Building evidence for conservation globally for 25 years

Silver Jubilee Issue
EDITORS
Founder & Chief Editor
Dr. Sanjay Molur
Wildlife Information Liaison Development (WILD) Society & Zoo Outreach Organization (ZOO), 43/2 Varadaraju Nagar, 5th Street West, Ganapathy, Coimbatore, Tamil Nadu 641006, India

Deputy Chief Editor
Dr. Neelesh Dhanukar
Noida, Uttar Pradesh, India

Managing Editor
Mr. B. Ravichandran, WILD/ZOO, Coimbatore, Tamil Nadu 641006, India

Associate Editors
Dr. Mandar Paingankar, Government Science College Gadchiroli, Maharashtra 442605, India
Dr. Umkre Streicher, Wildlife Veterinarian, Eugene, Oregon, USA
Ms. Priyanka Iyer, WILD/ZOO, Coimbatore, Tamil Nadu 641006, India
Dr. B.A. Daniel, WILD/ZOO, Coimbatore, Tamil Nadu 641006, India

Editorial Board
Dr. Russel Mittermeier
Executive Vice Chair, Conservation International, Arlington, Virginia 22202, USA

Prof. Mowa Singh Ph.D., FASc, FNA, FNASC, FNA Psy
Ramanna Fellow and Life-Long Distinguished Professor, Biopsychology Laboratory, and Institute of Excellence, University of Miyore, Miyore, Karnataka 570006, India; Honorary Professor, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore; and Adjunct Professor, National Institute of Advanced Studies, Bangalore

Stephen D. Nash
Scientific Illustrator, Conservation International, Dept. of Anatomical Sciences, Health Sciences Center, T-B, Room 045, Stony Brook University, Stony Brook, NY 11794-8081, USA

Dr. Fred Pluthero
Toronto, Canada

Dr. Priya Davdar
Sigur Nature Trust, Chadapatti, Manipalva PO, Nilgiris, Tamil Nadu 643223, India

Dr. Martin Fisher
Senior Associate Professor, Battcock Centre for Experimental Astrophysics, Cavendish Laboratory, JI Thomson Avenue, Cambridge CB3 0HE, UK

Dr. John Fellows
Honorary Assistant Professor, The Kadoorie Institute, B/F, T.T. Tsui Building, The University of Hong Kong, Pokfulam Road, Hong Kong

Prof. Dr. Mirco Solé
Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Vice-coordenador do Programa de Pós-Graduação em Zoologia, Rodovia Ilheus/Itabuna, Km 16 (45662-000) Salobrinho, Ilhéus - Bahia - Brasil

Dr. Rajeev Raghavan
Professor of taxonomy, Kerala University of Fisheries & Ocean Studies, Kochi, Kerala, India

English Editors
Mrs. Mira Bhujoywani, Pune, India
Dr. Fred Pluthero, Toronto, Canada
Mr. P. Ilangoavan, Chennai, India
Ms. Sindhara Sthothra Bhashyam, Hyderabad, India

Web Development
Mrs. Latha G. Ravikumar, WILD/ZOO, Coimbatore, India

Typesetting
Mrs. Radhika, ZOO, Coimbatore, India

Mrs. Geetha, ZOO, Coimbatore, India

Mrs. Payal B. Molur, Zoo Outreach Organization, Coimbatore, India

Funding/Communications
Mrs. Payal B. Molur, Coimbatore, India

Subject Editors 2020–2022
Fungi
Dr. B. Shivaraju, Bengaluru, Karnataka, India
Dr. R.K. Verma, Tropical Forest Research Institute, Jabalpur, India
Dr. Vatsavaya S. Raju, Kakatpy University, Warangal, Andhra Pradesh, India
Dr. M. Krishnappa, Jnana Sahyadri, Kuvempu University, Shimoga, Karnataka, India
Dr. K.R. Sridhar, Mangalore University, Mangalagangothri, Mangalore, Karnataka, India
Dr. Gunjan Biswas, VidyaSagar University, Midnapore, West Bengal, India
Dr. Kiran Ramchandra Ranadive, Ananadabes Magar Mahavidyalaya, Maharashtra, India

