

Building evidence for conservation globally

10.11609/jott.2023.15.1.22355-22558

www.threatenedtaxa.org

26 January 2023 (Online & Print)

15(1): 22355-22558

ISSN 0974-7907 (Online)

ISSN 0974-7893 (Print)

Open Access

Journal of Threatened TAXA

Publisher

Wildlife Information Liaison Development Societywww.wild.zooreach.org

Host

Zoo Outreach Organizationwww.zooreach.org

43/2 Varadarajulu Nagar, 5th Street West, Ganapathy, Coimbatore, Tamil Nadu 641035, India
Registered Office: 3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore, Tamil Nadu 641006, India
Ph: +91 9385339863 | www.threatenedtaxa.org
Email: sanjay@threatenedtaxa.org

EDITORS**Founder & Chief Editor****Dr. Sanjay Molur**Wildlife Information Liaison Development (WILD) Society & Zoo Outreach Organization (ZOO),
43/2 Varadarajulu Nagar, 5th Street West, Ganapathy, Coimbatore, Tamil Nadu 641035, India**Deputy Chief Editor****Dr. Neelesh Dahanukar**

Noida, Uttar Pradesh, India

Managing Editor**Mr. B. Ravichandran**, WILD/ZOO, Coimbatore, India**Associate Editors****Dr. Mandar Paingankar**, Government Science College Gadchiroli, Maharashtra 442605, India
Dr. Ulrike Streicher, Wildlife Veterinarian, Eugene, Oregon, USA
Ms. Priyanka Iyer, ZOO/WILD, Coimbatore, Tamil Nadu 641035, India
Dr. B.A. Daniel, ZOO/WILD, Coimbatore, Tamil Nadu 641035, India**Editorial Board****Dr. Russel Mittermeier**

Executive Vice Chair, Conservation International, Arlington, Virginia 22202, USA

Prof. Mewa Singh Ph.D., FASc, FNA, FNAsc, FNAPsyRamanna Fellow and Life-Long Distinguished Professor, Biopsychology Laboratory, and
Institute of Excellence, University of Mysore, Mysuru, Karnataka 570006, India; Honorary
Professor, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore; and Adjunct
Professor, National Institute of Advanced Studies, Bangalore**Stephen D. Nash**Scientific Illustrator, Conservation International, Dept. of Anatomical Sciences, Health Sciences
Center, T-8, Room 045, Stony Brook University, Stony Brook, NY 11794-8081, USA**Dr. Fred Pluthero**

Toronto, Canada

Dr. Priya Davidar

Sigur Nature Trust, Chadapatti, Mavinahalli PO, Nilgiris, Tamil Nadu 643223, India

Dr. Martin FisherSenior Associate Professor, Battcock Centre for Experimental Astrophysics, Cavendish
Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, UK**Dr. John Fellowes**Honorary Assistant Professor, The Kadoorie Institute, 8/F, T.T. Tsui Building, The University of
Hong Kong, Pokfulam Road, Hong Kong**Prof. Dr. Mirco Solé**Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Vice-coordenador
do Programa de Pós-Graduação em Zoologia, Rodovia Ilhéus/Itabuna, Km 16 (45662-000)
Salobrinho, Ilhéus - Bahia - Brasil**Dr. Rajeev Raghavan**

Professor of Taxonomy, Kerala University of Fisheries & Ocean Studies, Kochi, Kerala, India

English Editors**Mrs. Mira Bhojwani**, Pune, India**Dr. Fred Pluthero**, Toronto, Canada**Mr. P. Ilangovan**, Chennai, India**Ms. Sindhura Stothra Bhashyam**, Hyderabad, India**Web Development****Mrs. Latha G. Ravikumar**, ZOO/WILD, Coimbatore, India**Typesetting****Mrs. Radhika**, ZOO, Coimbatore, India**Mrs. Geetha**, ZOO, Coimbatore India**Fundraising/Communications****Mrs. Payal B. Molur**, Coimbatore, India**Subject Editors 2019–2021****Fungi**

Dr. B. Shivaraju, Bengaluru, Karnataka, India
Dr. R.K. Verma, Tropical Forest Research Institute, Jabalpur, India
Dr. Vatsavaya S. Raju, Kakatiya University, Warangal, Andhra Pradesh, India
Dr. M. Krishnappa, Jnana Sahyadri, Kuvenpu University, Shimoga, Karnataka, India
Dr. K.R. Sridhar, Mangalore University, Mangalagangotri, Mangalore, Karnataka, India
Dr. Gunjan Biswas, Vidyasagar University, Midnapore, West Bengal, India

Plants

Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India
Dr. N.P. Balakrishnan, Ret. Joint Director, BSI, Coimbatore, India
Dr. Shonil Bhagwat, Open University and University of Oxford, UK
Prof. D.J. Bhat, Retd. Professor, Goa University, Goa, India
Dr. Ferdinando Boero, Università del Salento, Lecce, Italy
Dr. Dale R. Calder, Royal Ontario Museum, Toronto, Ontario, Canada
Dr. Cleofas Cervancia, Univ. of Philippines Los Baños College Laguna, Philippines
Dr. F.B. Vincent Florens, University of Mauritius, Mauritius
Dr. Merlin Franco, Curtin University, Malaysia
Dr. V. Irudayaraj, St. Xavier's College, Palayamkottai, Tamil Nadu, India
Dr. B.S. Kholia, Botanical Survey of India, Gangtok, Sikkim, India
Dr. Pankaj Kumar, Kadoorie Farm and Botanic Garden Corporation, Hong Kong S.A.R., China
Dr. V. Sampath Kumar, Botanical Survey of India, Howrah, West Bengal, India
Dr. A.J. Solomon Raju, Andhra University, Visakhapatnam, India
Dr. Vijayasankar Raman, University of Mississippi, USA
Dr. B. Ravi Prasad Rao, Sri Krishnadevaraya University, Anantpur, India
Dr. K. Ravikumar, FRLHT, Bengaluru, Karnataka, India
Dr. Aparna Watve, Pune, Maharashtra, India
Dr. Qiang Liu, Xishuangbanna Tropical Botanical Garden, Yunnan, China
Dr. Noor Azhar Mohamed Shazili, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
Dr. M.K. Vasudeva Rao, Shiv Ranjan Housing Society, Pune, Maharashtra, India
Prof. A.J. Solomon Raju, Andhra University, Visakhapatnam, India
Dr. Manda Datar, Agharkar Research Institute, Pune, Maharashtra, India
Dr. M.K. Janarthanam, Goa University, Goa, India
Dr. K. Karthigeyan, Botanical Survey of India, India
Dr. Errol Vela, University of Montpellier, Montpellier, France
Dr. P. Lakshminarasimhan, Botanical Survey of India, Howrah, India
Dr. Larry R. Nobile, Montgomery Botanical Center, Miami, USA
Dr. K. Haridasan, Pallavur, Palakkad District, Kerala, India
Dr. Analinda Manila-Fajard, University of the Philippines Los Baños, Laguna, Philippines
Dr. P.A. Sinu, Central University of Kerala, Kasaragod, Kerala, India
Dr. Afroz Alam, Banasthali Vidyapith (accredited A grade by NAAC), Rajasthan, India
Dr. K.P. Rajesh, Zamorin's Guruvayurappan College, GA College PO, Kozhikode, Kerala, India
Dr. David E. Boufford, Harvard University Herbaria, Cambridge, MA 02138-2020, USA
Dr. Ritesh Kumar Choudhary, Agharkar Research Institute, Pune, Maharashtra, India
Dr. Navendu Page, Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India
Dr. Kannan C.S. Warrier, Institute of Forest Genetics and Tree Breeding, Tamil Nadu, India

Invertebrates

Dr. R.K. Avasthi, Rohtak University, Haryana, India
Dr. D.B. Bastawade, Maharashtra, India
Dr. Partha Pratim Bhattacharjee, Tripura University, Suryamaninagar, India
Dr. Kailash Chandra, Zoological Survey of India, Jabalpur, Madhya Pradesh, India
Dr. Ansie Dippenaar-Schoeman, University of Pretoria, Queenswood, South Africa
Dr. Rory Dow, National Museum of natural History Naturalis, The Netherlands
Dr. Brian Fisher, California Academy of Sciences, USA
Dr. Richard Gallon, Ilandudno, North Wales, LL30 1UP
Dr. Hemant V. Ghate, Modern College, Pune, India
Dr. M. Monwar Hossain, Jahangirnagar University, Dhaka, Bangladesh
Mr. Jatishwar Singh Irungbam, Biology Centre CAS, Branišovská, Czech Republic.
Dr. Ian J. Kitching, Natural History Museum, Cromwell Road, UK

For Focus, Scope, Aims, and Policies, visit https://threatenedtaxa.org/index.php/JoTT/aims_scopeFor Article Submission Guidelines, visit <https://threatenedtaxa.org/index.php/JoTT/about/submissions>For Policies against Scientific Misconduct, visit https://threatenedtaxa.org/index.php/JoTT/policies_various

continued on the back inside cover

Cover: Whale Shark *Rhincodon typus* and Reef - made with poster colours. © P. Kritika.

COMMUNICATION

Assessing illegal trade networks of two species of pangolins through a questionnaire survey in Nepal

Nikita Phuyal¹ , Bipana Maiya Sadadev² , Reeta Khulal³ , Rashmi Bhatt⁴ , Santosh Bajagain⁵ , Nirjala Raut⁶ & Bijaya Dhami⁷

^{1,5} Tribhuvan University, Institute of Forestry, School of Forestry and Natural Resource Management, Kathmandu, 44600, Nepal.

