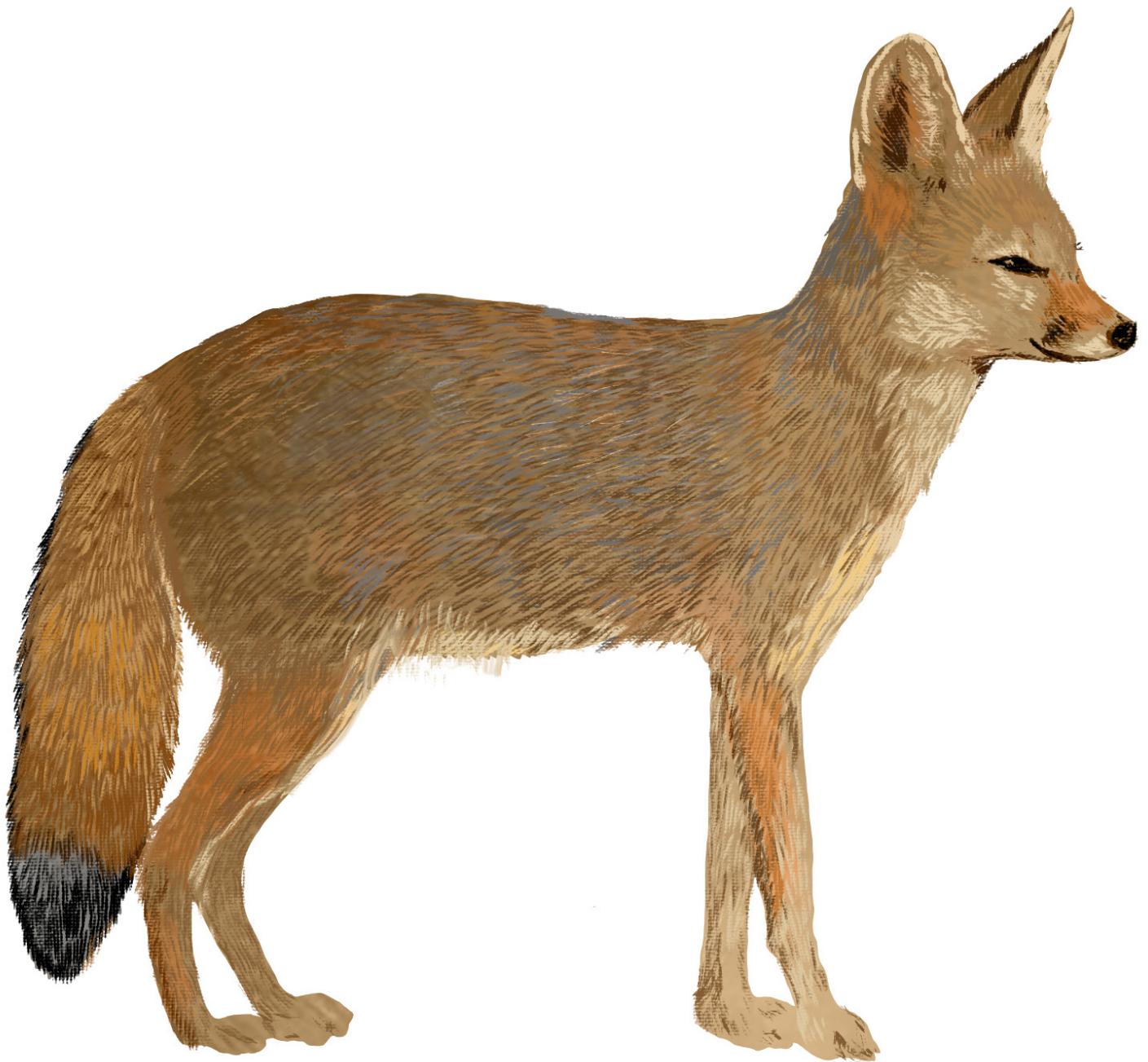


Building evidence for conservation globally

Journal of Threatened TAXA

Open Access

10.11609/jott.2024.16.9.25791-25950


www.threatenedtaxa.org

26 September 2024 (Online & Print)

16(9): 25791-25950

ISSN 0974-7907 (Online)

ISSN 0974-7893 (Print)

Publisher

Wildlife Information Liaison Development Societywww.wild.zooreach.org

Host

Zoo Outreach Organizationwww.zooreach.org43/2 Varadarajulu Nagar, 5th Street West, Ganapathy, Coimbatore, Tamil Nadu 641006, India

Registered Office: 3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore, Tamil Nadu 641006, India

Ph: +91 9385339863 | www.threatenedtaxa.orgEmail: sanjay@threatenedtaxa.org

EDITORS

Founder & Chief Editor

Dr. Sanjay MolurWildlife Information Liaison Development (WILD) Society & Zoo Outreach Organization (ZOO),
43/2 Varadarajulu Nagar, 5th Street West, Ganapathy, Coimbatore, Tamil Nadu 641006, India

Deputy Chief Editor

Dr. Neelesh Dahanukar

Noida, Uttar Pradesh, India

Managing Editor

Mr. B. Ravichandran, WILD/ZOO, Coimbatore, Tamil Nadu 641006, India

Associate Editors

Dr. Mandar Paingankar, Government Science College Gadchiroli, Maharashtra 442605, India**Dr. Ulrike Streicher**, Wildlife Veterinarian, Eugene, Oregon, USA**Ms. Priyanka Iyer**, ZOO/WILD, Coimbatore, Tamil Nadu 641006, India

Editorial Board

Dr. Russel Mittermeier

Executive Vice Chair, Conservation International, Arlington, Virginia 22202, USA

Prof. Mewa Singh Ph.D., FASc, FNA, FNASC, FNAPsyRamanna Fellow and Life-Long Distinguished Professor, Biopsychology Laboratory, and
Institute of Excellence, University of Mysore, Mysuru, Karnataka 570006, India; Honorary
Professor, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore; and Adjunct
Professor, National Institute of Advanced Studies, Bangalore**Stephen D. Nash**Scientific Illustrator, Conservation International, Dept. of Anatomical Sciences, Health Sciences
Center, T-8, Room 045, Stony Brook University, Stony Brook, NY 11794-8081, USA**Dr. Fred Pluthero**

Toronto, Canada

Dr. Priya Davidar

Sigur Nature Trust, Chadapatti, Mavinhalia PO, Nilgiris, Tamil Nadu 643223, India

Dr. John FellowesHonorary Assistant Professor, The Kadoorie Institute, 8/F, T.T. Tsui Building, The University of
Hong Kong, Pokfulam Road, Hong Kong**Prof. Dr. Mirco Solé**Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Vice-coordenador
do Programa de Pós-Graduação em Zoologia, Rodovia Ilhéus/Itabuna, Km 16 (45662-000)
Salobrinho, Ilhéus - Bahia - Brasil**Dr. Rajeev Raghavan**

Professor of Taxonomy, Kerala University of Fisheries & Ocean Studies, Kochi, Kerala, India

English Editors

Mrs. Mira Bhojwani, Pune, India**Dr. Fred Pluthero**, Toronto, Canada**Mr. P. Ilangovan**, Chennai, India**Ms. Sindhura Stothra Bhashyam**, Hyderabad, India

Web Development

Mrs. Latha G. Ravikumar, ZOO/WILD, Coimbatore, India

Typesetting

Mrs. Radhika, ZOO, Coimbatore, India**Mrs. Geetha**, ZOO, Coimbatore India

Fundraising/Communications

Mrs. Payal B. Molur, Coimbatore, India

Subject Editors 2021–2023

Fungi

Dr. B. Shivaraju, Bengaluru, Karnataka, India

Dr. R.K. Verma, Tropical Forest Research Institute, Jabalpur, India

Dr. Vatsavaya S. Raju, Kakatiya University, Warangal, Andhra Pradesh, India

Dr. M. Krishnappa, Jnana Sahyadri, Kuvempu University, Shimoga, Karnataka, India

Dr. K.R. Sridhar, Mangalore University, Mangalagangotri, Mangalore, Karnataka, India

Dr. Gunjan Biswas, Vidyasagar University, Midnapore, West Bengal, India

Dr. Kiran Ramchandra Ranadive, Annasaheb Magar Mahavidyalaya, Maharashtra, India

Plants

Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India

Dr. N.P. Balakrishnan, Ret. Joint Director, BSI, Coimbatore, India

Dr. Shonil Bhagwat, Open University and University of Oxford, UK

Prof. D.J. Bhat, Retd. Professor, Goa University, Goa, India

Dr. Ferdinand Boero, Università del Salento, Lecce, Italy

Dr. Dale R. Calder, Royal Ontario Museum, Toronto, Ontario, Canada

Dr. Cleofas Cervancia, Univ. of Philippines Los Baños College Laguna, Philippines

Dr. F.B. Vincent Florens, University of Mauritius, Mauritius

Dr. Merlin Franco, Curtin University, Malaysia

Dr. V. Irudayaraj, St. Xavier's College, Palayamkottai, Tamil Nadu, India

Dr. B.S. Kholia, Botanical Survey of India, Gangtok, Sikkim, India

Dr. Pankaj Kumar, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, USA

Dr. V. Sampath Kumar, Botanical Survey of India, Howrah, West Bengal, India

Dr. A.J. Solomon Raju, Andhra University, Visakhapatnam, India

Dr. Vijayasanchari Raman, University of Mississippi, USA

Dr. B. Ravi Prasad Rao, Sri Krishnadevaraya University, Anantapur, India

Dr. K. Ravikumar, FRLHT, Bengaluru, Karnataka, India

Dr. Aparna Watve, Pune, Maharashtra, India

Dr. Qiang Liu, Kishuangbanna Tropical Botanical Garden, Yunnan, China

Dr. Noor Azhar Mohamed Shazili, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia

