*. SAMUDRA Monograph. International Collective in Support of Fishworkers (ICSF), India, 68 pp.

Rode, S. & A. Sabale (2015). Diversity of seaweeds from malvan and kunakeshwar in Sindhudurg District of Maharashtra. *Indian Journal of Applied Research* 5(9): 413–415.

CBD (2020). Global Biodiversity Outlook 5 – Summary for Policy Makers, Montreal. Convention on Biological Diversity.

Selig, E.R. & J.F. Bruno (2010). A global analysis of the effectiveness of marine protected areas in preventing coral loss. *PLoS ONE* 5(2): e9278. <https://doi.org/10.1371/journal.pone.0009278>

Shinde, N., S. Bayana, D. Sarkar, A. Pande, K. Sivakumar & G. Talukdar (2023). Spatial Mapping of Important Marine Habitats of Malvan Coast for Reorganization of Boundary of the Malvan Marine Sanctuary. Technical Report (TR no/2023/11). Wildlife Institute of India, 31 pp.

Sivakumar, K., V.B. Mathur & B.C. Choudhury (2012). Marine protected areas network in India: Progress in achieving Aichi targets, pp. 78–79. Abstracts of the 16th Meeting of the Subsidiary Body on Scientific, Technical and Technological Advice, 30 April–5 May, Montreal, Canada.

Somaraj, N. (2020). Management Plan for Malvan Marine Sanctuary. Maharashtra, India, 262 pp.

SDMRI & BNHS (2017). Studies on rehabilitation of coral communities and setting up of artificial reefs in Sindhudurg coast, Maharashtra: Final Report, Gol-GEF-UNDP Sindhudurg Project: 'Mainstreaming Marine and Coastal Biodiversity Conservation into Production Sectors of Sindhudurg Coast, Maharashtra'. Suganthi Devadason Marine Research Institute (SDMRI), Tuticorin, Tamil Nadu & Bombay Natural History Society (BNHS) Mumbai, Maharashtra, 138 pp.

UNISDR/UNDP (2012). Status of Coastal and Marine Ecosystem Management in South Asia. Inputs of the South Asian Consultative Workshop on 'Integration of Disaster Risk Reduction and Climate Change Adaptation into Biodiversity and Ecosystem Management of Coastal and Marine Areas in South Asia', held on 6–7 March, New Delhi. United Nations International Strategy for Disaster Reduction/United Nations Development Programme, 173 pp.

Mr. Jatishwor Singh Irungbam, Biology Centre CAS, Branišovská, Czech Republic.
Dr. Ian J. Kitching, Natural History Museum, Cromwell Road, UK
Dr. George Mathew, Kerala Forest Research Institute, Peechi, India
Dr. John Noyes, Natural History Museum, London, UK
Dr. Albert G. Orr, Griffith University, Nathan, Australia
Dr. Sameer Padhye, Katholieke Universiteit Leuven, Belgium
Dr. Nancy van der Poorten, Toronto, Canada
Dr. Karen Schnabel, NIWA, Wellington, New Zealand
Dr. R.M. Sharma, (Retd.) Scientist, Zoological Survey of India, Pune, India
Dr. Manju Siliwal, WILD, Coimbatore, Tamil Nadu, India
Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India
Dr. K.A. Subramanian, Zoological Survey of India, New Alipore, Kolkata, India
Dr. P.M. Sureshan, Zoological Survey of India, Kozhikode, Kerala, India
Dr. R. Varatharajan, Manipur University, Imphal, Manipur, India
Dr. Eduard Vives, Museu de Ciències Naturals de Barcelona, Terrassa, Spain
Dr. James Young, Hong Kong Lepidopterists' Society, Hong Kong
Dr. R. Sundararaj, Institute of Wood Science & Technology, Bengaluru, India
Dr. M. Nithyanandan, Environmental Department, La Al Kuwait Real Estate. Co. K.S.C., Kuwait
Dr. Himender Bharti, Punjabi University, Punjab, India
Mr. Purnendu Roy, London, UK
Dr. Saito Motoki, The Butterfly Society of Japan, Tokyo, Japan
Dr. Sanjay Sondhi, TITLI TRUST, Kalpavriksh, Dehradun, India
Dr. Nguyen Thi Phuong Lien, Vietnam Academy of Science and Technology, Hanoi, Vietnam
Dr. Nitin Kulkarni, Tropical Research Institute, Jabalpur, India
Dr. Robin Wen Jiang Ngiam, National Parks Board, Singapore
Dr. Lional Monod, Natural History Museum of Geneva, Genève, Switzerland.
Dr. Asheesh Shivam, Nehru Gram Bharti University, Allahabad, India
Dr. Rosana Moreira da Rocha, Universidade Federal do Paraná, Curitiba, Brasil
Dr. Kurt R. Arnold, North Dakota State University, Saxony, Germany
Dr. James M. Carpenter, American Museum of Natural History, New York, USA
Dr. David M. Claborn, Missouri State University, Springfield, USA
Dr. Karen Schnabel, Marine Biologist, Wellington, New Zealand
Dr. Amazonas Chagas Júnior, Universidade Federal de Mato Grosso, Cuiabá, Brasil
Mr. Monsoon Jyoti Gogoi, Assam University, Silchar, Assam, India
Dr. Heo Chong Chin, Universiti Teknologi MARA (UiTM), Selangor, Malaysia
Dr. R.J. Shiel, University of Adelaide, SA 5005, Australia
Dr. Siddharth Kulkarni, The George Washington University, Washington, USA
Dr. Priyadarshan Dharma Rajan, ATREE, Bengaluru, India
Dr. Phil Alderslade, CSIRO Marine And Atmospheric Research, Hobart, Australia
Dr. John E.N. Veron, Coral Reef Research, Townsville, Australia
Dr. Daniel Whitmore, State Museum of Natural History Stuttgart, Rosenstein, Germany.
Dr. Yu-Feng Hsu, National Taiwan Normal University, Taipei City, Taiwan
Dr. Keith V. Wolfe, Antioch, California, USA
Dr. Siddharth Kulkarni, The Hormiga Lab, The George Washington University, Washington, D.C., USA
Dr. Tomas Ditrich, Faculty of Education, University of South Bohemia in Ceske Budejovice, Czech Republic
Dr. Mihaly Foldvari, Natural History Museum, University of Oslo, Norway
Dr. V.P. Uniyal, Wildlife Institute of India, Dehradun, Uttarakhand 248001, India
Dr. John T.D. Caleb, Zoological Survey of India, Kolkata, West Bengal, India
Dr. Priyadarshan Dharma Rajan, Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Bangalore, Karnataka, India