² Natural Resources and Environmental Studies, University of Northern British Columbia, Prince George, BC, V2N 4Z9, Canada.

³ Tribhuvan University, Institute of Forestry, Office of Dean, Kirtipur, Kathmandu, 44600, Nepal.

⁴ Tribhuvan University, Kathmandu Forestry Collage, Kathmandu, 44600, Nepal.

^{6,7} Tribhuvan University, Institute of Forestry, Pokhara Campus, Pokhara, 33700, Nepal.

⁷ IUCN/SSC Deer Specialist Group, Gland, 1196, Switzerland.

¹ nikitafuyal123@gmail.com, ² bipanamaiyasadadev@gmail.com, ³ reetkc9336@gmail.com, ⁴ rashmibhatt032@gmail.com,

⁵ santosh_bajagain@hotmail.com, ⁶ nraut@iofpc.edu.np, ⁷ bijaysinghdhami@gmail.com (corresponding author)

Abstract: Pangolins are among the most extensively traded taxa in southeastern Asia mainly due to the perceived medicinal value of their scales and other body parts, putting them at risk of extinction, however, little is known about their trade status in Nepal. The purpose of the study was to assess the status of pangolin trade in Makwanpur district of Nepal. Semi-structured interview with household (n = 90), key informant survey (n = 15), Four focus group discussion at each study site was conducted. Seizure data (2015–2019) were gathered from the law enforcement agencies to identify and analyze the major trade routes. The majority of the respondents (63%) were well aware of the protection status of pangolins. Further, our study found that historically local peoples used pangolin body parts in making rings, bags, jackets, and musical instruments but at present they stopped it. Pangolin traders were typically middle-aged men and unemployed youth. Majority of the hunting was found to be opportunistic but when pangolins were caught, they were generally sold for additional income. Currently, the seizure data has shown the declining trend of pangolin trade within the Makwanpur district. Community forest user groups and community based anti-poaching units are working actively for the conservation and promulgation of threatened pangolins in the Makwanpur district which had long served as a major trade route to China. Thus, we advocate strengthening border security and the formation of community-based anti-poaching units, followed by mobilization, anti-poaching trainings, security assurance, and incentives for worthy conservation results in pangolin-rich communities. Further, we recommend sustained conservation awareness programs, in addition to alternative livelihood opportunities, for the long-term conservation of pangolins and their habitat.

Keywords: capacity strengthening, ethno-medicinal importance, middle-aged man, opportunistic hunting, semi-structured interviews.

Editor: Anonymity requested.

Date of publication: 26 January 2023 (online & print)

Citation: Phuyal, N., B.M. Sadadev, R. Khulal, R. Bhatt, S. Bajagain, N. Raut & B. Dhami (2023). Assessing illegal trade networks of two species of pangolins through a questionnaire survey in Nepal. *Journal of Threatened Taxa* 15(1): 22381–22391. <https://doi.org/10.11609/jott.8036.15.1.22381-22391>

Copyright: © Phuyal et al. 2023. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: This project was funded by WWF, Nepal for the partial fulfillment of her BSC project paper of first author and instrumental support was provided by her institution; Tribhuvan University, Nepal.

Competing interests: The authors declare no competing interests.

Author details: NF is a MSc graduate student at Tribhuvan University, Institute of Forestry, School of Forestry and Natural Resource Management, Kathmandu, Nepal. BMS is a MSc scholar at Natural Resources and Environmental Studies, University of Northern British Columbia, Canada. RK is a MSc graduate in wildlife, protected area management, and biodiversity conservation. RB is an undergraduate at Tribhuvan University, Kathmandu Forestry Collage, Kathmandu, Nepal. SB is a MSc graduate student at Tribhuvan University, Institute of Forestry, School of Forestry and Natural Resource Management, Kathmandu, Nepal. NR is an assistant professor at Institute of Forestry Pokhara, Nepal. She is teaching “Wildlife Conservation and Management” to Undergraduate and Graduate students. BD is a BSc graduate in forestry science and is actively involved in several conservation activities.

Authors contributions: NF—conceptualization, research design, data collection, data analysis and interpretation, drafting of manuscript, critical review, and revisions at different stages. BMS—drafting of manuscript, critical review, and revisions at different stages. RK—drafting of manuscript, critical review, and revisions at different stages. RB—drafting of manuscript, critical review, and revisions at different stages. SB—drafting of manuscript, critical review, and revisions at different stages. NR—drafting of manuscript, critical review, critical review, and revisions at different revisions at different stages. BD—conceptualization, methodology design, manuscript drafting lead, GIS mapping lead, review draft and edit.

Acknowledgements: This project was financially supported by WWF Nepal (Hariyo Ban Program II). Special thanks go to Ms. Saru Gahatraj, Mr. Prayash Ghimire and Mr. Aviral Neupane for their valuable support during the field and manuscript development phase. We would also like to acknowledge Ms. Shraddha Pudasaini and Ms. Anu Paudel for their cooperation, encouragement, and suggestions during the research period.

INTRODUCTION

Nepal has two of the eight extant species of pangolin found in the world: the Indian Pangolin *Manis crassicaudata* & Chinese Pangolin *Manis pentadactyla* (Suwal et al. 2020; Dhami et al. 2023). The Indian Pangolin is cryptic and has complex biology (Mohapatra et al. 2021), i.e., a single one is born in the breeding season and is a diet specialist, which makes it vulnerable. The Indian Pangolin has a wide range of distribution with major holds in India, Nepal, Pakistan, Sri Lanka, and Bangladesh (Mahmood et al. 2019) whereas the Chinese Pangolin is found to be distributed in Nepal, Bhutan, India, Bangladesh, Vietnam, Thailand, Myanmar, China, and Lao (Challender et al. 2019; Sharma et al. 2020a). Globally, both the species are listed as Endangered and Critically Endangered species, respectively, under the IUCN Red List of Threatened Species (Challender et al. 2019; Mahmood et al. 2019) and are appended in Appendix I of Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES 2020). Despite the ban on the international commercial trade of specimens by CITES, pangolins are one of the most widely trafficked mammal species (Boakye et al. 2015; Challender et al. 2014, 2020). Indian Pangolins are relatively larger than Chinese Pangolins; the former weigh 8–21 kg and are 100–120 cm in length (DNPWC 2019).

Wildlife trade, a major contributor to decline and extinction of species (Paudel et al. 2020), is now globally considered to be the fourth largest illegal trade, after drugs, people, and arms valued at \$7 billion to \$23 billion each year (Lehmacher 2016). Along with increased threats to biodiversity conservation, illegal wildlife trade also impacts the security of the community and their livelihood, living together with wildlife (Riskas et al. 2018). Furthermore, it has had far-reaching consequences for the nation's governance and economy (Felbab-Brown 2017). For instance, corruptions associated with the illegal wildlife trade undermines the rule of law thereby affecting the country's governance (Vines & Lawson 2014). Moreover, to regulate and control the illegal trade, manpower is required in the enforcement agencies which ultimately affects national economy in a way (Vines & Lawson 2014). Poverty, unemployment, illiteracy, and lack of alternative livelihood opportunities motivate individuals to partake in illegal wildlife trade (Rao 2002). While Nepal's effort in protecting species like tigers and rhinos is getting global recognition (Bhattarai et al. 2017), the rampant poaching and illegal trade of threatened pangolin species has not

been given sufficient attention.

Income generated from illegal wildlife trade is essential to sustain the livelihood of wildlife poachers and traders in many developing nations like Nepal (Milliken 2014). It is impossible to reduce poaching without providing alternative livelihood options (Biggs et al. 2015). Therefore, mitigating the impacts of wildlife trade at the grassroots level ought to consider satisfying the short-term goals (ensuring livelihood) of nearby communities (Mulder & Coppolillo 2005). Until and unless the short-term goals of local communities living in proximity to wildlife is not fulfilled incidence of wildlife poaching is practically impossible to reduce. Despite the fact that Nepal is home to two species of pangolins and shares an international border with China, one of the world's largest pangolin traders, there is little information on the extent of pangolin trade in Nepal (Katuwal et al. 2015, 2016; Sharma et al. 2019; Ghimire et al. 2020; Paudel et al. 2020). On top of that, only few robust studies regarding illegal trafficking of pangolins have been conducted in central Nepal (Dangol 2015; Sharma et al. 2020b). Hence, this research aimed to identify the trade routes and understand the social attributes of the people involved in illegal trade in Makwanpur district of central Nepal.

METHODS AND MATERIALS

Study area

The study was carried out in the Hetauda sub-metropolitan city and Makwanpurgadi rural municipality (Figure 1) of Makwanpur (2,426 km²) district, Nepal. The district is located with the coordinates (27.3333–27.6666 °N & 84.6833–85.6833 °E). The climate of the district varies from near-tropical to upper-temperate forest type with mean annual precipitation between 16.6°C to 30.3°C and mean annual rainfall (2,288 mm). About 75% of the land of the district is mountainous and the rest 25% is plain areas (Shrestha & Nepal 2016). The main ethnic groups residing in the districts are Tamang, Newar, Majhi, Magar, and Praja (CBS 2012). Vegetation like Sal *Shorea robusta*, Chilaune *Schima wallichii*, and Saj *Terminalia bellerica* are commonly found in this region. Different indicators such as the presence of pangolin in the study site, several anecdotal evidence such as seizure and arrest records on local and national newspapers as well as major markets were considered for selecting these municipalities as study areas. Katuwal et al. (2015) also used major market areas as indicators for site selection.