Dr. M.K. Vasudeva Rao, Shiv Ranjani Housing Society, Pune, Maharashtra, India

Prof. A.J. Solomon Raju, Andhra University, Visakhapatnam, India

Dr. Mander Datar, Agharkar Research Institute, Pune, Maharashtra, India

Dr. M.K. Janarthanan, Goa University, Goa, India

Dr. K. Karthigeyan, Botanical Survey of India, India

Dr. Errol Vela, University of Montpellier, Montpellier, France

Dr. P. Lakshminarasimhan, Botanical Survey of India, Howrah, India

Dr. Larry R. Noblick, Montgomery Botanical Center, Miami, USA

Dr. K. Haridasan, Pallavur, Palakkad District, Kerala, India

Dr. Analinda Manila-Fajard, University of the Philippines Los Baños, Laguna, Philippines

Dr. P.A. Sinu, Central University of Kerala, Kasaragod, Kerala, India

Dr. Afroz Alam, Banasthali Vidyapith (accredited A grade by NAAC), Rajasthani, India

Dr. K.P. Rajesh, Zamorin's Guruvayurappan College, GA College PO, Kozhikode, Kerala, India

Dr. David E. Boufford, Harvard University Herbaria, Cambridge, MA 02138-2020, USA

Dr. Ritesh Kumar Choudhary, Agharkar Research Institute, Pune, Maharashtra, India

Dr. A.G. Pandurangan, Thiruvananthapuram, Kerala, India

Dr. Navendu Page, Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India

Dr. Kannan C.S. Warrier, Institute of Forest Genetics and Tree Breeding, Tamil Nadu, India

Invertebrates

Dr. R.K. Avasthi, Rohtak University, Haryana, India

Dr. D.B. Bastawade, Maharashtra, India

Dr. Partha Pratim Bhattacharjee, Tripura University, Suryamaninagar, India

Dr. Kailash Chandra, Zoological Survey of India, Jabalpur, Madhya Pradesh, India

Dr. Ansie Dippenaar-Schoeman, University of Pretoria, Queenswood, South Africa

Dr. Rory Dow, National Museum of Natural History Naturalis, The Netherlands

Dr. Brian Fisher, California Academy of Sciences, USA

Dr. Richard Gallon, Ilandudno, North Wales, LL30 1UP

Dr. Hemant V. Ghate, Modern College, Pune, India

Dr. M. Monwar Hossain, Jahangirnagar University, Dhaka, Bangladesh

Mr. Jatishwar Singh Irungbam, Biology Centre CAS, Branišovská, Czech Republic.

Dr. Ian J. Kitching, Natural History Museum, Cromwell Road, UK

Dr. George Mathew, Kerala Forest Research Institute, Peechi, India

For Focus, Scope, Aims, and Policies, visit https://threatenedtaxa.org/index.php/JoTT/aims_scopeFor Article Submission Guidelines, visit <https://threatenedtaxa.org/index.php/JoTT/about/submissions>For Policies against Scientific Misconduct, visit https://threatenedtaxa.org/index.php/JoTT/policies_various

continued on the back inside cover

Cover: Bengal Fox *Vulpes bengalensis*—digital illustration. © Alagu Raj.

Tree community structure of selected green patches of Guwahati, Assam, India with special reference to spatio-temporal changes in vegetation

Maitreyee Goswami¹ , Jijnyasha Bayan² , Uma Dutta³ , Arup Kumar Hazarika⁴ & Kuladip Sarma⁵

¹⁻⁴ Department of Zoology, Cotton University, Panbazar, Guwahati, Assam 781001, India.

^{1 & 5} Department of Zoology, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati, Assam 781014, India.

¹ maitreyegoswami5@gmail.com (corresponding author), ² jigyasa22.jb@gmail.com, ³ uma.dutta@cottonuniversity.ac.in,

⁴ arup.hazarika@cottonuniversity.ac.in, ⁵ kldpsarma@gauhati.ac.in

Abstract: Green spaces are key aspects of urban ecology. The current study aims to estimate temporal changes in green spaces of Guwahati Metropolitan Development Authority, and also to investigate the tree community structure of three selected green patches. Change detection analysis of identified green spaces was done by comparing the normalized difference vegetation index (NDVI) maps of satellite images from 2022 with those from 1972. NDVI maps were classified into three threshold categories: no vegetation (NV), moderate vegetation (MV), and high vegetation (HV). The results show changes in the area of selected green patches as well as NV, MV, and HV regions between 1972 and 2022. The tree community structure in the three selected patches indicates a low diversity of plant species. The result of the current study prioritizes patch-wise management of urban green spaces in Guwahati city with the help of both remotely sensed and ground data. Thus, the present study can significantly contribute to plant community conservation and management of urban green spaces.

Keywords: Green spaces, GMDA, NDVI, QGIS, plant community, satellite images, urban ecology.

Abbreviations: Girth at breast height (GBH)—measurement of the circumference of a tree trunk at 4.5 ft (1.4 m) above ground level | Importance value index (IVI)—the measure of how dominant a species is in a given ecosystem | Normalized difference vegetation index (NDVI)—quantification of vegetation cover by measuring the difference between near-infrared (which vegetation strongly reflects) and red light (which vegetation absorbs) reflection in images.

Editor: K. Haridasan, Palakkad, Kerala, India.

Date of publication: 26 September 2024 (online & print)

Citation: Goswami, M., J. Bayan, U. Dutta, A.K. Hazarika & K. Sarma (2024). Tree community structure of selected green patches of Guwahati, Assam, India with special reference to spatio-temporal changes in vegetation. *Journal of Threatened Taxa* 16(9): 25872-25881. <https://doi.org/10.11609/jott.8779.16.9.25872-25881>

Copyright: © Goswami et al. 2024. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: No funding was provided for the current study.

Competing interests: The authors declare no competing interests.

Author details: Maitreyee Goswami—a post-graduate from the Department of Zoology, Cotton University. Currently working as a research scholar at the Department of Zoology, Gauhati University. Jijnyasha Bayan—a post-graduate from the Department of Zoology, Cotton University. Dr. Uma Dutta—an associate professor at the Department of Zoology, Cotton University. Her research focuses on Bio-active components of plants and animals in the treatment of chronic diseases such as cancer and diabetes., Indigenous or traditional knowledge on the use of herbal extract or bio-active component for treating infertility, with special reference to Assam, toxicology with special reference to food toxicants, validation of traditional knowledge and its practices in agricultural pest control with ethno-pharmacological importance. PROF. ARUP KUMAR HAZARIKA—professor and head of the Department, Department of Zoology, Cotton University. His research interests lie at the intersection of insect ecology, river & fresh water ecology, and wildlife biology & conservation science. DR. KULADIP SARMA—teaches animal ecology as an assistant professor in Gauhati University. His research focuses on how plant and animal communities respond to their abiotic environment, examining the effects of habitat alterations in multidimensional climate space, in eastern Himalayan region.

Author contributions: Conceptualised by Kuladip Sarma; Material preparation, data collection, draft preparation by Maitreyee Goswami and analysis done by Kuladip Sarma and Maitreyee Goswami. The final draft of the manuscript was written by Maitreyee Goswami and was read and approved by all the authors.

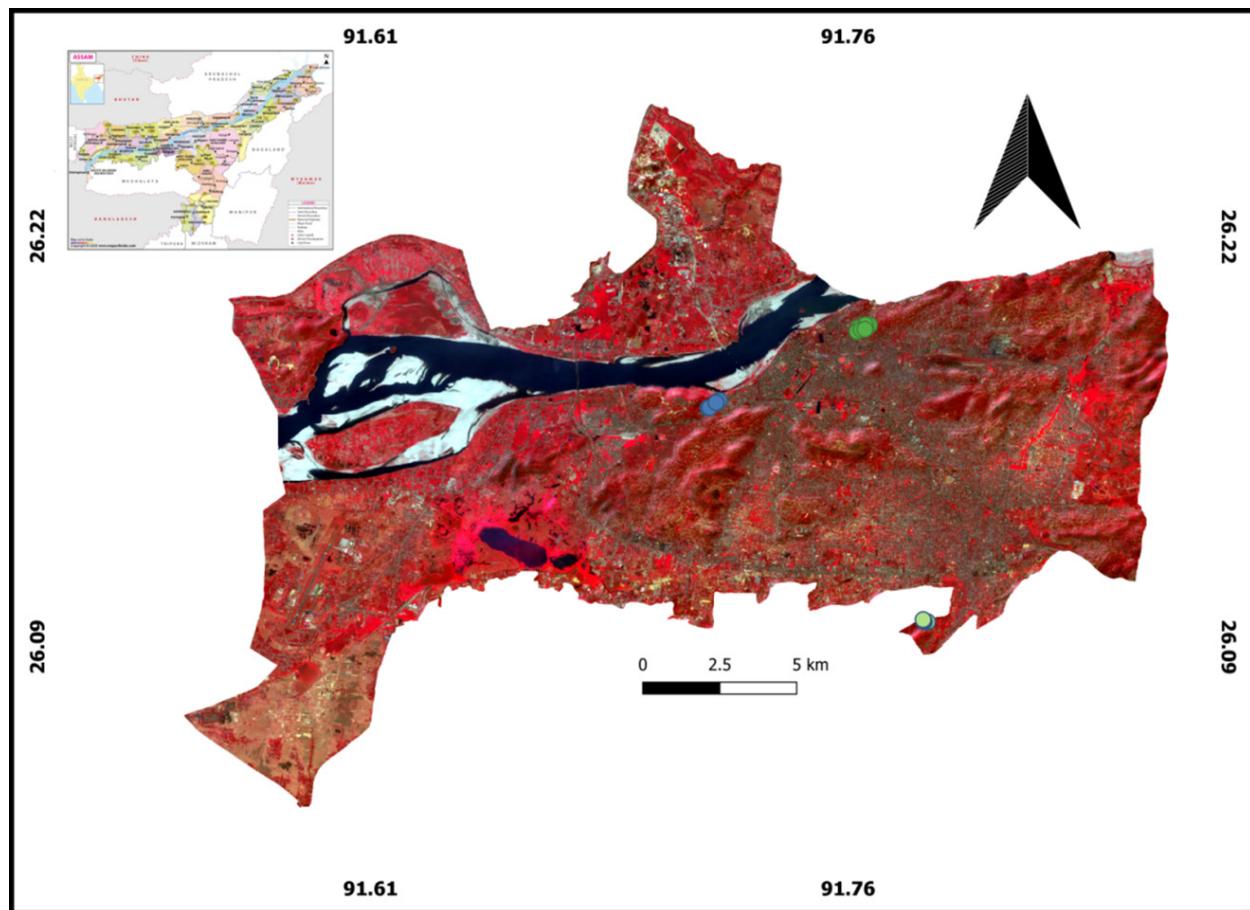
Acknowledgements: The authors are thankful to the Head of the Department (HoD), Department of Zoology, Cotton University and to the Head of the Department (HoD), Department of Zoology, Gauhati University for providing administrative support to carry out the research work