Plants
Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India
Dr. N.P. Balakrishan, Ret. Joint Director, BS, Coimbatore, India
Dr. Shoril Bhagwat, Open University and University of Oxford, UK
Prof. D.J. Bhat, Retd. Professor, Goa University, Goa, India
Dr. Ferdinando Beoro, Università del Salento, Lecce, Italy
Dr. Dile R. Calder, Royal Ontario Museum, Toronto, Ontario, Canada
Dr. Cleofas Cervanias, Univ. of Philippines Los Baños College Laguna, Philippines
Dr. F.B. Vincent Flores, University of Mauritius, Mauritius
Dr. Merlin Franco, Curtin University, Malaysia
Dr. V. Induraj, St. Xavier’s College, Palayamkottai, Tamil Nadu, India
Dr. B.S. Khote, Botanical Survey of India, Garguk, Skimm, India
Dr. Pankaj Kumar, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, USA
Dr. V. Sampath Kumar, Botanical Survey of India, Howrah, West Bengal, India
Dr. A.J. Solomon Raju, Andhra University, Visakhapatnam, India
Dr. Vijayasanker Ram, University of Mississippi, USA
Dr. B. Ravi Prasad Rao, Sri Krishnadevarayya University, Anantapur, India
Dr. R. Ravi Kumar, FRUHT, Bengaluru, Karnataka, India
Dr. Aparna Waite, Pune, Maharashtra, India
Dr. Qiang Liu, Xishuangbanna Tropical Botanical Garden, Yunnan, China
Dr. Noor Ashar Mohamed Shazi, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
Dr. M.K. Vasudeva Rao, Shiv Ranjani Housing Society, Pune, India
Dr. A.J. Solomon Raju, Andhra University, Visakhapatnam, India
Dr. Mandar Datar, Agharkar Research Institute, Pune, Maharashtra, India
Dr. M.K. Janarthanan, Goa University, Goa, India
Dr. K. Kathirgeyan, Botanical Survey of India, India
Dr. Errol Vela, University of Montpellier, Montpellier, France
Dr. P. Lakshminarasimmah, Botanical Survey of India, Howrah, India
Dr. Larry N. Nollick, Montgomery Botanical Center, Miami, USA
Dr. K. Haridasan, Pallavur, Palakkad District, Kerala, India
Dr. Annalda Malaysia-Fajard, University of the Philippines Los Banos, Laguna, Philippines
Dr. P.A. Sinu, Central University of Kerala, Kasaragod, Kerala, India
Dr. Afroz Alam, Banasathil Vidypath (accredited A grade by NAAC), Rajasthan, India
Dr. K.P. Rajesh, Zorniir's Guruvayurappan College, GA College PO, Kozhikode, Kerala, India
Dr. David E. Boufford, Harvard University Herbario, Cambridge, MA 02238-2020, USA
Dr. Ritesh Kumar Choudhary, Agharkar Research Institute, Pune, Maharashtra, India
Dr. A.G. Pandurangane, Thiruvananthapuram, Kerala, India
Dr. Navendu Page, Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India
Dr. Kannan C.S. Warrior, Institute of Forest Genetics and Tree Breeding, Tamil Nadu, India