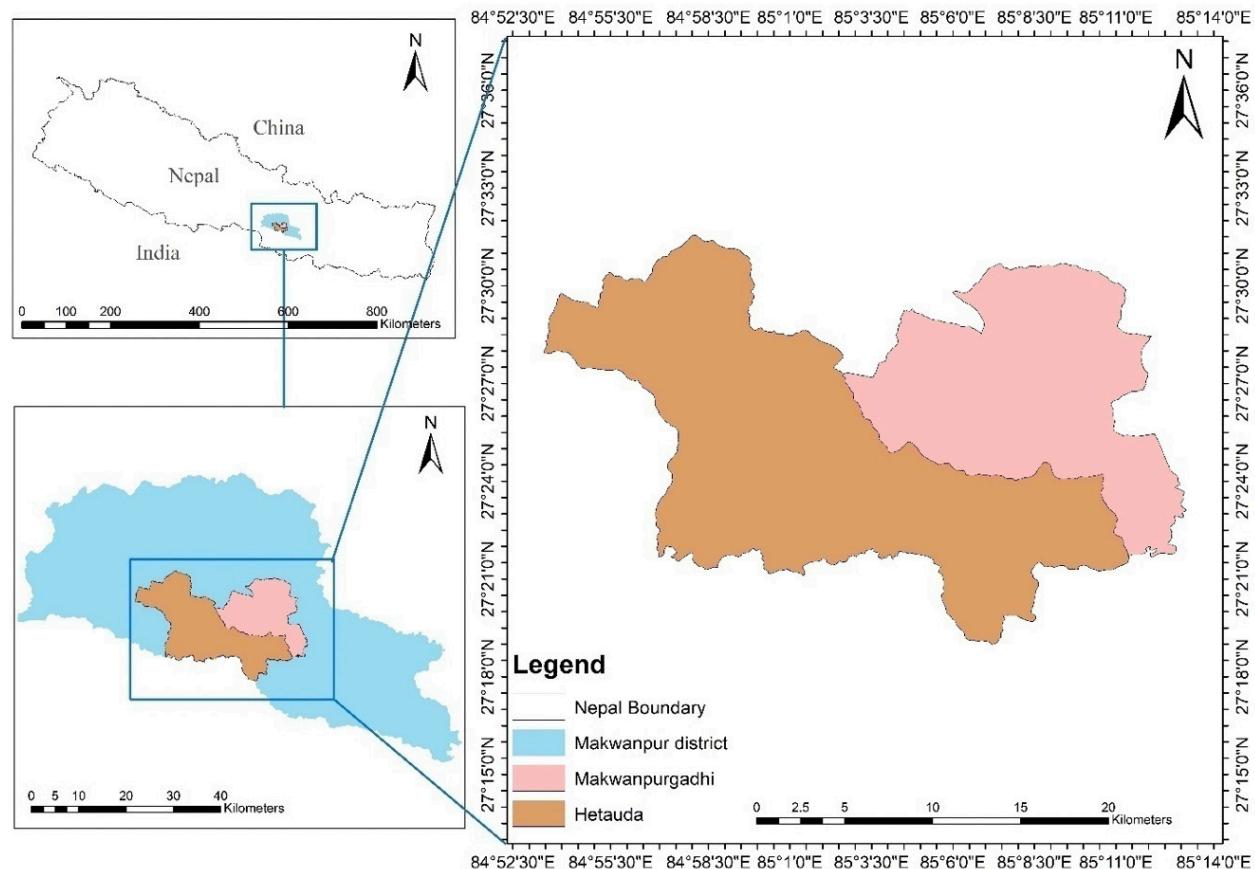


Figure 1. Map of study area showing Hetauda & Makwanpurgadhi.

Data collection and analysis

The study was conducted between February and March 2020. Data were collected through both primary sources (household survey, key informant survey, focus group discussion, and seizure data) and secondary sources (published and unpublished reports). Snowball technique of purposive sampling method was used to identify the potential respondent (Newing 2011) from different ethnic groups and about 90 households were selected (60 households from Hetauda and 30 households from Makwanpurgadhi). Although the study area was dominated with Brahmin and Rai community, we also ensured the representation of other communities in our purposive survey (see Table 1 for detail). We interviewed the head of each household, but if he or she was unavailable, we interviewed the available (>18 years old) adult. A semi-structured questionnaire was used to interview the selected respondents (Newton et al. 2008) (Appendix A). Interviews were conducted in the local language and were then translated into English. We tried to pose open-ended questions wherever possible in order to access the respondent's true feelings on an

issue. Surveyor provided well-illustrated pictures of both Chinese and Indian Pangolins and also played videos showing the behavior of both species to facilitate the respondent for species identification. In addition, we asked respondents to rank five pre-determined threats from 1 to 5 according to the degree of severity posed, 5 being the greatest and 1 being the least. We used the non-parametric Friedman test to identify people's opinions regarding pre-determined threats at a 1% level of significance similar to Ghimire et al. (2020). Further, 15 key informant interview was conducted involving division forest office (DFO) staff ($n = 5$), FECOFUN head ($n = 1$), police officers ($n = 5$), and district court staff ($n = 4$). There were altogether 32 questions that were directed towards assessing information on trade and its triggering factors (Appendix B). Also, four focus group discussions were carried out in each study site (three with the local respondent and one with community-based anti-poaching Unit) to identify major trade routes and market hub for pangolin trade. During the focus group discussion, the team tried to pose close-ended questions to compare and validate the answers

of different respondents. In addition, we obtained trade information from DFO and district police station including details on quantity and part of pangolin seizure, date, time and place of seizure, name, and address of the culprit from 2015–2019. The information gathered was entered into excel for analyses and presentation. Information accessed from household surveys, key informants, focus group discussion and seizure records was used to prepare a map highlighting the possible trade route with the help of the ArcGIS 10.8 version.

RESULTS

Socio-economic characteristics of respondents

Most of the respondents interviewed were male (70%) belonging to the age group of 35–55 years (74.44%). Similarly, most of the respondents (48.89%) surveyed were illiterate. And the majority of the respondents (74.44%) were involved in agriculture as shown in Table 1.

People's perception of protection of pangolin

The majority of the respondents supported pangolin conservation (63%), few were against it (4%), and 32% were ignorant of the issue.

Ethno-medicinal importance of pangolin

People belonging to Tamang (40%), Chepang (24%), and Rai (16%) communities are more aware of the ethno-medicinal importance of pangolin in the study area (Figure 2). They do have good knowledge regarding the use of pangolin claws and scales.

In the local context, the use of pangolin and its body parts (like its scales) are believed to have healing power to cure wounds. More importantly, pangolin meat is used for treating gastrointestinal problems, pain killers during pregnancy, cardiac problems, back pain relief, and bone problems. The scale is used as a symbol of good luck to avoid danger and to make finger rings. Scales are rubbed together and applied to cure skin diseases, burn wounds, teeth problems, and to cure pneumonia. Likewise, scales are kept near the baby basket (kokro) to protect children from different diseases. They used the scales in preparing bags, boots, and musical instruments. Similarly, pangolin claws are used to make a ring, necklace, and bracelet that help to protect individuals against bad omen as well as protect from any other bad consequences.

Manner of pangolin hunting

Out of the total respondents surveyed, the majority

Table 1. Socio-economic characteristics of respondents.

Characteristics	Number	% of respondents
Gender		
Male	63	70
Female	27	30
Community		
Brahmin	35	39
Chhetri	11	12
Tamang	13	14
Chepang	13	14
Rai	18	20
Age group		
Young (<35 year)	15	17
Adult (35–55 year)	67	74
Old (>55 year)	8	9
Education		
Illiterate	44	49
School-level	35	39
College level	11	12
Occupation		
Agriculture	67	74
Forest guard	3	3
Teacher	2	2
Shopkeeper	8	9
Housewife	6	7
Government job	4	4

(42%) reported the hunting to be opportunistic, followed by rare (19%), intentional (17%) hunting, and no idea (22%), respectively.

Type of people involved in hunting

Mostly unemployed adults (45.55%) and young men (40%) were involved in the trade. The rest had no knowledge about the trade (Figure 3).

Purpose of pangolin hunting

About the purpose of hunting, 53% reported hunting for money, 23% for traditional medicine, 17% for meat and 7% for cultural value (ornaments such as rings and bracelets made from pangolin scales are considered as an emblem for good luck).

Threat to pangolin

Out of five threats, respondents ranked human hunting (4.43) as a severe threat to the pangolins followed by habitat fragmentation (3.39) and least for

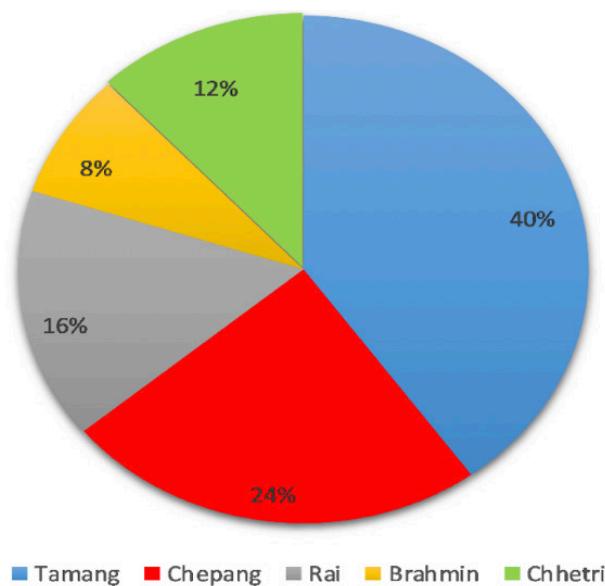


Figure 2. Different community people's knowledge on ethno-medicinal use of pangolin.

complex biology (1.93). On applying the Friedman test the results were statistically significant ($\chi^2 = 135.997$, $p < 0.01$) as shown in Table 2.