INTRODUCTION

Less than 3% of the earth's surface is covered by cities (Schneider et al. 2010), which are often located in regions rich in biodiversity. Rapid urbanisation is considered to be a major cause of declining natural habitats and resources, posing serious threats to many plant and animal species, and the expansion of cities in size and density (Turrini & Knop 2015) in some developing countries (Seto et al. 2012) has contributed to a particularly high rate of urbanization in southeastern Asia (Cohen 2006; UNDESA 2012). A potential measure of the impacts of urbanization can be made by identifying urban green spaces that are maintained and conserved. As urban green spaces by its definition are inclusive of all the public and private open spaces, primarily covered by vegetation (Tuzin et al. 2002), it can be an effective interdisciplinary approach towards sustainable development and encompass environmental, economic, social, and psychological values. They also act as protected areas for the breeding of various animal species and the conservation of plants, soil, and water quality (Haq 2011). Although urban areas are known to have a lesser number of native species (Emlen 1974; Rebele 1994) as compared to natural habitats, urban green spaces house a number of different species and also act as dispersal corridors (Bolger 2001). Quality urban green spaces in higher numbers can also be a refuge habitat for a numbers of forest-dwelling species (Mortberg & Wallentinus 2000; Park & Lee 2000).

The study of urban green spaces in India is limited. A few papers are available (Birkmann et al. 2016; Pawe & Saikia 2018) on population aspects and forest cover change. In the global context, urban landscapes are being studied for various aspects including the conservation importance of green spaces (Bolund & Hunhammar 1999; Baycan-Levent & Nijkamp 2004; Tian et al. 2011; Jennings et al. 2016). The nature of urban green spaces has been evaluated by certain criteria viz. their quantity in a particular city (Oguz 2000), their existing qualities like activities and experiences, and their benefits as perceived by users (Van Herzele & Wiedemann 2003), and their services determined by location, distribution, and accessibility (Grahn & Stigsdotter 2003; van Herzele & Wiedemann 2003; Neuvonen et al. 2007). Different methodologies have been used to study the urban green spaces and the plant communities within them such as random stratified sampling (Nowak et al. 2008), GBH and NDVI calculation (Nero et al. 2017), analytic hierarchy process (AHP) modeling and use of GIS (De Ridder 2004; Sharma et al. 2022).

Owing to various consequences of urban sprawl, green spaces are at risk of vast changes and degradation, which will ultimately affect urban wildlife and human residents. In India, nearly half of the 100 million new urban residents are expected to occupy the secondary or mid-sized cities including the cities of northeastern India (Birkmann et al. 2016). Guwahati is one such secondary city that is likely to experience population outbursts in a few decades. Guwahati, like many other Indian cities, faces problems of unplanned land use land cover (LULC) change due to negligible or even non-existent planning efforts added by the rapid urban population growth (Pawe & Saikia 2018).


With this background, this study aims to determine the temporal changes in the urban green spaces within the boundary of GMDA and also to detect the changes in three selected green patches between 1972 and 2022 in terms of area with the help of remote sensing (RS) and geographic information system (GIS), which shall shed light on the impact of urbanization on urban green spaces. The plant community structure of three selected urban green patches of Guwahati has also been studied to emphasize the importance of urban green spaces in the conservation of wildlife.

MATERIALS AND METHODS

STUDY AREA

Guwahati city, situated on the southern bank of the Brahmaputra River, is the biggest and one of the most important cities in northeastern India. It falls under the jurisdiction of the Guwahati Metropolitan Development Authority (GMDA). The GMDA boundary currently covers an area of 262 km². As per the report, the area is scattered with a great number of hills that are mostly covered with forests and some exposed rocky surfaces.

The selected sites for studying tree community structure include three urban green spaces within Guwahati city (Figure 1), viz., patch 1 (P1) with Navagraha Hill at its entrance, patch 2 (P2) at the entry point of Kamakhya Temple and patch 3 (P3) including the area around Basistha Temple. The first patch is at the Navagraha Hill, also known as the Chitrachal Hill and is located at the southeastern part of the Guwahati city in Assam. It is known for the Navagraha Temple located at its top. The second patch which is at the entrance to the world famous Kamakhya Temple, is located at the Nilachal Hill in the western part of Guwahati. Basistha, where the third patch has been designated, is located at the south-east corner of Guwahati and it stands at

Figure 1. Map of GMDA area in 2022 showing the study sites with the dark green dots indicating patch 1, blue dots indicating patch 2, and light green dots indicating patch 3.

the bank of the mountain streams coming from the Meghalaya Hills, which ultimately form the rivers Basistha and Bahini or Bharalu flowing through Guwahati. These particular study sites were selected as they are some of the extant green patches within Guwahati city which are also easily accessible. Moreover, all of the selected sites are having an area greater than 1 ha in order to be considered as green patches for this specific study.

METHODS

Acquisition of Satellite Images and Identification of Green Spaces using normalized difference vegetation index (NDVI)

Satellite imagery of 1972 (Landsat MSS) and 2022 (Sentinel) were downloaded from the websites of United States Geological Survey (USGS; <https://www.usgs.gov>) and Copernicus (Table 1). The band designation for Landsat MSS satellite image is – Band 4: Red spectral range; Band 5: NIR spectral range. Similarly, the band information for Sentinel satellite image is- band 4: red spectral range; band5, 6 and 7: vegetation red edge

Table 1. Data acquisition details

Satellite	Sensor	Spatial resolution	Acquisition date	File format	Source
Landsat2	MSS	80	22.xi.1972	Geotiff	USGS
Sentinel-2	A	10	18.iv.2022	Geotiff	Copernicus

spectral range and band 8: NIR spectral range. The NDVI values were calculated for the downloaded satellite images using the following formula-

$$\text{NDVI} = (\text{NIR} - \text{Red}) / (\text{NIR} + \text{Red})$$

After calculating the NDVI values, the NDVI maps for the years 1972 and 2022 were prepared. The urban green spaces in and around Guwahati were identified from this final map and the study sites were selected.

Tree community structure of three selected green patches

Three green patches were selected from the NDVI map of 1972 and these are – Navagraha or Chitrachal Hill, Nilachal Hill, and Basistha Hill. Different numbers

of quadrats of 10×10 m were randomly placed in each patch. A total of 16 quadrats of size 10×10 m were placed in all the three patches. Eight quadrats were taken for P1, four quadrats were drawn in P2 and four quadrats placed in P3. A fiber measuring tape of 15 m was used to lay the random quadrats and also to calculate the GBH of plants. The coordinates of the quadrats were recorded using a handheld Garmin etrex 30x GPS device.

Mapping of selected study sites and calculation of their area Using QGIS

Estimation of change in the geometric area of the three selected patches, viz., P1, P2, and P3 was done between the years 1972 and 2022 in QGIS platform. The selected green patches and their temporal changes over the years in terms of area were then made into maps.

Reclassification of the NDVI maps and detection of temporal change of the classified zones between 1972 and 2022

The NDVI maps for 1972 and 2022 were reclassified into three major zones, viz., no vegetation (NV), moderate vegetation (MV) and high vegetation (HV) zones based on their NDVI values (Figure 2). The range of NDVI values for the three zones are 0–0.2, 0.2–0.4, and >0.4 for NV, MV, and HV zones, respectively. The change in total area covered by each of these three zones was calculated using Q-GIS.

Data analysis

The data collected on trees in every quadrat were then analyzed for determining their density, frequency, basal area, relative frequency, relative density, relative dominance, importance value Index (IVI), and Shannon-Weiner index of species diversity. A diversity dominance curve was plotted for the three urban green patches comparing their species diversities (Figure 5).