Invertebrates
Dr. R.K. Avasthi, Rohtak University, Haryana, India
Dr. D.B. Bastawade, Maharashtra, India
Dr. Partha Pratim Bhattacharjee, Tripura University, Suryamaninagar, India
Dr. Kailash Chandra, Zoological Survey of India, Jabalpur, Madhya Pradesh, India
Dr. Arumugam Perumal, University of Pretoria, P.O. Box 359, Pretoria, South Africa
Dr. Rory Dow, National Museum of Natural History Naturalis, The Netherlands
Dr. Brian Fisher, California Academy of Sciences, USA
Dr. Ritesh Kumar Choudhary, Agharkar Research Institute, Pune, Maharashtra, India
Dr. Larry N. Nollick, Montgomery Botanical Center, Miami, USA
Dr. K. Haridasan, Pallavur, Palakkad District, Kerala, India
Dr. Annalda Malaysia-Fajard, University of the Philippines Los Banos, Laguna, Philippines
Dr. P.A. Sinu, Central University of Kerala, Kasaragod, Kerala, India
Dr. Afroz Alam, Banasathil Vidypath (accredited A grade by NAAC), Rajasthan, India
Dr. K.P. Rajesh, Zorniir's Guruvayurappan College, GA College PO, Kozhikode, Kerala, India
Dr. David E. Boufford, Harvard University Herbario, Cambridge, MA 02238-2020, USA
Dr. Ritesh Kumar Choudhary, Agharkar Research Institute, Pune, Maharashtra, India
Dr. A.G. Pandurangane, Thiruvananthapuram, Kerala, India
Dr. Navendu Page, Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India
Dr. Kannan C.S. Warrior, Institute of Forest Genetics and Tree Breeding, Tamil Nadu, India

For Focus, Scope, Aims, and Policies, visit https://threatenedtaxa.org/index.php/JoTT/aims_scope
For Article Submission Guidelines, visit https://threatenedtaxa.org/index.php/JoTT/about/submissions
For Policies against Scientific Misconduct, visit https://threatenedtaxa.org/index.php/JoTT/policies_various

continued on the back inside cover
Breeding of the ‘Critically Endangered’ White-rumped Vulture
Gyps bengalensis in the Shan Highlands, Myanmar

Sai Sein Lin Oo, Nang Lao Kham, Marcela Suarez-Rubio & Swen C. Renner

1 Sao Hsur Wai Library, 06151, Ke Hsi Township, Shan State, Myanmar.
2 Institute of Zoology, Department of Integrative Biology and Biodiversity Research, University of Natural Resources and Life Sciences, Vienna, Gregor-Mendel-Straße 33/I 1180 Vienna, Austria.
3 Sao Hsur Wai Library, 06151, Ke Hsi Township, Shan State, Myanmar.
4 Ornithology, Natural History Museum Vienna, Burgring 7, 1010 Vienna, Austria.

Abstract: Recent studies have shown the importance of Myanmar for the conservation of three ‘Critically Endangered’ vulture populations. From November 2022 to March 2023, we carried out rapid surveys on vulture nests and nesting tree characteristics in Ke Hsi Township, Shan Highlands. We recorded 10 nests of White-rumped Vultures, Gyps bengalensis, on five nesting trees from four different localities. Six nests were active, and six nestlings were observed; four nests were inactive or abandoned. Most of the nests were recorded on Ficus spp. and the mean nest height was 13.6 m (SD ± 4.1) above ground. This represents the first confirmed record of the breeding success of White-rumped Vultures from Shan Highlands and confirms the ongoing presence of the species in Shan States. The population of G. bengalensis in Shan Highlands is small, but the confirmed breeding is significant in the wider context for this species.

Keywords: Breeding success, Gyps spp., nestlings, Shan states, viable population, vulture nest.
INTRODUCTION

In Myanmar, each year new records of birds and range extensions are published (Zöckler et al. 2010, 2020; Oo et al. 2022), or records of species, which have been declared locally extinct, re-emerge (Oo et al. 2019). Myanmar hosts five vulture species: The White-rumped Vulture Gyps bengalensis, Red-headed Vulture Sarcogyps clavus, Slender-billed Vulture Gyps tenuirostris, Cinereous Vulture Aegypius monachus, and Himalayan Vulture Gyps himalayensis (Robson 2008; Hla et al. 2011), and three of these are classified as ‘Critically Endangered’ by the IUCN Red List of Threatened Species. Among these, the White-rumped Vulture has a widespread distribution across Bangladesh, Bhutan, Cambodia, India, Myanmar, Nepal, and Pakistan (BirdLife International 2021a,b,c) but has also suffered the most drastic declines of over 99.9% across India (Prakash et al. 2012). Literature records suggest that vultures were once widely distributed throughout Myanmar, mainly the northern half of the country with records from Kachin State, Shan State, Chin State, and Sagaing Region (Hla et al. 2011). Also Gyps bengalensis was recorded 78 times from Myanmar, most of these records are sights of non-breeding birds in Kachin (68), while only nine records are from the two Shan states (GBIF 2023). The Shan records are all from 2009 to 2023, which indicates a rare visitor to the Shan Highlands (Image 1).