People's perception on status of Pangolin and major reasons for trade

Out of the total respondents, the majority (44.44%) had noticed the increase in the pangolin population, some (32.22%) had no idea about the pangolin population and the remaining (23.34%) had noticed the decrease in pangolin population.

Regarding the reasons behind the trade, the majority (34.44%) of the respondent identified high profit to be the major reason for trade followed by poor security, poverty, and lack of awareness as 26.68%, 23.33%, and 15.55%, respectively.

Fluctuation in pangolin trade

The fluctuation in pangolin trade was assessed,

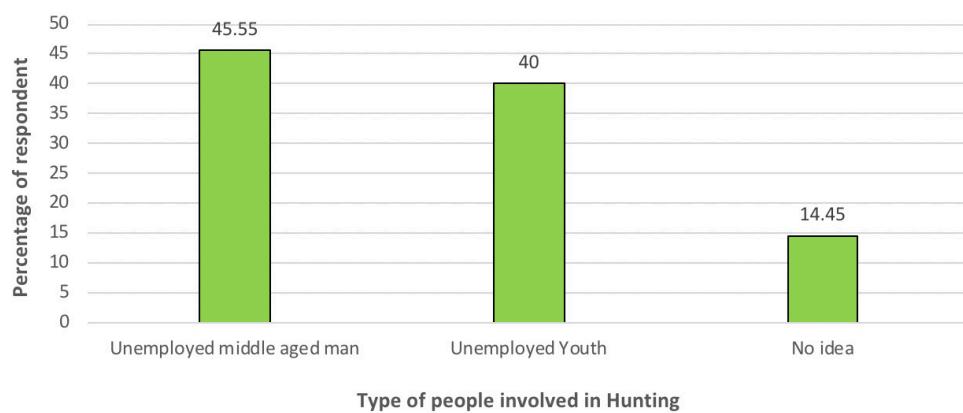


Figure 3. Type of people involved in hunting of pangolin.

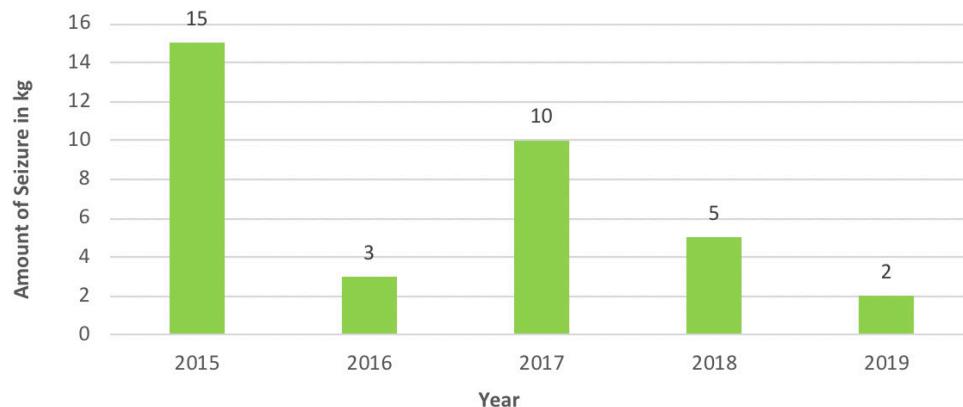


Figure 4. Analyzing pangolin trade condition from seizure data.

Table 2. Pre-determined threat ranking based on people's opinion using non-parametric Friedman test.

	Major threat	MR	χ^2	P-value
1.	Human hunting	4.43	135.997	0.0000*
2.	Habitat fragmentation	3.79		
3.	Hunting by wild animal	2.57		
4.	Low food availability	2.27		
5.	Complex biology	1.93		

MR—Mean Rank | χ^2 —Chi-square value | *—significant value.

taking into account both the respondent's opinion and the seizure data obtained from DFO, District Police Office (DPO) for the last five years. The seizure data were tallied with the respondent's opinion which showed a decreasing trend in trade. When questioned about the pattern or trend of pangolin trade in the district, 43.33% admitted about declining status of trade, 24.45% feel the trade is still increasing, and the remaining 32.22% had no idea about the pangolin trade as shown in Figure 4.

Identification of major trade routes through Makwanpur district

As per the information provided by concerned authorities (DFO, Police office), major markets for pangolin trade are either China or India. The majority of the pangolin parts from different parts of the district or from outside the district reach the district headquarters, Hetauda – a sub-metropolitan city and are transported to China and India via various routes.

The highlighted pink line indicates the trade route via road (Figure 5). The route is identified through information obtained from group discussion, key informant interviews and mainly by analysis of seizure data and follows following route:

- 1) Hetauda—Birgunj—Kalaiya—Gaur—Malangawa—Rajbiraj—India
- 2) Hetauda—Kathmandu—Dhadingbesi—Bidur—Dhunche—China
- 3) Hetauda—Kathmandu—Dhulikhel—Chautara—Charikot—China

DISCUSSION

Our results show that the majority of respondents supported pangolin conservation which could be attributed to the efforts of the personnel of the community forests and community-based anti-poaching units in the study site. Media such as television, radio, and newspapers might also have played a positive role in creating awareness among the people (Sharma

et al. 2019). Especially people living around Rani and Chhucekhol community forests were highly positive towards the protection of threatened pangolins despite knowing the fact that pangolin meat, scales, and skin are of high value in an international market Katuwal et al. (2015), they were against the trade of pangolins. Our result contradicts with the findings made by Katuwal et al. (2015) where most people were unaware of the protection status of pangolin. Sharma et al. (2020b) mentioned that people from the diverse background were knowledgeable about Chinese Pangolin and concerned about the conservation of this species as pangolin plays a vital ecological role in controlling the pest such as termites, ants (Swart et al. 1999) and also in improving the soil structure and composition similar to other burrowing mammals (Laundré & Reynolds 1993).

Previous studies (Nash et al. 2016; D'Cruze et al. 2018; Ghimire et al. 2020) recorded that the pangolin parts are used for traditional medicines. Similar to our finding on ethno medicinal use of pangolin parts for curing wounds, gastrointestinal problems, pain killer during pregnancy, cardiac problems, back pain, and bone problems, cure wounds, cure arthritis, and anti-poisonous reagents. Pangolin scales were used for ornaments such as rings and bracelets and as an emblem for good luck while others showed that they bring bad luck (Nash et al. 2016; D'Cruze et al. 2018; Ghimire et al. 2020).

In our study, the majority of the respondents reported hunting to be opportunistic followed by rare and intentional, thus providing insights into the intensity of hunting. Results from the study by Ghimire et al. (2020) and D'Cruze et al. (2018) also suggest that opportunistic hunting is one of the major causes of pangolin population decline.

Our study showed that unemployed middle-aged men followed by unemployed youths were majorly involved in pangolin hunting. Our results are similar to the studies made by Ghimire et al. (2020) and Katuwal et al. (2015) where they reported that youth, especially those unemployed, were involved in pangolin hunting for monetary reasons. We suggest two key strategies of the many used to combat illegal wildlife poaching; first the development of reward and sanction mechanism through legally agreed rules and regulations and second, the introduction of strong and sustained awareness programs, prioritizing and implementing income generating activities or skill development trainings to facilitate alternative livelihood options (Khatiwada et al. 2020). The effective conduction of skill development training and income-generating activities like mobile repair, house wiring, and plumbing is likely to make