RESULTS

Identification of urban green spaces of Guwahati City and the estimation of area change in the three selected urban green patches

The NDVI maps of 1972 and 2022 (Figures 3, 4) show all the green spaces within the boundary of GMDA. These maps show around 20 urban green spaces in and around Guwahati city. When compared, the satellite image of 2022 shows reduction and fragmentation in the urban green spaces of Guwahati from 1972 (Figure 4). The area of the selected study sites in 1972 were approximately

Table 2. Change in area (1972–2022), number of plant species, and diversity indices of three selected urban green patches of Guwahati City, Assam, India

	Patch ID	Change of area in hectare (1972–2022)	Number of plant species	SWI for plant diversity
1	P1	1360.59	14	2.43
2	P2	33.32	6	1.68
3	P3	-6.97	4	1.29

Table 3a. Tree community parameters of selected patch 1 of GMDA, Assam

Name	Density/ m^2	Frequency	Basal area (m^2)	IVI
<i>Albizia procera</i>	0.125	12.5	0.29	14.62
<i>Bombax ceiba</i>	0.25	12.5	0.19	17.56
<i>Musa</i> sp.	0.125	12.5	0.09	11.78
<i>Cocos nucifera</i>	0.125	12.5	0.09	11.85
<i>Mangifera indica</i>	0.125	12.5	0.02	10.88
<i>Artocarpus heterophyllus</i>	0.125	12.5	0.05	11.23
<i>Melia azedarach</i>	0.125	12.5	0.18	13.05
<i>Tectona grandis</i>	0.125	12.5	0.88	22.63
<i>Syzygium cumini</i>	0.125	12.5	0.62	19.09
<i>Albizia saman</i>	0.5	37.5	2.73	73.62
Unknown sp. 1	0.125	12.5	0.10	11.94
<i>Sterculia</i> sp.	0.75	12.5	0.60	40.51
Unknown sp. 3	0.125	12.5	1.04	24.90
Unknown sp. 4	0.125	12.5	0.42	16.32
Total			7.29	

1593.95 ha, 253.68 ha, and 85.81 ha for P1, P2, and P3, respectively; while the same in 2022 are approximately 233.36 ha, 220.36 ha, and 92.78 ha, respectively. P1 and P2 show decrease in their area over the span of 50 years and the differences in their area between 1972 and 2022 are 1360.59 ha for P1 and 33.32 ha for P2. Contrarily, P3 shows an increase in area of about 6.97 ha within the given time period (Table 2).

Study of the plant communities of the selected urban green patches

For the first green patch P1 (Table 3a), it has been found that *Albizia saman* is the most frequent species, while *Sterculia* sp. has the highest density of all. Eleven species out of 14 having the same density were each present in one number in the eight quadrats laid in patch 1. *Albizia saman* and *Mangifera indica* occupies the highest and the lowest basal area in the study site,

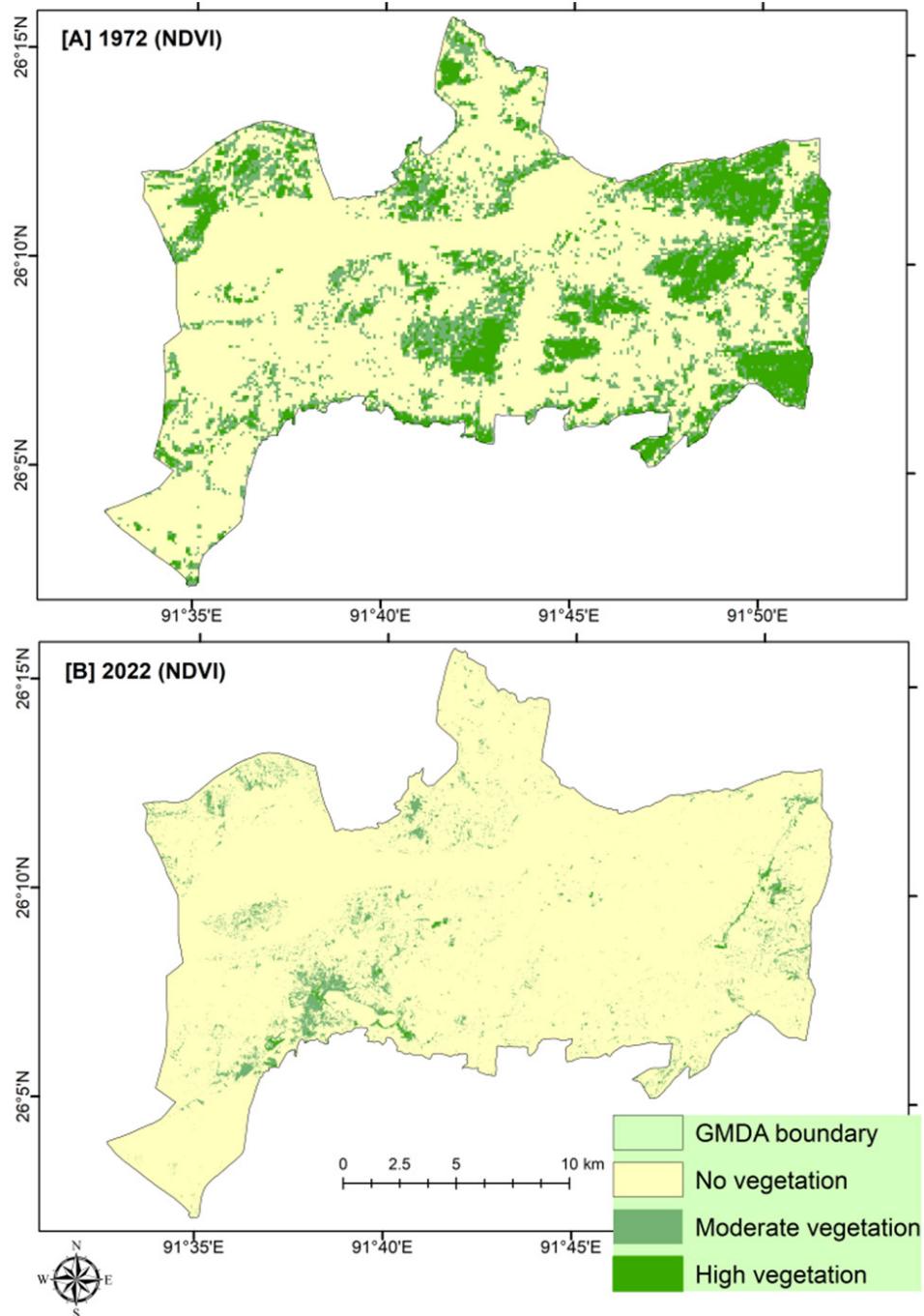


Figure 2. NDVI-based reclassified zones, i.e., No Vegetation, Moderate Vegetation, and High Vegetation zones.

respectively, with *Albizia saman* showing the highest IVI value. The species diversity as calculated by Shannon-Weiner index is found to be 2.43.

In the second urban green space P2 (Table 3b), *Delonix regia* and *Albizia procera* have the highest frequency and density, respectively. All the remaining five species have the same frequency, whereas *Albizia saman* and *Shorea robusta* exhibit the lowest density

of 0.25. The basal area as well as the IVI is largest for *Delonix regia*. The Shannon-Weiner index for species diversity is 1.68 for the green patch under consideration.

In the third study site P3 (Table 3c), the highest and the lowest densities are shown by *Shorea robusta* and *Ficus religiosa* and the most frequent species is *Albizia procera* with a frequency of 75%. The basal area is greatest for *Shorea robusta* and so is the IVI. The

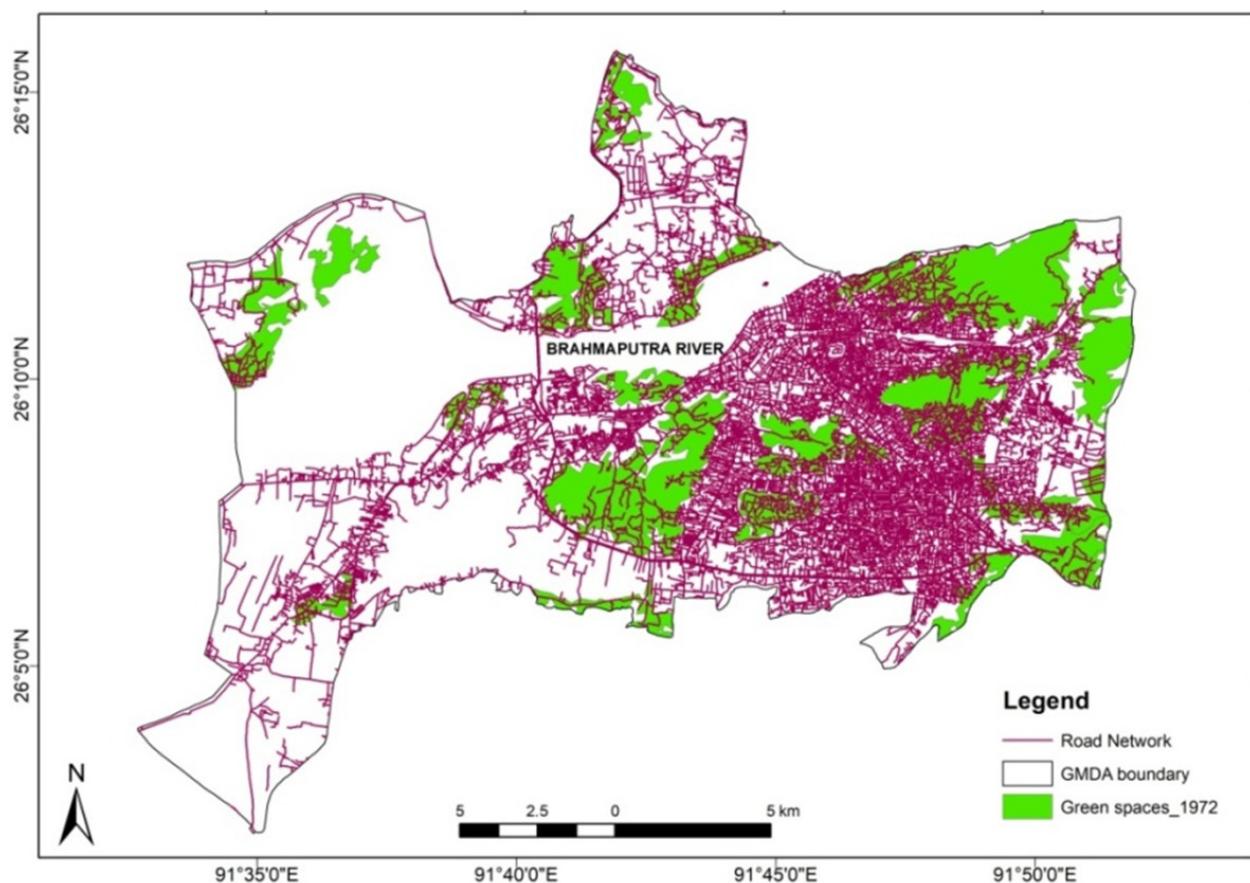


Figure 3. Identified green spaces within the GMDA area in the year 1972.