Fishes

Dr. Neelesh Dahanukar, IISER, Pune, Maharashtra, India
Dr. Topiltzin Contreras MacBeath, Universidad Autónoma del estado de Morelos, México
Dr. Heok Hee Ng, National University of Singapore, Science Drive, Singapore
Dr. Rajeev Raghavan, St. Albert's College, Kochi, Kerala, India
Dr. Robert D. Sluka, Chiltern Gateway Project, A Rocha UK, Southall, Middlesex, UK
Dr. E. Vivekanandan, Central Marine Fisheries Research Institute, Chennai, India
Dr. Davor Zanella, University of Zagreb, Zagreb, Croatia
Dr. A. Biju Kumar, University of Kerala, Thiruvananthapuram, Kerala, India
Dr. Akhilesh K.V., ICAR-Central Marine Fisheries Research Institute, Mumbai Research Centre, Mumbai, Maharashtra, India
Dr. J.A. Johnson, Wildlife Institute of India, Dehradun, Uttarakhand, India
Dr. R. Ravinesh, Gujarat Institute of Desert Ecology, Gujarat, India

Amphibians

Dr. Sushil K. Dutta, Indian Institute of Science, Bengaluru, Karnataka, India
Dr. Annemarie Ohler, Muséum national d'Histoire naturelle, Paris, France

Reptiles

Dr. Gernot Vogel, Heidelberg, Germany
Dr. Raju Vyas, Vadodara, Gujarat, India
Dr. Pritpal S. Soorae, Environment Agency, Abu Dubai, UAE.
Prof. Dr. Wayne J. Fuller, Near East University, Mersin, Turkey
Prof. Chandrashekher U. Rironker, Goa University, Taleigao Plateau, Goa, India
Dr. S.R. Ganesh, Chennai Snake Park, Chennai, Tamil Nadu, India
Dr. Himansu Sekhar Das, Terrestrial & Marine Biodiversity, Abu Dhabi, UAE

Journal of Threatened Taxa is indexed/abstracted in Bibliography of Systematic Mycology, Biological Abstracts, BIOSIS Previews, CAB Abstracts, EBSCO, Google Scholar, Index Copernicus, Index Fungorum, JournalSeek, National Academy of Agricultural Sciences, NewJour, OCLC WorldCat, SCOPUS, Stanford University Libraries, Virtual Library of Biology, Zoological Records.