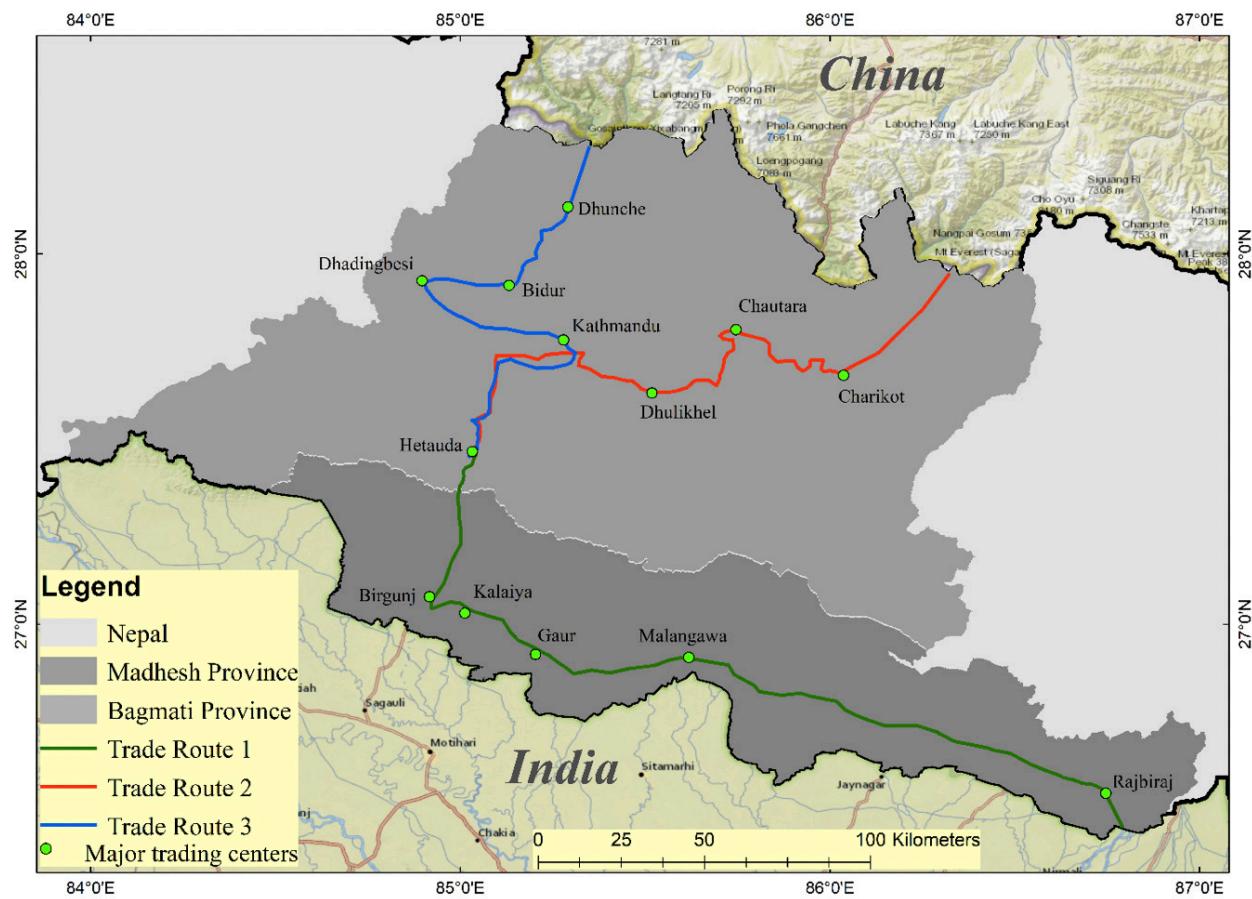


Figure 5. Map showing trade route of pangolin within Makwanpur district.

the marginalized populations self-reliant and less likely to engage in poaching and illicit activities (Bhatta et al. 2018).

Likewise, our study showed that money and traditional medicinal values were the driving factors for hunting. Different parts of the pangolins are consumed traditionally in a local context as the parts of pangolins are believed to have curative properties as mentioned earlier Ghimire et al. (2020). However, these social and cultural values are suppressed by monetary value at present which coincides with the study made by Corlett (2007) where he stated that pangolins are hunted for trade rather than for local consumption. Further, Katuwal et al. (2015) revealed that the minimum price of live pangolin and scales of pangolin in the Nepali market range between \$ 7–12.5 /kg for local hunters, however the price doubles at every subsequent level of trader which supports our results. Despite the fact, people believe that the pangolin population is increasing in the study site, however, this hypothesis need to be proved by detailed field study. The reason could be the decrease in pangolin trade with the active involvement of police

and concerned authority in controlling the wildlife trade. Further, National Park and Wildlife Conservation (NPWC) Act has a provision of a penalty of NRs 100,000–500,000 or 1–10 years of imprisonment or both if any offense regarding them is committed (GoN 1973).

Heinrich et al. (2017) explored the impacts of hunting on tropical forests in southeastern Asia and highlighted the importance of opportunistic hunting as it does not require much skill. We also identified hunting as the major threat which is similar to the findings of Ghimire et al. (2020). Challender & Hywood (2011) and Patel & Chin (2009) also identified hunting and poaching as the primary threats to pangolin. Local people use different techniques to hunt pangolins. The most commonly used hunting practice is filling burrows with water and hitting on snout of pangolin when they attempt to escape from the burrow (Katuwal et al. 2016). Hunters catch pangolins to supply to the trader for money rather than personal consumptions (Corlett 2007) as a decrease in the global wild population and strong law enforcement have increased the price of pangolins in the market (Shepherd 2009; CITES 2016).

As compared to the record of previous years, the pattern of pangolin seizures seems to be decreasing in the study area after 2015. The result corresponds with the result of Ghimire et al. (2020) where they have clearly stated that the seizure of Pangolin in recent years is declining in Illam, Dhankuta, Taplejung, and Sankhuwasaba districts. However, the obtained result is in contrast with the findings of Katuwal et al. (2015) where they have reported the increasing pattern of pangolin trade in eastern Nepal. Currently, several attempts are made by the Nepal government for pangolin conservation. National pangolin workshop was organized by the government of Nepal to develop a road map for conserving the country's globally significant pangolin population. Similarly, a wide range of stakeholders from local pangolin experts including pangolin specialist group to government officials are working together to develop scientific information through performing intensive surveys on multiple arenas of threatened pangolins. In addition to this, the Pangolin Conservation Action Plan for Nepal (2018–2022) aimed to address the critical threats to pangolin conservation by developing appropriate conservation strategies and action (DNPWC 2018). The major objective of this plan is to curb poaching and illegal trade of pangolins. Currently people in Makwanpur district are also more aware of the protection status of pangolins. Similarly, CF (especially Rani and Chhuchekhola CF) are working actively for the conservation of pangolins. They keep conducting awareness classes in various schools and trade-prone areas to make community people aware of the legal and ecological consequences of trade. In addition to this, pangolin park is made in Chhuchekhola CF for the conservation and promulgation of threatened pangolins. Nevertheless, the community-based anti-poaching Unit (CBAPU) was established four years ago in Makwanpur district which discourages people against the illicit trade of pangolins. We obtained very few registered cases of pangolin seizures at the DFO, Makwanpur. Even though very few seizures and arrest records have been registered in DFO and DPO, police are claiming that trade is still happening but in a confidential way. Due to the clandestine nature of the trade and the strong network among the poachers, they are finding it very difficult and challenging to track and arrest culprits.

According to the information on trade routes provided by DPO, Makwanpur, poachers from each area use different trade routes nevertheless, the final destination in Nepal is typically the border to China. Similarly, most of the key informants admitted China to be the major market place for trade. In the study

made by Katuwal et al. (2015) also trade flow was more across the Chinese border. The findings of our study is again supported by the study made by Sharma et al. (2020b) where they have clearly stated that most illegal Chinese pangolins trades from Nepal are motivated by the demand from China. Illegal wildlife trade generally occurs through a complicated network of locations and routes where poachers of one village supply pangolin to poachers of another village and so on until it reaches the international border. Heinrich et al. (2017) stated that wildlife trafficking occurs through a mobile trade network with constantly shifting trade routes. This may also be presumed in our study area that trade might still be rising by shifting the route rather than using old routes.

CONCLUSION

Our study shows that especially the unemployed adults were involved in pangolin hunting especially for a monetary cause. Further, our study reported the use of different parts of the pangolin as cultural values and curative reagent in the study area. Similarly, our results have shown the decreasing trend of seizure records of pangolin whereas trade flow was more skewed towards the Chinese border. On top of that, hunting and habitat fragmentation were ranked as most severe threat for pangolin conservation. However, community forests are working actively for the conservation and promulgation of threatened pangolins in the Makwanpur district. Finally, we suggest that to discourage the involvement of youth in illegal pangolin trade, strong and sustained awareness programs should be launched with development of alternative livelihood opportunities. In addition, forming community-based anti-poaching units in prospective pangolin habitat could be a significant intervention to stop the trade. This necessitates long-term motivation, anti-poaching training, security guarantees, and, most importantly, incentives for worthy conservation outcomes. Finally, we propose a national-level investigation into unlawful pangolin hunting and trading, as the species' survival is in jeopardy.

REFERENCES

Bhatta, K.P., S. Bhattacharai & A. Aryal (2018). Community based anti-poaching operation: Effective model for wildlife conservation in Nepal. *Poultry, Fisheries & Wildlife Sciences* 6(2): 195. <https://doi.org/10.4172/2375-446X.1000195>

Bhattacharai, B.R., W. Wright, B.S. Poudel, A. Aryal, B.P. Yadav & R. Wagle (2017). Shifting paradigms for Nepal's protected areas: history,

challenges and relationships. *Journal of Mountain Science* 14(5): 964–979. <https://doi.org/10.1007/s11629-016-3980-9>

Biggs, D., R. Cooney, D. Roe, H. Dublin, J. Allan, C. Challender & D. Skinner (2015). Engaging Local Communities in Tackling Illegal Wildlife Trade: Can a 'Theory of Change' Help? International Institute for Environment and Development, 27 pp. <http://pubs.iied.org/14656IIED>

Boakye, M.K., D.W. Pietersen, A. Kotzé, D.L. Dalton & R. Jansen (2015). Knowledge and uses of African pangolins as a source of traditional medicine in Ghana. *PLoS One* 10(1): e0117199. <https://doi.org/10.1371/journal.pone.0117199>

CBS (2012). National population and housing census 2011, Central Bureau of Statistics. Kathmandu, Nepal. *National Report* 111, 51–57 pp.

Challender, D., J. Baillie, G. Ades, P. Kaspal, B. Chan, A. Khatiwada, L. Xu, S. Chin & H. Nash (2016). *Manis pentadactyla*. The IUCN Red List of Threatened Species 2014: e. T12764A45222544.

Challender, D.W.S., S. Heinrich, C.R. Shepherd & L.K.D. Katsis (2020). International trade and trafficking in pangolins, 1900–2019. In *Pangolins* 259–276. <https://doi.org/10.1016/B978-0-12-815507-3.00016-2>

Challender, D.W.S. & L. Hywood (2011). Asian pangolins: increasing affluence driving hunting pressure. *Traffic Bulletin* 23(3): 92–93.

Challender, D. W.S., C. Waterman & J.E.M. Baillie (2014). Scaling up pangolin conservation. IUCN SSC, Pangolin Specialist Group Conservation Action Plan. *Zoological Society of London*, London, UK, 21 pp.

Challender, D., S. Wu, P. Kaspal, A. Khatiwada, A. Ghose, N.C.-M. Sun, R.K. Mohapatra & T.L. Suwal (2019). *Manis pentadactyla* (errata version published in 2020). The IUCN Red List of Threatened Species 2019: E.T12764A168392151, 8235.