All but the Himalayan Vulture have been considered relatively common throughout these areas in the past (Tordorf et al. 2007; Hla et al. 2011; Shwe & Aung 2016; Oo et al. 2019). The earliest record of the White-rumped Vulture dates back to the late 19th Century for Southern Shan State, where it was once a common species (Rippon 1901). The Shan states remained relatively unexplored by ornithologists due to political instability, security issues, and inaccessibility of the region (Smythies 2001).

In the early 20th Century, White-rumped Vultures were abundant and considered the most common vulture throughout Myanmar’s central plains (Smythies 2001; Naing et al. 2012). However, their population has declined across their historical range because of food shortages, breeding-habitat loss, chemical poisoning, habitat loss, and anthropogenic impacts (Bildstein 2017). This decline was so severe in the region that the White-rumped Vulture population crashed by almost 95% between the 1990s and 2000s (Bildstein 2017).

Hla et al. (2011) estimated a population of 62 White-rumped Vultures based on observations at vulture feeding sites in all of Myanmar for 2006 and 2007. The first White-rumped Vulture survey in northern Shan State documented 31 individuals, including juveniles (Oo et al. 2019). While the two studies had different temporal and spatial scales as well as methods, we assume that the stronghold of the White-rumped Vulture population of Myanmar is likely located in Shan today, while another hotspot for the species within Myanmar is found in the Hukaung Valley, Kachin State (Thet Zaw Naing pers. comm. 2023).

White-rumped Vultures typically build their nests in tall trees (Khan 2013; Ghimire et al. 2019; Samson & Ramakrishnan 2020; Jha et al. 2021), as these trees reduce predators’ access and support mobility for the vultures.

METHODS AND SURVEY SITES

Fieldwork was conducted in Ke Hsi Township (alternatively spelled Kehsi), located in the southern region of Shan State, with specific localities and coordinates detailed in Table 1 and Image 1. Our team undertook surveys of vulture nests, leveraging local knowledge to identify these sites. Nesting trees were identified using GPS coordinates, and these sites were subsequently revisited on a bi-weekly basis. Ke Hsi Township is situated on the elevated plains of southern Shan State, at an approximate altitude of 1,000 m.

The vulture survey covered 35 days, from 15 November 2022 to 31 March 2023. During this period, we collected data on the characteristics of nesting trees, adopting the nest categorization framework established by Jha et al. (2020), which delineates nests as active (housing adults along with juveniles, chicks, or eggs), inactive (only occupied or frequented by adults), or abandoned (without any occupants). Measurements of tree height and nest elevation were taken using a clinometer, while the diameter at breast height (DBH) was measured with a tape measure, and canopy density was assessed with a densitometer. The relative canopy cover of each nesting tree site was evaluated using the “CanopyApp” (University of New Hampshire), where a photograph taken beneath the tree provided the percentage of canopy coverage as an output.

We also recorded the proximity of nesting trees to the nearest water bodies, which, within the study area, averaged 11.7 hectares in size (N = 4). Observations of nests were conducted from a non-intrusive distance of 100–200 m using Kowa Japan YF30-8 binoculars (8 x 30), to minimize disturbance for the birds. Documentation of birds and their nests was accomplished with a Nikon
P1000 digital camera, with results presented in Images 2–6. Each site visit lasted approximately 15 minutes, during which we assessed the breeding status of the nests. Observation periods were conducted from 0800 h to 1600 h.