Table 3b. Tree community parameters of selected Patch 2 of GMDA, Assam.

Name	Density/ m ²	Frequency	Basal area (m ²)	IVI
<i>Delonix regia</i>	0.75	50	1.75	89.26
<i>Albizia saman</i>	0.25	25	0.82	40.05
<i>Shorea robusta</i>	0.25	25	0.19	25.46
<i>Magnolia champaca</i>	0.5	25	0.10	29.94
<i>Plumeria</i> sp.	0.5	25	0.43	37.60
<i>Albizia procera</i>	1.5	25	1.01	77.69
Total			4.29	

Table 3c. Tree community parameters of selected Patch 3 of GMDA, Assam.

Name	Density/ m ²	Frequency	Basal area (m ²)	IVI
<i>Albizia procera</i>	1	75	0.55	82.56
<i>Tectona grandis</i>	0.5	25	0.36	36.40
<i>Ficus religiosa</i>	0.25	25	1.34	56.06
<i>Shorea robusta</i>	2.25	50	1.51	124.98
Total			3.77	

Shannon-Weiner index is 1.29 for the area.

From the above data, a diversity dominance curve is plotted comparing the species richness and abundance of the selected sites having species rank on the X-axis and IVI value on the Y-axis (Figure 5), indicating that P1 has the greatest and P3 has the lowest plant diversity in terms of species richness and abundance.

Temporal change detection from NDVI map between 1972–2022

The three zones, viz., No Vegetation (NV), Moderate Vegetation (MV), and High Vegetation (HV), into which the green spaces of Guwahati have been classified based on their NDVI values, show drastic changes over the last 50 years from 1972 to 2022 (Figure 6). The % area of each of the three classes or zones for 1972 and 2022 respectively are shown in the table given below (Table 4).

Table 4. shows an increase (in %) of 26.75 in the NV zone in the year 2022 from 1972, whereas MV and HV zones show sharp decrease (in %) of 12.09 and 14.66, respectively, from 1972 to 2022. The NV zone has

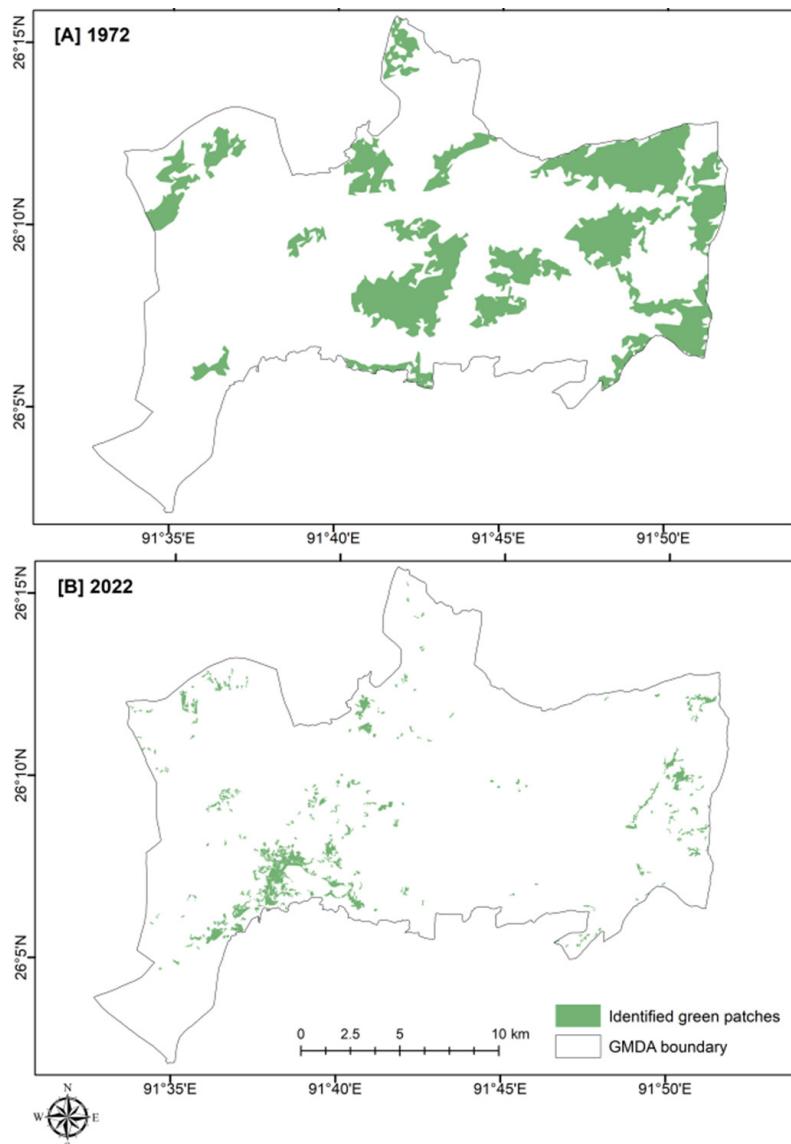


Figure 4. Comparison of the identified green spaces within GMDA between the years 1972 [A] and 2022 [B].

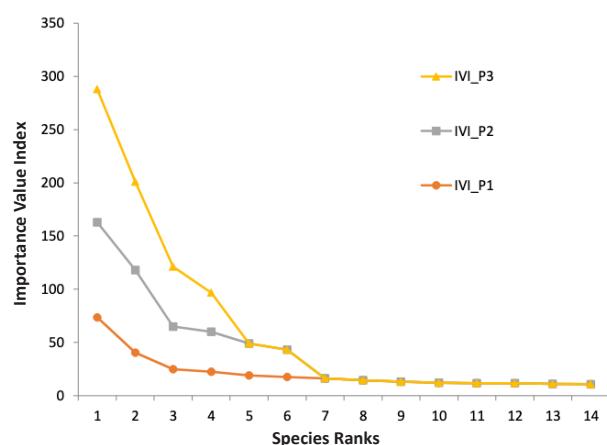


Figure 5. Diversity Dominance Curve of the plant communities of the Study Sites, where P1, P2 and P3 are Patch 1, Patch 2 and Patch 3.

remained the same throughout those 50 years whereas, the HV and MV zones have mostly been converted to NV zone directly (Table 5).

DISCUSSION

The area changes of the urban green spaces of Guwahati including the selected study sites are a clear indication that the urban green spaces are facing depletion due to various reasons, among which the primary reason can be attributed to anthropogenic activities. The increase in the total area of the no vegetation zone and the subsequent decrease in the areas covered by moderate and high vegetation zones

(Figure 6) suggest the expansion of human settlements and built-up areas and the subsequent decline of vegetated areas or green spaces. The dynamics of the changes in the three zones are as such that the NV zone has not changed from 1972 to 2022, but the HV and the MV zones have changed directly into NV Zone and only a small fraction (2.62%) of HV zone has been converted to MV zone. The increasing establishment of human settlements has brought about the fragmentation of urban green spaces and has led to a reduction in the

total area occupied by these green spaces in Guwahati. With the influx of people into the city from various other parts of Assam as well as from different corners of the country, the relatively uninhabited green spaces are being occupied at a much faster rate. This can negatively affect the biotic communities within the green spaces and can also interfere with the role of urban green spaces in biodiversity conservation. A similar type of observation has been made in a study by Sangwan et al. (2022), which mentions the challenges faced by