Chukwuone, N.A. (2009). Socioeconomic determinants of cultivation of non-wood forest products in southern Nigeria. *Biodiversity and Conservation* 18(2): 339–353. <https://doi.org/10.1007/s10531-008-9489-y>

CITES (2016). Considering proposals for Amendment of Appendices I and II. COP 17 Prop.

CITES (2020). CITES Appendices I, II, and III 28 August 2020. August, 74 pp. <https://cites.org/sites/default/files/eng/app/2020/E-Appendices-2020-08-28.pdf>

Corlett, R.T. (2007). The impact of hunting on the mammalian fauna of tropical Asian forests. *Biotropica* 39(3): 292–303. <https://doi.org/10.1111/j.1744-7429.2007.00271.x>

Dangol, B.R. (2015). *Illegal wildlife trade in Nepal: a case study from Kathmandu Valley*. Master's thesis, Norwegian University of Life Sciences, Ås, 64 pp. <http://hdl.handle.net/11250/296693>

D'Cruze, N., B. Singh, A. Mookerjee, L.A. Harrington & D.W. Macdonald (2018). A socio-economic survey of pangolin hunting in Assam, Northeast India. *Nature Conservation* 30: 83–105. <https://doi.org/10.3897/natureconservation.30.27379>

Dhami, B., B. Neupane, B.P. Devkota, T. Maraseni, B.M. Sadadev, S. Bista, A. Adhikari, N.B. Chhetri, M. Panta & A.B. Stewart (2023). Factors affecting the occupancy of Chinese Pangolins (*Manis pentadactyla*) suggest a highly specialized ecological niche. *Ecosphere* e4356. <https://doi.org/10.1002/ecs2.4356>

DNPWC (2019). Pangolin Monitoring Guideline for Nepal. Department of National Parks and Wildlife Conservation, Ministry of Forests and Environment, Kathmandu, Nepal. pp 48. Accessed From [http://d2ouvy59p0dg6k.cloudfront.net/downloads/pangolin_monitoring_guideline_for_nepal.pdf]

DNPWC (2018). Pangolin Conservation Action Plan for Nepal (2018–2022). Department of National Parks and Wildlife Conservation and Department of Forests, Kathmandu, Nepal. pp 36.

Felbab-Brown, V. (2017). Organized crime, illicit economies, civil violence & international order: more complex than you think. *Daedalus* 146(4): 98–111. https://doi.org/10.1162/DAED_a_00462

Ghimire, P., N. Raut, P. Khanal, S. Acharya & S. Upadhyaya (2020). Species in peril: assessing the status of the trade in pangolins in Nepal. *Journal of Threatened Taxa* 12(8): 15776–15783. <https://doi.org/10.11609/jott.5698.12.8.15776-15783>

GoN (1973). National parks and wildlife conservation act. Government of Nepal, Nepal Law Commission Nepal.

Heinrich, S., T.A. Wittman, J.V. Ross, C.R. Shepherd, D.W.S. Challender & P. Cassey (2017). The Global Trafficking of Pangolin: A comprehensive summary of Seizures and trafficking routes from 2010–2015. *Traffic*, 49 pp.

Katuwal, H.B. K. Parajuli & S. Sharma (2016). Money overweighted the traditional beliefs for hunting of Chinese pangolins in Nepal. *Journal of Biodiversity and Endangered Species* 4(173): 10–4172. <https://doi.org/10.4172/2332-2543.1000173>

Katuwal, H.B., K.R. Neupane, D. Adhikari, M. Sharma & S. Thapa (2015). Pangolins in eastern Nepal: trade and ethno-medicinal importance. *Journal of Threatened Taxa* 7(9): 7563–7567. <https://doi.org/10.11609/jott.04202.7563-7>

Khatiwada, A.P., T.L. Suwal, W. Wright, D. Roe, P. Kaspal, S. Thapa & K. Paudel (2020). Community conservation in Nepal—Opportunities and challenges for pangolin conservation. *Pangolins* 395–409. <https://doi.org/10.1016/B978-0-12-815507-3.00025-3>

Laundré, J.W. & T.D. Reynolds (1993). Effects of soil structure on burrow characteristics of five small mammal species. *The Great Basin Naturalist*, 358–366. <https://www.jstor.org/stable/41712798>

Lehmacher, W. (2016). Wildlife crime: a \$23 billion trade that's destroying our planet. World Economic Forum 28.

Mahmood, T., D. Challender, A. Khatiwada, S. Andleeb, P. Perera, S. Trageser, A. Ghose & R. Mohapatra (2019). *Manis crassicaudata*. The IUCN Red List of Threatened Species 2019: e.T12761A123583998. Accessed on 01 June 2022. <https://doi.org/10.2305/IUCN.UK.2019-3.RLTS.T12761A123583998.en>

Mohapatra, R.K., K.K. Sahu, A. Joshi, C.D. Vanjari, B. Bhandari, M. Thakur, P. Perera, A. Mendis, V. Aditya, G. Sharma, B. Katdare, A. Chaudhuri, & M. Mahapatra (2021). Field guide for rehabilitation of Indian pangolin. Nandankanan Biological Park, Bhubaneswar and Central Zoo Authority, New Delhi, 1–39 pp.

Milliken, T. (2014). Illegal trade in ivory and rhino horn: an assessment to improve law enforcement under the wildlife TRAPS project. USAID, 30 pp.

Mulder, M.B. & P. Coppolillo (2005). *Conservation: Linking Ecology, Economics, and Culture*. Princeton University Press, 347 pp.

Nash, H.C., M.H.G. Wong & S.T. Turvey (2016). Using local ecological knowledge to determine status and threats of the Critically Endangered Chinese Pangolin (*Manis pentadactyla*) in Hainan, China. *Biological Conservation* 196: 189–195. <https://doi.org/10.1016/j.biocon.2016.02.025>

Newing, H. (2011). *Conducting research in conservation: social science methods and practice*. Routledge 270 Madison Avenue, New York, NY 10016, 52 pp.

Newton, P., N.V. Thai, S. Roberton & D. Bell (2008). Pangolins in peril: using local hunters' knowledge to conserve elusive species in Vietnam. *Endangered Species Research* 6(1): 41–53. <https://doi.org/10.3354/esr00127>

Patel, E.B.S. & S.Y. Chin (2009). Workshop on trade and conservation of pangolins native to south and southeast Asia, 30 June–2 July 2008, Singapore Zoo, Singapore. TRAFFIC Southeast Asia, Petaling Jaya, Selangor, Malaysia, 237 pp.

Paudel, P.K., K.P. Acharya, H.S. Baral, J.T. Heinen & S.R. Jnawali (2020). Trends, patterns, and networks of illicit wildlife trade in Nepal: a national synthesis. *Conservation Science and Practice* 2(9): e247. <https://doi.org/10.1111/csp2.247>

Rao, M. (2002). Wild-meat use, food security, livelihoods, and conservation. *Conservation Biology* 16(3): 580–583. <https://www.jstor.org/stable/3061202>

Riskas, K.A., R.C. Tobin, M.M. Fuentes & M. Hamann (2018). Evaluating the threat of IUU fishing to sea turtles in the Indian Ocean and Southeast Asia using expert elicitation. *Biological Conservation* 217: 232–239. <https://doi.org/10.1016/j.biocon.2017.10.011>

Sharma, H.P., J.L. Belant & P.J.L. Shaner (2019). Attitudes towards conservation of the Endangered red panda *Ailurus fulgens* in Nepal:

a case study in protected and non-protected areas. *Oryx* 53(3): 542–547. <https://doi.org/10.1017/S0030605317000990>

Sharma, H.P., B. Rimal, M. Zhang, S. Sharma, L.P. Poudyal, S. Maharjan, R. Kunwar, P. Kaspal, N. Bhandari, L. Baral, S. Dhakal, A. Tripathi, N. Karki, B. Khadki, P. Thapa, B.K. Acharya, S. Acharya, K. Baral & H.B. Katuwal (2020a). Potential distribution of the critically endangered Chinese pangolin (*Manis pentadactyla*) in different land covers of Nepal: Implications for conservation. *Sustainability* 12(3): 1282. <https://doi.org/10.3390/su12031282>

Sharma, S., H.P. Sharma, H.B. Katuwal, C. Chaulagain & J.L. Belant (2020b). People's knowledge of illegal Chinese pangolin trade routes in central Nepal. *Sustainability* 12(12): 4900. <https://doi.org/10.3390/su12124900>

Shepherd, C.R. (2009). Overview of pangolin trade in Southeast Asia. *Proceedings of the Workshop on Trade and Conservation of Pangolins Native to South and Southeast Asia* 30: 6–9.

Shrestha, R.P. & N. Nepal (2016). An assessment by subsistence farmers of the risks to food security attributable to climate change in Makwanpur, Nepal. *Food Security* 8(2): 415–425. <https://doi.org/10.1007/s12571-016-0554-1>

Suwal, T.L., A. Thapa, S. Gurung, P.C. Aryal, H. Basnet, K. Basnet, K.B. Shah, S. Thapa, S. Koirala, S. Dahal, H.B. Katuwal, N. Sharma, S.R. Jnawali, K. Khanal, M. Dhakal, K.P. Acharya, D.J. Ingram & K.J.C. Pei (2020). Predicting the potential distribution and habitat variables associated with pangolins in Nepal. *Global Ecology and Conservation* 23: e01049. <https://doi.org/10.1016/j.gecco.2020.e01049>

Swart, J.M., P.R.K. Richardson & J.W.H. Ferguson (1999). Ecological factors affecting the feeding behaviour of pangolins (*Manis temminckii*). *Journal of Zoology* 247(3): 281–292. <https://doi.org/10.1111/j.1469-7998.1999.tb00992.x>

Vines, A. & K. Lawson (2014). *Global Impacts of the Illegal Wildlife Trade: The Costs of Crime, Insecurity and Institutional Erosion*, Chatham House. Retrieved from <https://policycommons.net/artifacts/1423429/global-impacts-of-the-illegal-wildlife-trade/2037697/> on 06 Sep 2022.