The climate of Ke Hsi Township is predominantly subtropical, characterized by a mean annual temperature of approximately 23°C and an average annual rainfall of about 1,100 mm (General Administration Department 2020).

RESULTS

During our research period, we identified and monitored 10 nests of White-rumped Vultures, situated within five nesting trees across four distinct locations. Within these locations, three were categorized as loose colonies, notably with one tree hosting four nests. The nesting trees were, on average, 10.4 km apart, with a range from 0.4 to 25.0 km. All nests, discovered in November 2022 at the onset of our survey, exhibited vulture activity during our initial inspection. Throughout our study, six nests remained active, while the remaining four exhibited signs of inactivity or abandonment. Of the five nesting trees, three were positioned within agricultural fields (specifically, corn and peanut farms), and the other two were adjacent to religious sites (a pagoda and a monastery). *Ficus* trees emerged as the preferred nesting choice, representing four of the five identified nesting trees (Table 1). The average height of these nesting trees was 20.7 m, with nests situated at an average height of 13.6 m (Table 1). The canopy cover of these trees averaged 39.9% (SD ± 10.59, N = 5).

By January 2023, all active nests were home to six vulture chicks, with observations typically noting chick presence alongside at least one adult until late March 2023 (Table 2).

Our observations also included five colonies of White-rumped Vultures, each comprising two to 20 individuals (N = 5), and vulture groups ranging 29–57 individuals, with an average of 41 individuals (N = 4),
feeding on carcasses. These groups encompassed three vulture species: White-rumped Vulture, Slender-billed Vulture, and Himalayan Vulture. Throughout the study, we located three cattle and one buffalo carcasses, with three in cropland and one in a paddy field. Near each carcass, two to three stray dogs were observed feeding alongside the vultures. The cause of livestock mortality was undetermined, and no information was collected on the availability of diclofenac, a veterinary drug causing casualties in vultures, in the area. According to the local veterinarian, diclofenac was not utilized for treating cattle within the township. No deceased vultures were discovered during our research period.

Despite observing Slender-billed and potentially Himalayan Vultures feeding on carcasses, nesting sites for the Slender-billed Vulture were not identified. Himalayan Vultures are noted as winter visitors to Myanmar. Moreover, Red-headed Vultures were not observed throughout the duration of this study.

DISCUSSION

With this survey, we documented the breeding success of the ‘Critically Endangered’ White-rumped Vulture in Myanmar’s Shan Highlands, representing the first confirmed breeding record in the eastern part of the country. It also sheds light on their nesting site preferences and food availability. Between November 2022 and March 2023, we observed nestlings in six nests, and all six nestlings successfully fledged. This is a positive sign for vulture conservation in Myanmar (Hla et al. 2011). Our findings suggest that these vultures have sufficient food sources in the study areas, as evidenced by frequent observations of vulture flocks and recorded carcasses. The availability of food is crucial for vulture presence, especially considering their role as obligate scavengers. This is further supported by the presence of a substantial cattle population in the region, as has been found in southern India (Manigandan et al. 2023).

Although Slender-billed Vultures were observed feeding on carcasses, we could not locate their nests. Similarly, Red-headed Vultures were not observed during the study, suggesting their rarity compared to the other vulture species.

Table 1. Locations and records of trees with White-rumped Vulture Gyps bengalensis nests in the Shan Highlands. Note: * one out of the four nests was in the crown of the tree and we could not confirm the presence of nestling.