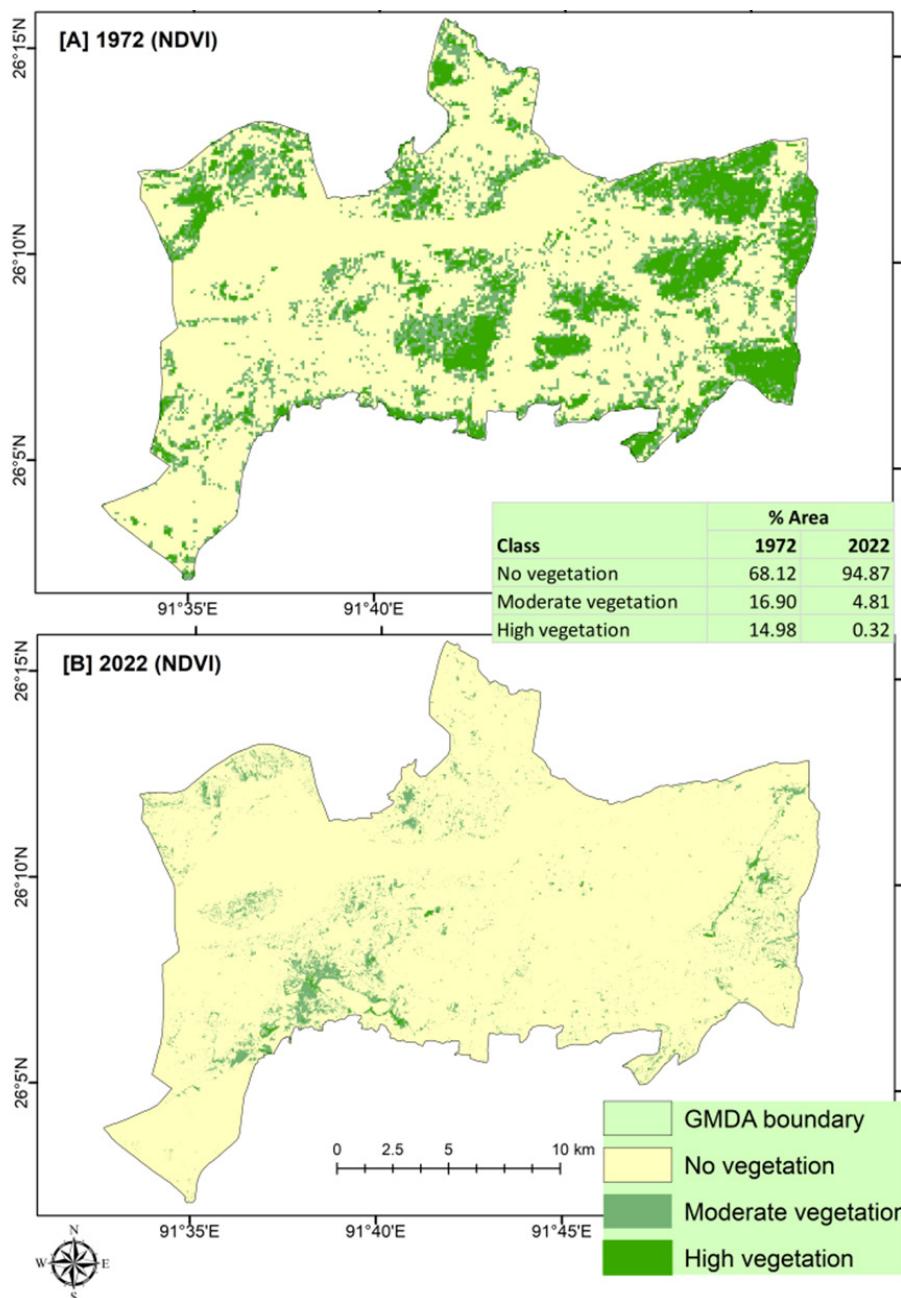


Figure 6. Comparison of the % change in the area of the three NDVI zones between 1972 [A] and 2022 [B].

Table 4. Area statistics of the green patches between 1972 and 2022.

Class/Zones	% Area	
	1972	2022
No vegetation	68.12	94.87
Moderate vegetation	16.90	4.81
High vegetation	14.98	0.32

Table 5. Change detection matrix of three vegetation classes in the study area between 1972 to 2022.

Class name		2022 (Area in %)			Total
		No vegetation	Moderate vegetation	High vegetation	
1972	No vegetation	68.12			68.12
	Moderate vegetation	14.61	2.19	0.1	16.9
	High vegetation	12.14	2.62	0.22	14.98
	Total	94.87	4.81	0.32	100.00

the urban green spaces of many Indian cities due to competing economic interests and demand on land for various purposes such as residential, commercial, industrial and institutional. In a case study of Noida (Sharma et al. 2022), it has been noticed that the green spaces are isolated and fragmented limiting the additive benefits that can be derived from larger interconnected green spaces. Nevertheless, they are an integral component of urban ecosystems harbouring a wide array of animal and plant communities.

As a whole, the species richness of plants was found to be higher in the urban green spaces as compared to urban built-up areas which may be due to the presence of a variety of microhabitats and greater resource availability in the green spaces (Nielsen et al. 2013). According to the diversity-dominance curve (Figure 5) that was plotted for the plant communities of the green patches, species evenness is more in P1, as all the species are relatively equally abundant than in the other two sites where one species is much more abundant as compared to the other species of that particular area. A greater biodiversity of an area indicates more productivity and hence greater availability of resources leading to a healthy and stable ecosystem that can provide various ecosystem services. Thus, urban green spaces are very much necessary for the maintenance of urban ecosystems. Moreover, they have an undeniable impact on the health and well-being of humans, encouraging human positive emotions (Cameron et al. 2020); and master planning is required to keep these

green spaces intact (Nora et al. 2017).

CONCLUSION

Urban green spaces—open areas within cities covered with vegetation—are an important aspect of urban ecology, and due to rapid urban sprawl, they are changing. This study shows that these changes can be detected and determined with the help of remote sensing (RS) and GIS software by highlighting the changes occurring in green patches within Guwahati City. Using satellite imagery, it was shown that most of the green spaces are undergoing degradation and fragmentation. These green spaces also play an important role in preserving the biodiversity of urban areas. In the current study, observations have been made regarding the plant communities of selected green patches with the help of random quadrat sampling. The diversity dominance curve for the plant communities of the study sites is included in comparing the plant diversity among the selected green patches. The challenges faced by these green spaces within the city should be addressed properly through appropriate planning in order to maintain the overall well-being of the urban ecosystem as well as the city dwellers.

There is scope for more work that can be done on the urban green spaces of Guwahati which can shed light on the condition of the extant green spaces and can highlight their importance. The study of the plant communities can be performed more comprehensively. These data would help in the formulation of plans to improve and protect the green spaces in the city of Guwahati.

REFERENCES

Baycan-Levent, T. & P. Nijkamp (2004). Urban green space policies: performance and success conditions in European cities. ERS 2004 — 44th Congress of the European Regional Science Association, Porto.

Birkmann, J., T. Welle, W. Solecki, S. Lwasa & M. Garschagen (2016). Boost resilience of small and mid-sized cities. *Nature* 537(7622): 605–608. <https://doi.org/10.1038/537605a>

Bolger, D.T. (2001). Urban birds: population, community, and landscape approaches, pp. 155–177. In: Marzluff, J.M., R. Bowman & R. Donnelly (eds.). *Avian Ecology and Conservation in an Urbanizing World*. Springer, Boston, MA, XIII + 585 pp. https://doi.org/10.1007/978-1-4615-1531-9_8

Bolund, P. & S. Hunhammar (1999). Ecosystem services in urban areas. *Ecological Economics* 29(2): 293–301. [https://doi.org/10.1016/S0921-8009\(99\)00013-0](https://doi.org/10.1016/S0921-8009(99)00013-0)

Cameron, R.W.F., P. Brindley, M. Mears, K. McEwan, F. Ferguson, D. Sheffield, A. Jorgensen, J. Riley, J. Goodrick, L. Ballard & M. Richardson (2020). Where the wild things are! Do urban green

spaces with greater avian biodiversity promote more positive emotions in humans? *Urban Ecosystems* 23: 301–317. <https://doi.org/10.1007/s11252-020-00929-z>

Cohen, B. (2006). Urbanization in developing countries: Current trends, future projections, and key challenges for sustainability. *Technology in Society* 28(1–2): 63–80. <https://doi.org/10.1016/j.techsoc.2005.10.005>

De Ridder, K. (2004). Report of the Benefits of urban green space (BUGS), Section 6, 53 pp.

Emlen, T.J. (1974). An urban bird community in Tucson, Arizona: derivation, structure, regulation. *The Condor* 76(2): 184–197. <https://doi.org/10.2307/1366729>

Grahn, P. & U.A. Stigsdotter (2003). Landscape planning and stress. *Urban Forestry & Urban Greening* 2(1):1–18. <https://doi.org/10.1078/1618-8667-00019>

Haq, S.M.A. (2011). Urban green spaces and an integrative approach to sustainable environment. *Journal of Environmental Protection* 2(5): 601–608. <https://doi.org/10.4236/jep.2011.25069>

Jennings, V., L. Larson & J. Yun (2016). Advancing sustainability through urban green space: cultural ecosystem services, equity, and social determinants of health. *International Journal of Environmental Research and Public Health* 13(2): 196. <https://doi.org/10.3390/ijerph13020196>

Mörtsberg, U. & H.G. Wallentinus (2000). Red-listed forest bird species in an urban environment—assessment of green space corridors. *Landscape and Urban Planning* 50(4): 215–226. [https://doi.org/10.1016/S0169-2046\(00\)00090-6](https://doi.org/10.1016/S0169-2046(00)00090-6)

Nero, B.F., D. Callo-Concha, A. Anning & M. Denich (2017). Urban green spaces enhance climate change mitigation in cities of the global south: the case of Kumasi, Ghana. *Procedia Engineering* 198: 69–83. <https://doi.org/10.1016/j.proeng.2017.07.074>

Neuvonen, M., T. Sievänen, S. Töntes & T. Koskela (2007). Access to green areas and the frequency of visits—a case study in Helsinki. *Urban Forestry & Urban Greening* 6(4): 235–247. <https://doi.org/10.1016/j.ufug.2007.05.003>

Nielsen, A.B., M. van den Bosch, S. Maruthaveeran & C.K. van den Bosch (2014). Species richness in urban parks and its drivers: a review of empirical evidence. *Urban Ecosystems* 17: 305–327. <https://doi.org/10.1007/s11252-013-0316-1>

Nora, A.N.M., R. Corstanje, J.A. Harris & T. Brewer (2017). Impact of rapid urban expansion on green space structure. *Ecological Indicators* 81: 274–284. <https://doi.org/10.1016/j.ecolind.2017.05.031>

Nowak, D., D. Crane, J. Stevens, R. Hoehn, J. Walton & J. Bond (2008). A ground-based method of assessing urban forest structure and ecosystem services. *Arboriculture & Urban Forestry* 34(6): 347–358. <https://doi.org/10.48044/jauf.2008.048>

Oguz, D. (2000). User surveys of Ankara's urban parks. *Landscape and Urban Planning* 52(2–3): 165–171. [https://doi.org/10.1016/S0169-2046\(00\)00130-4](https://doi.org/10.1016/S0169-2046(00)00130-4)

Park, C.R. & W.S. Lee (2000). Relationship between species composition and area in breeding birds of urban woods in Seoul, Korea. *Landscape and Urban Planning* 51(1): 29–36. [https://doi.org/10.1016/S0169-2046\(00\)00094-3](https://doi.org/10.1016/S0169-2046(00)00094-3)