Appendix A Questionnaire survey

1. Socio-economic characteristics of respondents
 - a. Gender (circle one)
 - i. Male
 - ii. Female
 - b. Age group:
 - i. Young(<35yr)
 - ii. Adult(35-55yr)
 - iii. Old(>55yr)
 - c. Education:
 - i. Illiterate
 - ii. School-level
 - iii. College level
 - d. Occupation:
 - e. Community:
 - i. Tamang
 - ii. Chepang
 - iii. Rai
 - iv. Brahmin v. Chhetri
2. People belonging to which community are more aware with ethno-medicinal uses of pangolin?
 - a. Tamang
 - b. Chepang
 - c. Rai
 - d. Brahmin
 - e. Chhetri
3. Do you agree pangolin should be protected?
 - a. Agree
 - b. Disagree
 - c. No idea
4. Do you know the medicinal value of pangolin?
 - a. Cure of arthritis
 - b. Cure wound
 - c. Prevent body ache problem
 - d. Others
5. Do you know the cultural value of pangolin?
If yes, Please specify.....
6. Have you ever heard or seen pangolin killed in your locality?
 - a. Intentional
 - b. Opportunistic
 - c. Rare
 - d. No idea
7. What type of people are mostly involved in hunting?
 - a. Unemployed middle aged man
 - b. Unemployed youth
 - c. No idea
8. Why are pangolins hunted?
 - a. Meat
 - b. Cultural value
 - c. Traditional medicine
 - d. Money
9. Rank the following threats to pangolin according to the degree of the severity?
 - a. Habitat fragmentation
 - b. Human hunting
 - c. Hunting by wild animals
 - d. Complex biology
 - e. Low food availability
10. Have you perceived an increase or decrease pangolin habitat and its number in your area?
 - a. Increase
 - b. Decrease
 - c. Don't know
11. What driving factors is most responsible to encourage people to involve in trade?
 - a. Low awareness
 - b. High profit
 - c. Poor security
 - d. Poverty
12. Can you tell me the trend of pangolin trade for last 5 years?
 - a. Increase
 - b. Decrease
 - c. Don't know
13. What are the major hub for pangolin trade?
 - a. China
 - b. India
 - c. China and India
 - d. No idea

Appendix B
Checklist for Key- Informant Interview

Name of respondent: _____ Date: _____
 Address: _____ Age: _____
 Phone number: _____ Sex: _____

Designation: _____
 1. Have you seen Pangolin or their burrow? When and where?

.....
 2. How familiar are you with Pangolin and its benefits?

.....
 3. Are you aware regarding ethno-medicinal use of pangolin?

.....
 4. Which part of pangolin is most valuable?

.....
 5. What are the major threats for pangolin?

.....
 6. Are pangolins being hunted in your area?

.....
 7. What method they used to hunt them?

.....
 8. For what purpose they hunt pangolins?

.....
 9. How often does the hunting of pangolin occur in your area?

.....
 10. Can you estimate the hunters number in your locality?

.....
 11. In average how much pangolins are being killed in one year from your area? Can you estimate last year's number?

.....
 12. People of which caste are mostly involved in trade?

.....
 13. People of which occupation are mostly involved in trade?

.....
 14. People of which age are mostly involved in trade?

.....
 15. What are the major reason for increased trade of the pangolin?

.....
 16. Do you have any estimate of pangolin population trend in last five years? Is it increasing or decreasing? If decreasing why?

.....
 17. Do you know where live Pangolins and its body parts are sold?

.....
 18. Are there any selling and buying station in the market?

.....
 19. Who are mainly responsible for selling?

.....
 20. Where do buyers come from?

.....
 21. Where are Pangolin's scales sold, do you have any idea?

.....
 22. What are the major hub for pangolin trade in this area? (key places)

.....
 23. Does any buyer/middleman visit the place for buying? If yes then from where.....

.....
 24. How and where Pangolins are hidden during transport and trade?

.....
 25. By what route the Pangolins are smuggled? Identify the key routes within the district?

.....
 26. In your information, what is the average price per kg of pangolins scale at local level? Or how much a poacher earn selling a kg of pangolin scale in your area?

.....
 27. Do you have any idea how much a middleman earn selling a kg of pangolin scale?

.....
 28. In your opinion, why is the trade network so vast and difficult to control?

.....
 29. Do you have any idea of fine and punishment in case of seizure? Is it enough to limit the alarming trade?

.....
 30. Is there any conservation effort to mitigate illegal wildlife trade of Pangolin?

.....
 31. What type of organization worked here/ working here to control the illegal trafficking and poaching of threatened pangolins?

In case the key informant is the dignitaries of any organization.....

a. What kind of programs and actions are carried out to control illegal trafficking and poaching of threatened pangolins?

.....
 32. Are community-based anti-poaching unit working effectively to control illegal trade of endangered pangolins?

Dr. George Mathew, Kerala Forest Research Institute, Peechi, India
Dr. John Noyes, Natural History Museum, London, UK
Dr. Albert G. Orr, Griffith University, Nathan, Australia
Dr. Sameer Padhye, Katholieke Universiteit Leuven, Belgium
Dr. Nancy van der Poorten, Toronto, Canada
Dr. Karen Schnabel, NIWA, Wellington, New Zealand
Dr. R.M. Sharma, (Retd.) Scientist, Zoological Survey of India, Pune, India
Dr. Manju Siliwal, WILD, Coimbatore, Tamil Nadu, India
Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India
Dr. K.A. Subramanian, Zoological Survey of India, New Alipore, Kolkata, India
Dr. P.M. Sureshan, Zoological Survey of India, Kozhikode, Kerala, India
Dr. R. Varatharajan, Manipur University, Imphal, Manipur, India
Dr. Eduard Vives, Museu de Ciències Naturals de Barcelona, Terrassa, Spain
Dr. James Young, Hong Kong Lepidopterists' Society, Hong Kong
Dr. R. Sundararaj, Institute of Wood Science & Technology, Bengaluru, India
Dr. M. Nithyanandan, Environmental Department, La Al Al Kuwait Real Estate. Co. K.S.C., Kuwait
Dr. Himender Bharti, Punjabi University, Punjab, India
Mr. Purnendu Roy, London, UK
Dr. Saito Motoki, The Butterfly Society of Japan, Tokyo, Japan
Dr. Sanjay Sondhi, TITLI TRUST, Kalpavriksh, Dehradun, India
Dr. Nguyen Thi Phuong Lien, Vietnam Academy of Science and Technology, Hanoi, Vietnam
Dr. Nitin Kulkarni, Tropical Research Institute, Jabalpur, India
Dr. Robin Wen Jiang Ngiam, National Parks Board, Singapore
Dr. Lionel Monod, Natural History Museum of Geneva, Genève, Switzerland.
Dr. Asheesh Shivam, Nehru Gram Bharti University, Allahabad, India
Dr. Rosana Moreira da Rocha, Universidade Federal do Paraná, Curitiba, Brasil
Dr. Kurt R. Arnold, North Dakota State University, Saxony, Germany
Dr. James M. Carpenter, American Museum of Natural History, New York, USA
Dr. David M. Claborn, Missouri State University, Springfield, USA
Dr. Karen Schnabel, Marine Biologist, Wellington, New Zealand
Dr. Amazonas Chagas Júnior, Universidade Federal de Mato Grosso, Cuiabá, Brasil
Mr. Monsoon Jyoti Gogoi, Assam University, Silchar, Assam, India
Dr. Heo Chong Chin, Universiti Teknologi MARA (UiTM), Selangor, Malaysia
Dr. R.J. Shiel, University of Adelaide, SA 5005, Australia
Dr. Siddharth Kulkarni, The George Washington University, Washington, USA
Dr. Priyadarsanan Dharma Rajan, ATREE, Bengaluru, India
Dr. Phil Alderslade, CSIRO Marine And Atmospheric Research, Hobart, Australia
Dr. John E.N. Veron, Coral Reef Research, Townsville, Australia
Dr. Daniel Whitmore, State Museum of Natural History Stuttgart, Rosenstein, Germany.
Dr. Yu-Feng Hsu, National Taiwan Normal University, Taipei City, Taiwan
Dr. Keith V. Wolfe, Antioch, California, USA
Dr. Siddharth Kulkarni, The Hormiga Lab, The George Washington University, Washington, D.C., USA
Dr. Tomas Ditrich, Faculty of Education, University of South Bohemia in Ceske Budejovice, Czech Republic
Dr. Mihaly Foldvari, Natural History Museum, University of Oslo, Norway
Dr. V.P. Uniyal, Wildlife Institute of India, Dehradun, Uttarakhand 248001, India
Dr. John T.D. Caleb, Zoological Survey of India, Kolkata, West Bengal, India
Dr. Priyadarsanan Dharma Rajan, Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Bangalore, Karnataka, India