NAAS rating (India) 5.64

Birds

Dr. Hem Sagar Baral, Charles Sturt University, NSW Australia
Mr. H. Biju, Coimbatore, Tamil Nadu, India
Dr. Chris Bowden, Royal Society for the Protection of Birds, Sandy, UK
Dr. Priya Davidar, Pondicherry University, Kalapet, Puducherry, India
Dr. J.W. Duckworth, IUCN SSC, Bath, UK
Dr. Rajah Jayopal, SACON, Coimbatore, Tamil Nadu, India
Dr. Rajiv S. Kalsi, M.L.N. College, Yamuna Nagar, Haryana, India
Dr. V. Santharam, Rishi Valley Education Centre, Chittoor Dt., Andhra Pradesh, India
Dr. S. Balachandran, Bombay Natural History Society, Mumbai, India
Mr. J. Praveen, Bengaluru, India
Dr. C. Srinivasulu, Osmania University, Hyderabad, India
Dr. K.S. Gopi Sundar, International Crane Foundation, Baraboo, USA
Dr. Gombobaatar Sundev, Professor of Ornithology, Ulaanbaatar, Mongolia
Prof. Reuven Yosef, International Birding & Research Centre, Eilat, Israel
Dr. Taej Mundkur, Wetlands International, Wageningen, The Netherlands
Dr. Carol Inskip, Bishop Auckland Co., Durham, UK
Dr. Tim Inskip, Bishop Auckland Co., Durham, UK
Dr. V. Gokula, National College, Tiruchirappalli, Tamil Nadu, India
Dr. Arkady Lelej, Russian Academy of Sciences, Vladivostok, Russia
Dr. Simon Dowell, Science Director, Chester Zoo, UK
Dr. Mário Gabriel Santiago dos Santos, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, Vila Real, Portugal
Dr. Grant Connette, Smithsonian Institution, Royal, VA, USA
Dr. P.A. Azeez, Coimbatore, Tamil Nadu, India

Mammals

Dr. Giovanni Amori, CNR - Institute of Ecosystem Studies, Rome, Italy
Dr. Anwaruddin Chowdhury, Guwahati, India
Dr. David Mallon, Zoological Society of London, UK
Dr. Shomita Mukherjee, SACON, Coimbatore, Tamil Nadu, India
Dr. Angie Appel, Wild Cat Network, Germany
Dr. P.O. Nameer, Kerala Agricultural University, Thrissur, Kerala, India
Dr. Ian Redmond, UNEP Convention on Migratory Species, Lansdown, UK
Dr. Heidi S. Riddle, Riddle's Elephant and Wildlife Sanctuary, Arkansas, USA
Dr. Karin Schwartz, George Mason University, Fairfax, Virginia.
Dr. Lala A.K. Singh, Bhubaneswar, Orissa, India
Dr. Mewa Singh, Mysore University, Mysore, India
Dr. Paul Racey, University of Exeter, Devon, UK
Dr. Honnavalli N. Kumara, SACON, Anaikatty P.O., Coimbatore, Tamil Nadu, India
Dr. Nishith Dharaiya, HNG University, Patan, Gujarat, India
Dr. Spartaco Gippoliti, Socio Onorario Società Italiana per la Storia della Fauna "Giuseppe Altobello", Rome, Italy
Dr. Justus Joshua, Green Future Foundation, Tiruchirappalli, Tamil Nadu, India
Dr. H. Raghuram, The American College, Madurai, Tamil Nadu, India
Dr. Paul Bates, Harison Institute, Kent, UK
Dr. Jim Sanderson, Small Wild Cat Conservation Foundation, Hartford, USA
Dr. Dan Challender, University of Kent, Canterbury, UK
Dr. David Mallon, Manchester Metropolitan University, Derbyshire, UK
Dr. Brian L. Cypher, California State University-Stanislaus, Bakersfield, CA
Dr. S.S. Talmale, Zoological Survey of India, Pune, Maharashtra, India
Prof. Karan Bahadur Shah, Budhanilkantha Municipality, Kathmandu, Nepal
Dr. Susan Cheyne, Borneo Nature Foundation International, Palangkaraya, Indonesia
Dr. Hemanta Kafley, Wildlife Sciences, Tarleton State University, Texas, USA

Other Disciplines

Dr. Aniruddha Belsare, Columbia MO 65203, USA (Veterinary)
Dr. Mandar S. Paingankar, University of Pune, Pune, Maharashtra, India (Molecular)
Dr. Jack Tordoff, Critical Ecosystem Partnership Fund, Arlington, USA (Communities)
Dr. Ulrike Streicher, University of Oregon, Eugene, USA (Veterinary)
Dr. Hari Balasubramanian, EcoAdvisors, Nova Scotia, Canada (Communities)
Dr. Rayanna Helleni Santos Bezerra, Universidade Federal de Sergipe, São Cristóvão, Brazil
Dr. Jamie R. Wood, Landcare Research, Canterbury, New Zealand
Dr. Wendy Collinson-Jonker, Endangered Wildlife Trust, Gauteng, South Africa
Dr. Rajeshkumar G. Jani, Anand Agricultural University, Anand, Gujarat, India
Dr. O.N. Tiwari, Senior Scientist, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
Dr. L.D. Singla, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
Dr. Rupika S. Rajakaruna, University of Peradeniya, Peradeniya, Sri Lanka
Dr. Bharat Baviskar, Wild-CER, Nagpur, Maharashtra 440013, India

Reviewers 2021–2023

Due to paucity of space, the list of reviewers for 2021–2023 is available online.