<table>
<thead>
<tr>
<th>Place</th>
<th>Tree species</th>
<th>Tree height m</th>
<th># nests</th>
<th>Nest height m</th>
<th>DBH cm</th>
<th>Altitude m</th>
<th>Roosting individuals</th>
<th>Number of nests</th>
<th>Number of chicks</th>
<th>Fledged</th>
<th>North</th>
<th>East</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wan Mut</td>
<td>Ficus tinctoria</td>
<td>22.9</td>
<td>2</td>
<td>19.1; 17.6</td>
<td>980</td>
<td>830</td>
<td>5</td>
<td>2</td>
<td>n/a</td>
<td>n/a</td>
<td>22.0</td>
<td>98.1</td>
</tr>
<tr>
<td>Wan Mut</td>
<td>F. tinctoria</td>
<td>20.3</td>
<td>2</td>
<td>11.3; 7.6</td>
<td>1,210</td>
<td>870</td>
<td>7</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>22.0</td>
<td>98.1</td>
</tr>
<tr>
<td>Wan Narr</td>
<td>Schima wallichii</td>
<td>18.3</td>
<td>1</td>
<td>16.5</td>
<td>245</td>
<td>1,000</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>21.7</td>
<td>98.1</td>
</tr>
<tr>
<td>Kone Mont</td>
<td>F. tinctoria</td>
<td>21.3</td>
<td>1</td>
<td>19.5</td>
<td>1,100</td>
<td>1,030</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>21.8</td>
<td>98.0</td>
</tr>
<tr>
<td>Nam Linn</td>
<td>F. lacor</td>
<td>20.1</td>
<td>4</td>
<td>16.5; 16.5; 12.6; 6.6</td>
<td>750</td>
<td>1,040</td>
<td>14</td>
<td>4*</td>
<td>3</td>
<td>3</td>
<td>21.8</td>
<td>98.0</td>
</tr>
</tbody>
</table>
The preference of White-rumped Vultures in our study was for large, tall trees, often *Ficus* spp., while others reported that *Terminalia arjuna*, and *Spondias mangifera* were utilized for nesting by White-rumped Vultures in India (Majgaonkar et al. 2018; Samson & Ramakrishnan 2020). The average nesting tree height in India was 25.4 m (Majgaonkar et al. 2018) and 26.7 m (Samson & Ramakrishnan 2020), respectively.

Since the study areas are located outside of protected areas (compare Image 1), it is needed to introduce conservation awareness and management practices to local communities. In addition, it is required to raise awareness for protecting nesting trees. The vulture colonies we recorded, as well as the flocks attending domestic livestock carcasses, indicate that these birds continue to play an essential role in the ecosystem by cleaning up carrion. Hla et al. (2011) had previously postulated, but not observed, the presence of viable populations of *Gyps bengalensis* and *G. tenuirostris* in Myanmar, and our current findings confirm this claim at least for *G. bengalensis*.

Majgaonkar et al. (2018) emphasized that nesting and reproductive success serve as indicators of specific site-use by the vultures. Therefore, it is demonstrated that habitats and food availability for *Gyps* species still exist in the Shan Highlands of Myanmar. While the population of *G. bengalensis* in Shan State may be relatively small, its breeding success is of significance, indicating that these populations are healthy and successfully reproducing. Based on the study results, Ke Hsi Township emerges as particularly crucial for White-rumped Vulture populations due to its large open habitats, food availability, low disturbance levels, and relatively low human density. Vultures can find and detect carcasses and feed in such open areas, making these habitat characteristics vital for nesting choices. In conclusion, the findings of this study offer promising insights into vulture conservation opportunities in Myanmar.

Table 2. Records of White-rumped Vulture *Gyps bengalensis* nesting found in nests of the study area. 1 observed, 0 not observed.

<table>
<thead>
<tr>
<th>Date</th>
<th>Kone Mont</th>
<th>Nam Linn</th>
<th>Wan Mut</th>
<th>Wan Narr</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 Jan 2023</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>13 Jan 2023</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5 Feb 2023</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>11 Mar 2023</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>15 Mar 2023</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
REFERENCES

The Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservation globally by publishing peer-reviewed articles online every month at a reasonably rapid rate at www.threatenedtaxa.org. All articles published in JoTT are registered under Creative Commons Attribution 4.0 International License unless otherwise mentioned. JoTT allows unrestricted use, reproduction, and distribution of articles in any medium by providing adequate credit to the author(s) and the source of publication.