Pawe, C.K. & A. Saikia (2018). Unplanned urban growth: land use/land cover change in the Guwahati Metropolitan Area, India. *Geografisk Tidsskrift-Danish Journal of Geography* 118(1): 88–100. <https://doi.org/10.1080/00167223.2017.1405357>

Sangwan, A., A. Saraswat, N. Kumar, S. Pipralia & A. Kumar (2022). Urban green spaces- prospects and retrospect's, pp. 1–22. In: Castanho, R.A. & J.C. Fernández (eds.). *Urban Green Spaces*. IntechOpen, 182 pp. <https://doi.org/10.5772/intechopen.102857>

Rebele, F. (1994). Urban ecology and special features of urban ecosystems. *Global Ecology and Biogeography Letters* 173–187. <https://doi.org/10.2307/2997649>

Schneider, A., M.A. Friedl & D. Potere (2010). Mapping global urban areas using MODIS 500m data: new methods and datasets based on 'urban ecoregions'. *Remote Sensing of Environment* 114(8): 1733–1746. <https://doi.org/10.1016/j.rse.2010.03.003>

Seto, K.C., B. Güneralp & L.R. Hutyra (2012). Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. *Proceedings of the National Academy of Sciences* 109(40): 16083–16088. <https://doi.org/10.1073/pnas.1211658109>

Sharma, R., P. Lolita, M. Kumari & P. Bhattacharya (2022). Urban green space planning and development in urban cities using geospatial technology: a case study of Noida. *Journal of Landscape Ecology* 15(1): 27–46. <https://doi.org/10.2478/jlecol-2022-0002>

Tian, Y., C.Y. Jim, Y. Tao & T. Shi (2011). Landscape ecological assessment of green space fragmentation in Hong Kong. *Urban Forestry & Urban Greening* 10(2): 79–86. <https://doi.org/10.1016/j.ufug.2010.11.002>

Turriini, T. & E. Knop (2015). A landscape ecology approach identifies important drivers of urban biodiversity. *Global Change Biology* 21(4): 1652–1667. <https://doi.org/10.1111/gcb.12825>

Tuzin, B., E. Leeuwen, C. Rodenburg & N. Peter (2002). Paper presented at the 38th International Planning Congress on "The Pulsar Effect" Planning with Peaks, Glifada, Athens, 21–26 September 2002.

UNDESA (2012). Nations Department of Economic and Social Affairs [UNDESA] World urbanization prospects: The 2011 revision. United Nations Department of Economic and Social Affairs / Population Division, New York.

van Herzele, A. & T. Wiedemann (2003). A monitoring tool for the provision of accessible and attractive urban green spaces. *Landscape and Urban Planning* 63(2): 109–126. [https://doi.org/10.1016/S0169-2046\(02\)00192-5](https://doi.org/10.1016/S0169-2046(02)00192-5)

Dr. John Noyes, Natural History Museum, London, UK
Dr. Albert G. Orr, Griffith University, Nathan, Australia
Dr. Sameer Padhye, Katholieke Universiteit Leuven, Belgium
Dr. Nancy van der Poorten, Toronto, Canada
Dr. Karen Schnabel, NIWA, Wellington, New Zealand
Dr. R.M. Sharma, (Retd.) Scientist, Zoological Survey of India, Pune, India
Dr. Manju Siliwal, WILD, Coimbatore, Tamil Nadu, India
Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India
Dr. K.A. Subramanian, Zoological Survey of India, New Alipore, Kolkata, India
Dr. P.M. Sureshan, Zoological Survey of India, Kozhikode, Kerala, India
Dr. R. Varatharajan, Manipur University, Imphal, Manipur, India
Dr. Eduard Vives, Museu de Ciències Naturals de Barcelona, Terrassa, Spain
Dr. James Young, Hong Kong Lepidopterists' Society, Hong Kong
Dr. R. Sundararaj, Institute of Wood Science & Technology, Bengaluru, India
Dr. M. Nithyanandan, Environmental Department, La Al Kuwait Real Estate. Co. K.S.C., Kuwait
Dr. Himender Bharti, Punjabi University, Punjab, India
Mr. Purnendu Roy, London, UK
Dr. Saito Motoki, The Butterfly Society of Japan, Tokyo, Japan
Dr. Sanjay Sondhi, TITLI TRUST, Kalpavriksh, Dehradun, India
Dr. Nguyen Thi Phuong Lien, Vietnam Academy of Science and Technology, Hanoi, Vietnam
Dr. Nitin Kulkarni, Tropical Research Institute, Jabalpur, India
Dr. Robin Wen Jiang Ngiam, National Parks Board, Singapore
Dr. Lionel Monod, Natural History Museum of Geneva, Genève, Switzerland.
Dr. Asheesh Shivam, Nehru Gram Bharti University, Allahabad, India
Dr. Rosana Moreira da Rocha, Universidade Federal do Paraná, Curitiba, Brasil
Dr. Kuri R. Arnold, North Dakota State University, Saxony, Germany
Dr. James M. Carpenter, American Museum of Natural History, New York, USA
Dr. David M. Claborn, Missouri State University, Springfield, USA
Dr. Karen Schnabel, Marine Biologist, Wellington, New Zealand
Dr. Amazonas Chagas Júnior, Universidade Federal de Mato Grosso, Cuiabá, Brasil
Mr. Monsoon Jyoti Gogoi, Assam University, Silchar, Assam, India
Dr. Heo Chong Chin, Universiti Teknologi MARA (UiTM), Selangor, Malaysia
Dr. R.J. Shiel, University of Adelaide, SA 5005, Australia
Dr. Siddharth Kulkarni, The George Washington University, Washington, USA
Dr. Priyadarshan Dharma Rajan, ATREE, Bengaluru, India
Dr. Phil Alderslade, CSIRO Marine And Atmospheric Research, Hobart, Australia
Dr. John E.N. Veron, Coral Reef Research, Townsville, Australia
Dr. Daniel Whitmore, State Museum of Natural History Stuttgart, Rosenstein, Germany.
Dr. Yu-Feng Hsu, National Taiwan Normal University, Taipei City, Taiwan
Dr. Keith W. Wolfe, Antioch, California, USA
Dr. Siddharth Kulkarni, The Hormiga Lab, The George Washington University, Washington, D.C., USA
Dr. Tomas Ditrich, Faculty of Education, University of South Bohemia in Ceske Budejovice, Czech Republic
Dr. Mihaly Foldvari, Natural History Museum, University of Oslo, Norway
Dr. V.P. Uniyal, Wildlife Institute of India, Dehradun, Uttarakhand 248001, India
Dr. John T.D. Caleb, Zoological Survey of India, Kolkata, West Bengal, India
Dr. Priyadarshan Dharma Rajan, Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Bangalore, Karnataka, India

Fishes

Dr. Neelesh Dahanukar, IISER, Pune, Maharashtra, India
Dr. Topiltzin Contreras MacBeath, Universidad Autónoma del estado de Morelos, México
Dr. Heok Hee Ng, National University of Singapore, Science Drive, Singapore
Dr. Rajeev Raghavan, St. Albert's College, Kochi, Kerala, India
Dr. Robert D. Sluka, Chiltern Gateway Project, A Rocha UK, Southall, Middlesex, UK
Dr. E. Vivekanandan, Central Marine Fisheries Research Institute, Chennai, India
Dr. Davor Zanella, University of Zagreb, Zagreb, Croatia
Dr. A. Biju Kumar, University of Kerala, Thiruvananthapuram, Kerala, India
Dr. Akhilesh K.V., ICAR-Central Marine Fisheries Research Institute, Mumbai Research Centre, Mumbai, Maharashtra, India
Dr. J.A. Johnson, Wildlife Institute of India, Dehradun, Uttarakhand, India
Dr. R. Ravinesh, Gujarat Institute of Desert Ecology, Gujarat, India

Amphibians

Dr. Sushil K. Dutta, Indian Institute of Science, Bengaluru, Karnataka, India
Dr. Annemarie Ohler, Muséum national d'Histoire naturelle, Paris, France

Reptiles

Dr. Gernot Vogel, Heidelberg, Germany
Dr. Raju Vyas, Vadodara, Gujarat, India
Dr. Pritpal S. Soorae, Environment Agency, Abu Dubai, UAE.
Prof. Dr. Wayne J. Fuller, Near East University, Mersin, Turkey
Prof. Chandrashekher U. Rironker, Goa University, Taleigao Plateau, Goa, India
Dr. S.R. Ganesh, Chennai Snake Park, Chennai, Tamil Nadu, India
Dr. Himansu Sekhar Das, Terrestrial & Marine Biodiversity, Abu Dhabi, UAE

Birds

Dr. Hem Sagar Baral, Charles Sturt University, NSW Australia
Mr. H. Biju, Coimbatore, Tamil Nadu, India
Dr. Chris Bowden, Royal Society for the Protection of Birds, Sandy, UK
Dr. Priya Davidar, Pondicherry University, Kalapet, Puducherry, India
Dr. J.W. Duckworth, IUCN SSC, Bath, UK
Dr. Rajah Jayopal, SACON, Coimbatore, Tamil Nadu, India
Dr. Rajiv S. Kalsi, M.L.N. College, Yamuna Nagar, Haryana, India
Dr. V. Santharam, Rishi Valley Education Centre, Chittoor Dt., Andhra Pradesh, India
Dr. S. Balachandran, Bombay Natural History Society, Mumbai, India
Mr. J. Praveen, Bengaluru, India
Dr. C. Srinivasulu, Osmania University, Hyderabad, India
Dr. K.S. Gopi Sundar, International Crane Foundation, Baraboo, USA
Dr. Gombobaatar Sundev, Professor of Ornithology, Ulaanbaatar, Mongolia
Prof. Reuven Yosef, International Birding & Research Centre, Eilat, Israel
Dr. Taej Mundkur, Wetlands International, Wageningen, The Netherlands
Dr. Carol Inskip, Bishop Auckland Co., Durham, UK
Dr. Tim Inskip, Bishop Auckland Co., Durham, UK
Dr. V. Gokula, National College, Tiruchirappalli, Tamil Nadu, India
Dr. Arkady Lelej, Russian Academy of Sciences, Vladivostok, Russia
Dr. Simon Dowell, Science Director, Chester Zoo, UK
Dr. Mário Gabriel Santiago dos Santos, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, Vila Real, Portugal
Dr. Grant Connette, Smithsonian Institution, Royal, VA, USA
Dr. P.A. Azeez, Coimbatore, Tamil Nadu, India