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.

Print copies of the Journal are available at cost. Write to:
The Managing Editor, JoTT,
c/o Wildlife Information Liaison Development Society,
3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore,
Tamil Nadu 641006, India
ravi@threatenedtaxa.org & ravi@zooreach.org

Articles

Waterhole utilization pattern of mammals in Jigme Singye

Wangchuck National Park, Bhutan

– Kuninpurathu Sivanandan Aswin, Ugyen Dorji, Karma Sherub & Mer Man Gurung, Pp. 26331–26340

Dietary composition of Black-necked Crane *Grus nigricollis*

Przewalski, 1876 (Aves: Gruiformes: Gruidae) in its winter habitat: insights from fecal analysis in Bumdeling, Trashiyangtse, Bhutan

– Jigme Wangchuk, Ugyen Tenzin, Tsethup Tshering, Karma Wangdi, Sangay Drukpa, Tshering Chophel, Ugyen Wangmo, Jigme Tshering & Sherub, Pp. 26341–26352

Checklist of forensically significant Rove beetles (Coleoptera:

Staphylinidae: Staphylininae: Staphylinini) from India

– Meenakshi Bharti & Shweta Sharma, Pp. 26353–26369

Distribution and habitat suitability of *Amorphophallus gigas* with MaxEnt modeling in north Sumatra, Indonesia

– Ridahati Rambey, Rahmawaty, Abdul Rauf, Esther Sorta Mauli Nababan, Delvian, T. Alief Aththorick, M. Hasmadi Ismail, Muhammad Hadi Saputra, Seca Gandaseca & M. Nazip Suratman, Pp. 26370–26384

Taxonomy, distribution, and ecology of *Impatiens violacea* (Balsaminaceae) a steno-endemic species in Pettimudi, an area of endemism in southern Western Ghats, India

– Arjun Thomas & J. Jameson, Pp. 26385–26393

Communications

Assessing the conservation status of *Elaphoglossum stigmatolepis* (Fee) T.Moore (Dryopteridaceae), an endemic fern in the Western Ghats of India

– A. Benniamin, Sakshi Pandey & Rajat Mondal, Pp. 26394–26400

Review

Management challenges in marine protected areas: a field note from the Malvan Marine Sanctuary, India

– Neenu Somaraj, Pp. 26401–26408

Short Communications

A preliminary checklist of butterflies (Lepidoptera: Rhopalocera) of Dhorpatan Valley, Dhorpatan Hunting Reserve, Nepal

– Kiran Rayamajhi, Bhaiya Khanal & Prakash Chandra Aryal, Pp. 26409–26416

New species records of sericine chafer beetles (Coleoptera: Scarabaeidae: Melolonthinae) from Goa and Maharashtra, India

– Aparna Sureshchandra Kalawate & Shruti Baban Sonkusare, Pp. 26417–26420

Survey of Orthoptera in the Desert National Park, Rajasthan, India

– Anshuman Pati, Indranil Paul & Sutirtha Dutta, Pp. 26421–26425

Phenology of *Rhododendron wattii* Cowan (Ericales: Ericaceae) - a threatened plant of Nagaland, India

– Imtilila Jing & S.K. Chaturvedi, Pp. 26426–26430

Phalaenopsis wilsonii: a new addition to the orchid flora of Manipur, India

– Ngasheppam Malemnganbi Chanu, Thongam Nourenpai Khanganba & Thongam Biseshwori, Pp. 26431–26434

Notes

Confirmation of the presence of Red Pierrot *Talicada nyseus nyseus* (Lepidoptera: Lycaenidae) in Assam, India

– Renu Gogoi, Bijay Basfore, Roshan Upadhyaya, Ruksha Limbu, Anjana Singha Naorem & Rezina Ahmed, Pp. 26435–26439

A note on *Pterospermum obtusifolium* Wight ex Mast. (Malvaceae), a rare endemic evergreen tree of southern Western Ghats, India

– K. Narayanan & Shamsudheen Abdul Kader, Pp. 26440–26442