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print)

March 2024 | Vol. 16 | No. 3 | Pages: 24819–25018
Date of Publication: 26 March 2024 (Online & Print)
DOI: 10.11609/jott.2024.16.3.24819-25018

Editorial

Celebrating 25 years of building evidence for conservation
– Sanjay Molor, Pp. 24819–24820

Articles

Identifying plants for priority conservation in Samar Island Natural Park forests (the Philippines) over limestone using a localized conservation priority index

Status of floristic diversity and impact of development on two sacred groves from Maval Tehsil (Maharashtra, India) after a century
– Kishor Himmat Saste & Rani Banabnao Bhagat, Pp. 24838–24853

Seagrass ecosystems of Ritche’s Archipelago in the Andaman Sea harbor ‘Endangered’ Holothuria scabra Jaeger, 1833 and ‘Vulnerable’ Actinopyga mauritiana (Quoy & Gaimard, 1834) sea cucumber species (Echinodermata: Holothuroidea)
– Amrit Kumar Mishra, R. Raihana, Dilmani Kumari & Syed Hilal Farooq, Pp. 24899–24909

Stypopodium Kütz. - a new generic record for India from the Bay of Bengal
– Y. Aron Santhosh Kumar, M. Palanisamy & S. Vivek, Pp. 24910–24915

First report of Macrochaeta sericus Thorpe, 1893 and Lecane tenuiseta Harring, 1914 (Rotifera: Monogononta) from Jammu waters (J&K), India
– Deepanjali Slathia, Supreet Kour & Sarbjeet Kour, Pp. 24923–24929

Spider diversity (Arachnida: Araneae) at Saurashtra University Campus, Rajkot, Gujarat during the monsoon

Records of three gobioid fishes (Actinopterygii: Gobiiformes: Gobiidae) from the southernmost islands of the Philippines
– Y. Aron Santhosh Kumar, M. Palanisamy & S. Vivek, Pp. 24942–24948

Species diversity modelling of Baya Weaver Ploceus philippinus in Nagaon District of Assam, India: a zoogeographical analysis
– Nilotpal Kalita, Neeraj Bora, Sandip Choudhury & Dhrubajyoti Sahariah, Pp. 24949–24955

Diversity and species richness of avian fauna in varied habitats of Soraiupung range and vicinity in Dehing Patkai National Park, India

D’Ering Memorial Wildlife Sanctuary, a significant flyway and a preferred stopover (refuelling) site during the return migration of the Amur Falcon Falco amurensis (Radde, 1863)
– Tapak Tamir, Abprez Thungwong Kimsing & Daniel Mize, Pp. 24967–24972

Breeding of the ‘Critically Endangered’ White-rumped Vulture Gyps bengalensis in the Shan Highlands, Myanmar
– Sai Sein Lin Oo, Nang Lao Kham, Marcela Suarez-Rubio & Swen C. Renner, Pp. 24973–24978

Nurturing orphaned Indian Grey Wolf at Machia Biological Park, Jodhpur, India
– Hemsingh Gehlot, Mahendra Gehlot, Tapan Adhikari, Gaurav & Prakash Suthar, Pp. 24979–24985

Notes

Capturing the enchanting glow: first-ever photographs of bioluminescent mushroom Mycena chlorophos in Tamil Nadu, India

Recent record of True Giant Clam Tridacna gigas from the Sulu Archipelago and insight into the giant clam fisheries and conservation in the southernmost islands of the Philippines

A record of the Hoary Palmer Unkana ambasa (Moore, [1858]) (Insecta: Lepidoptera: Hesperiidae) from Assam, India
– Kishor Deka, Sagarika Das & Bhaben Tanti, Pp. 25003–25005

Sighting of Large Branded Swift Ploceus philippinus in Nagaon District of Assam, India: a zoogeographical analysis
– Nilotpal Kalita, Neeraj Bora, Sandip Choudhury & Dhrubajyoti Sahariah, Pp. 24949–24955

Publisher & Host

Threatened Taxa

zooOutreach Organization