Mammals

Dr. Giovanni Amori, CNR - Institute of Ecosystem Studies, Rome, Italy
Dr. Anwaruddin Chowdhury, Guwahati, India
Dr. David Mallon, Zoological Society of London, UK
Dr. Shomita Mukherjee, SACON, Coimbatore, Tamil Nadu, India
Dr. Angie Appel, Wild Cat Network, Germany
Dr. P.O. Nameer, Kerala Agricultural University, Thrissur, Kerala, India
Dr. Ian Redmond, UNEP Convention on Migratory Species, Lansdown, UK
Dr. Heidi S. Riddle, Riddle's Elephant and Wildlife Sanctuary, Arkansas, USA
Dr. Karin Schwartz, George Mason University, Fairfax, Virginia.
Dr. Lala A.K. Singh, Bhubaneswar, Orissa, India
Dr. Mewa Singh, Mysore University, Mysore, India
Dr. Paul Racey, University of Exeter, Devon, UK
Dr. Honnavalli N. Kumara, SACON, Anaikatty P.O., Coimbatore, Tamil Nadu, India
Dr. Nishith Dharaiya, HNG University, Patan, Gujarat, India
Dr. Spartaco Gippoliti, Socio Onorario Società Italiana per la Storia della Fauna "Giuseppe Altobello", Rome, Italy
Dr. Justus Joshua, Green Future Foundation, Tiruchirappalli, Tamil Nadu, India
Dr. H. Raghuram, The American College, Madurai, Tamil Nadu, India
Dr. Paul Bates, Harison Institute, Kent, UK
Dr. Jim Sanderson, Small Wild Cat Conservation Foundation, Hartford, USA
Dr. Dan Challender, University of Kent, Canterbury, UK
Dr. David Mallon, Manchester Metropolitan University, Derbyshire, UK
Dr. Brian L. Cypher, California State University-Stanislaus, Bakersfield, CA
Dr. S.S. Talmale, Zoological Survey of India, Pune, Maharashtra, India
Prof. Karan Bahadur Shah, Budhanilkantha Municipality, Kathmandu, Nepal
Dr. Susan Cheyne, Borneo Nature Foundation International, Palangkaraya, Indonesia
Dr. Hemanta Kafley, Wildlife Sciences, Tarleton State University, Texas, USA

Other Disciplines

Dr. Aniruddha Belsare, Columbia MO 65203, USA (Veterinary)
Dr. Mandar S. Paingankar, University of Pune, Pune, Maharashtra, India (Molecular)
Dr. Jack Tordoff, Critical Ecosystem Partnership Fund, Arlington, USA (Communities)
Dr. Ulrike Streicher, University of Oregon, Eugene, USA (Veterinary)
Dr. Hari Balasubramanian, EcoAdvisors, Nova Scotia, Canada (Communities)
Dr. Rayanna Helleni Santos Bezerra, Universidade Federal de Sergipe, São Cristóvão, Brazil
Dr. Jamie R. Wood, Landcare Research, Canterbury, New Zealand
Dr. Wendy Collinson-Jonker, Endangered Wildlife Trust, Gauteng, South Africa
Dr. Rajeshkumar G. Jani, Anand Agricultural University, Anand, Gujarat, India
Dr. O.N. Tiwari, Senior Scientist, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
Dr. L.D. Singla, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
Dr. Rupika S. Rajakaruna, University of Peradeniya, Peradeniya, Sri Lanka
Dr. Bharat Baviskar, Wild-CER, Nagpur, Maharashtra 440013, India

Reviewers 2021–2023

Due to paucity of space, the list of reviewers for 2021–2023 is available online.

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.

Print copies of the Journal are available at cost. Write to:

The Managing Editor, JoTT,
c/o Wildlife Information Liaison Development Society,
43/2 Varadarajulu Nagar, 5th Street West, Ganapathy, Coimbatore,
Tamil Nadu 641006, India
ravi@threatenedtaxa.org

Journal of Threatened Taxa is indexed/abstracted in Bibliography of Systematic Mycology, Biological Abstracts, BIOSIS Previews, CAB Abstracts, EBSCO, Google Scholar, Index Copernicus, Index Fungorum, JournalSeek, National Academy of Agricultural Sciences, NewJour, OCLC WorldCat, SCOPUS, Stanford University Libraries, Virtual Library of Biology, Zoological Records.

NAAS rating (India) 5.64

Articles

Feeding dynamics of sympatric large carnivores in an anthropogenic landscape of the Indian Terai

– Vivek Ranjan, Syed Ainul Hussain, Ruchi Badola, Gaurav Vashistha & Parag Madhukar Dhakate, Pp. 25791–25801

Avifaunal diversity assessment and conservation significance of Therhangal Bird Sanctuary, Ramanathapuram, Tamil Nadu: insights about breeding waterbirds

– H. Byju, H. Maitreyi, N. Raveendran & Reshma Vijayan, Pp. 25802–25815

Habitat heterogeneity and taxonomic diversity of fish fauna in estuaries: a study from southern Sri Lanka

– Kirivithanage Sandun Nalaka Bandara, Pp. 25816–25830

Successful establishment of a coral nursery for active reef restoration in Kavaratti Island, Lakshadweep archipelago

– C.A. Riyas, K.K. Idreesbabu, Rajeev Raghavan & S. Sureshkumar, Pp. 25831–25842

Taxonomic review of genus *Gazalina* Walker (Thaumetopoeinae: Notodontidae: Lepidoptera) from India

– Amritpal Singh Kaleka, Gagan Preet Kour Bali & Navkiran Kaur, Pp. 25843–25855

Diversity and distribution pattern of ebony trees *Diospyros* L. (Ebenaceae) in the forests of central Western Ghats, India

– H.S. Shashwathi & Y.L. Krishnamurthy, Pp. 25856–25871

Tree community structure of selected green patches of Guwahati, Assam, India with special reference to spatio-temporal changes in vegetation

– Maitreyee Goswami, Jijnyasha Bayan, Uma Dutta, Arup Kumar Hazarika & Kuladip Sarma, Pp. 25872–25881

Communications

First record of leucistic Sloth Bear *Melursus ursinus* Shaw, 1791 (Mammalia: Carnivora: Ursidae) in Panna Tiger Reserve, India

– Sankarshan Chaudhuri, Supratim Dutta & K. Ramesh, Pp. 25882–25887

Occurrence and distribution of Indian Pangolin *Manis crassicaudata* (Mammalia: Pholidota: Manidae) in the protected area network of Jammu Shiwaliks, India

– Ajaz Ansari & Neeraj Sharma, Pp. 25888–25893

The first report of an assassin bug of the genus *Ademula* McAtee & Malloch (Reduviidae: Emesinae) from India and its rediscovery from Sri Lanka

– H. Sankararaman, Tharindu Ranasinghe, Anubhav Agarwal, Amila Sumanapala & Hemant V. Ghate, Pp. 25894–25903

Preference and plasticity in selection of host for oviposition in Black Marsh Dart *Onychargia atrocyana* Selys, 1865 (Odonata: Zygoptera: Platycnemididae)

– Pathik K. Jana, Priyanka Halder Mallick & Tanmay Bhattacharya, Pp. 25904–25912

New records of termite species (Blattodea: Rhinotermitidae, Termitidae) from southern India

– A.V. Anushya & P.R. Swaran, Pp. 25913–25919

A study on the association between *Tridax* Daisy *Tridax procumbens* L. and butterflies at Shivaji University Campus, Maharashtra, India

– Aarati Nivasrao Patil & Sunil Madhukar Gaikwad, Pp. 25920–25930

Short Communications

Rare Honey Badger *Mellivora capensis* (Schreber, 1776) sighted in Tarai East Forest Division, Haldwani, Uttarakhand, India

– Prashant Kumar, Bhaskar C. Joshi, Anand Singh Bisht & Himanshu Bagri, Pp. 25931–25934

Additional documentation of the Slender Skimmer *Orthetrum sabina* (Drury, 1770) preying on the Pied Paddy Skimmer *Neurothemis tullia* (Drury, 1773) in Nepal

– Mahamad Sayab Miya & Apeksha Chhetri, Pp. 25935–25938

Notes

First photographic record of the Red Giant Gliding Squirrel *Petaurista petaurista* Pallas, 1766 (Mammalia: Rodentia: Sciuridae) from Sattal, Uttarakhand, India

– Hiranmoy Chetia, Jayant Gupta & Murali Krishna Chatakonda, Pp. 25939–25941

Red Pierrot *Talicada nyseus nyseus* (Guérin-Meneville, 1843): an addition to the butterfly fauna of Arunachal Pradesh, India

– Roshan Upadhyaya, Renu Gogoi, Ruksha Limbu, Manab Jyoti Kalita & Rezina Ahmed, Pp. 25942–25944

Ranunculus cantoniensis DC. (Ranunculaceae): an addition to the flora of West Bengal, India

– Jayantanath Sarkar, Srijan Mukhopadhyay & Biswajit Roy, Pp. 25945–25948

Book Review

Flowers of labour – Commelinaceae of India: Book review

– Rajeev Kumar Singh, Pp. 25949–25950

Publisher & Host

Threatened Taxa