Fishes

Dr. Neelesh Dahanukar, IISER, Pune, Maharashtra, India
Dr. Topiltzin Contreras MacBeath, Universidad Autónoma del estado de Morelos, México
Dr. Heok Hee Ng, National University of Singapore, Science Drive, Singapore
Dr. Rajeev Raghavan, St. Albert's College, Kochi, Kerala, India
Dr. Robert D. Sluka, Chiltern Gateway Project, A Rocha UK, Southall, Middlesex, UK
Dr. E. Vivekanandan, Central Marine Fisheries Research Institute, Chennai, India
Dr. Davor Zanella, University of Zagreb, Zagreb, Croatia
Dr. A. Biju Kumar, University of Kerala, Thiruvananthapuram, Kerala, India
Dr. Akhilesh K.V., ICAR-Central Marine Fisheries Research Institute, Mumbai Research Centre, Mumbai, Maharashtra, India
Dr. J.A. Johnson, Wildlife Institute of India, Dehradun, Uttarakhand, India
Dr. R. Ravinesh, Gujarat Institute of Desert Ecology, Gujarat, India

Amphibians

Dr. Sushil K. Dutta, Indian Institute of Science, Bengaluru, Karnataka, India
Dr. Annemarie Ohler, Muséum national d'Histoire naturelle, Paris, France

Reptiles

Dr. Gernot Vogel, Heidelberg, Germany
Dr. Raju Vyas, Vadodara, Gujarat, India
Dr. Pritpal S. Soorae, Environment Agency, Abu Dubai, UAE.
Prof. Dr. Wayne J. Fuller, Near East University, Mersin, Turkey
Prof. Chandrashekher U. Rivonker, Goa University, Taleigao Plateau, Goa, India
Dr. S.R. Ganesh, Chennai Snake Park, Chennai, Tamil Nadu, India
Dr. Himansu Sekhar Das, Terrestrial & Marine Biodiversity, Abu Dhabi, UAE

Birds

Dr. Hem Sagar Baral, Charles Sturt University, NSW Australia
Mr. H. Biju, Coimbatore, Tamil Nadu, India
Dr. Chris Bowden, Royal Society for the Protection of Birds, Sandy, UK
Dr. Priya Davidar, Pondicherry University, Kalapet, Puducherry, India
Dr. J.W. Duckworth, IUCN SSC, Bath, UK
Dr. Rajah Jayopal, SACON, Coimbatore, Tamil Nadu, India
Dr. Rajiv S. Kalsi, M.L.N. College, Yamuna Nagar, Haryana, India
Dr. V. Santharam, Rishi Valley Education Centre, Chittoor Dt., Andhra Pradesh, India
Dr. S. Balachandran, Bombay Natural History Society, Mumbai, India
Mr. J. Praveen, Bengaluru, India
Dr. C. Srinivasulu, Osmania University, Hyderabad, India
Dr. K.S. Gopi Sundar, International Crane Foundation, Baraboo, USA
Dr. Gombobaatar Sundev, Professor of Ornithology, Ulaanbaatar, Mongolia
Prof. Reuven Yosef, International Birding & Research Centre, Eilat, Israel
Dr. Taej Mundkur, Wetlands International, Wageningen, The Netherlands
Dr. Carol Inskip, Bishop Auckland Co., Durham, UK
Dr. Tim Inskip, Bishop Auckland Co., Durham, UK
Dr. V. Gokula, National College, Tiruchirappalli, Tamil Nadu, India
Dr. Arkady Lelej, Russian Academy of Sciences, Vladivostok, Russia
Dr. Simon Dowell, Science Director, Chester Zoo, UK
Dr. Mário Gabriel Santiago dos Santos, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, Vila Real, Portugal
Dr. Grant Connette, Smithsonian Institution, Royal, VA, USA
Dr. M. Zafar-ul Islam, Prince Saud Al Faisal Wildlife Research Center, Taif, Saudi Arabia

Mammals

Dr. Giovanni Amori, CNR - Institute of Ecosystem Studies, Rome, Italy
Dr. Anwaruddin Chowdhury, Guwahati, India
Dr. David Mallon, Zoological Society of London, UK
Dr. Shomita Mukherjee, SACON, Coimbatore, Tamil Nadu, India
Dr. Angie Appel, Wild Cat Network, Germany
Dr. P.O. Nameer, Kerala Agricultural University, Thrissur, Kerala, India
Dr. Ian Redmond, UNEP Convention on Migratory Species, Lansdown, UK
Dr. Heidi S. Riddle, Riddle's Elephant and Wildlife Sanctuary, Arkansas, USA
Dr. Karin Schwartz, George Mason University, Fairfax, Virginia.
Dr. Lala A.K. Singh, Bhubaneswar, Orissa, India
Dr. Mewa Singh, Mysore University, Mysore, India
Dr. Paul Racey, University of Exeter, Devon, UK
Dr. Honnavalli N. Kumara, SACON, Anaikatty P.O., Coimbatore, Tamil Nadu, India
Dr. Nishith Dharaiya, HNG University, Patan, Gujarat, India
Dr. Spartaco Gippoliti, Socio Onorario Società Italiana per la Storia della Fauna "Giuseppe Altobello", Rome, Italy
Dr. Justus Joshua, Green Future Foundation, Tiruchirappalli, Tamil Nadu, India
Dr. H. Raghuram, The American College, Madurai, Tamil Nadu, India
Dr. Paul Bates, Harison Institute, Kent, UK
Dr. Jim Sanderson, Small Wild Cat Conservation Foundation, Hartford, USA
Dr. Dan Challender, University of Kent, Canterbury, UK
Dr. David Mallon, Manchester Metropolitan University, Derbyshire, UK
Dr. Brian L. Cypher, California State University-Stanislaus, Bakersfield, CA
Dr. S.S. Talmale, Zoological Survey of India, Pune, Maharashtra, India
Prof. Karan Bahadur Shah, Budhanilkantha Municipality, Kathmandu, Nepal
Dr. Susan Cheyne, Borneo Nature Foundation International, Palangkaraya, Indonesia
Dr. Hemanta Kafley, Wildlife Sciences, Tarleton State University, Texas, USA

Other Disciplines

Dr. Aniruddha Belsare, Columbia MO 65203, USA (Veterinary)
Dr. Mandar S. Paingankar, University of Pune, Pune, Maharashtra, India (Molecular)
Dr. Jack Tordoff, Critical Ecosystem Partnership Fund, Arlington, USA (Communities)
Dr. Ulrike Streicher, University of Oregon, Eugene, USA (Veterinary)
Dr. Hari Balasubramanian, EcoAdvisors, Nova Scotia, Canada (Communities)
Dr. Rayanna Helleni Santos Bezerra, Universidade Federal de Sergipe, São Cristóvão, Brazil
Dr. Jamie R. Wood, Landcare Research, Canterbury, New Zealand
Dr. Wendy Collinson-Jonker, Endangered Wildlife Trust, Gauteng, South Africa
Dr. Rajeshkumar G. Jani, Anand Agricultural University, Anand, Gujarat, India
Dr. O.N. Tiwari, Senior Scientist, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
Dr. L.D. Singla, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
Dr. Rupika S. Rajakaruna, University of Peradeniya, Peradeniya, Sri Lanka
Dr. Bharat Baviskar, Wild-CER, Nagpur, Maharashtra 440013, India

Reviewers 2019–2021

Due to paucity of space, the list of reviewers for 2018–2020 is available online.

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.

Print copies of the Journal are available at cost. Write to:

The Managing Editor, JoTT,
c/o Wildlife Information Liaison Development Society,
43/2 Varadarajulu Nagar, 5th Street West, Ganapathy, Coimbatore,
Tamil Nadu 641035, India
ravi@threatenedtaxa.org

Journal of Threatened Taxa is indexed/abstracted in Bibliography of Systematic Mycology, Biological Abstracts, BIOSIS Previews, CAB Abstracts, EBSCO, Google Scholar, Index Copernicus, Index Fungorum, JournalSeek, National Academy of Agricultural Sciences, NewJour, OCLC WorldCat, SCOPUS, Stanford University Libraries, Virtual Library of Biology, Zoological Records.

NAAS rating (India) 5.64

OPEN ACCESS

The Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservation globally by publishing peer-reviewed articles online every month at a reasonably rapid rate at www.threatenedtaxa.org. All articles published in JoTT are registered under [Creative Commons Attribution 4.0 International License](#) unless otherwise mentioned. JoTT allows unrestricted use, reproduction, and distribution of articles in any medium by providing adequate credit to the author(s) and the source of publication.

www.threatenedtaxa.org

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print)

January 2023 | Vol. 15 | No. 1 | Pages: 22355–22558

Date of Publication: 26 January 2023 (Online & Print)

DOI: 10.11609/jott.2023.15.1.22355-22558

Communications

Asiatic Black Bear *Ursus thibetanus* attacks in Kashmir Valley, India

– Aaliya Mir, Shanmugavelu Swaminathan, Rashid Y. Naqash, Thomas Sharp & Attur Shanmugam Arun, Pp. 22355–22363

Food habits of the Red Fox *Vulpes vulpes* (Mammalia: Carnivora: Canidae) in Dachigam National Park of the Kashmir Himalaya, India

– Kulsum Ahmad Bhat, Bilal A. Bhat, Bashir A. Ganai, Aamir Majeed, Naziya Khurshid & Muniza Manzoor, Pp. 22364–22370

Status distribution and factors affecting the habitat selection by Sambar Deer *Rusa unicolor* in Pench Tiger Reserve, Madhya Pradesh, India

– Abdul Haleem & Orus Ilyas, Pp. 22371–22380

Assessing illegal trade networks of two species of pangolins through a questionnaire survey in Nepal

– Nikita Phuyal, Bipana Maiya Sadadev, Reeta Khulal, Rashmi Bhatt, Santosh Bajagain, Nirjala Raut & Bijaya Dhami, Pp. 22381–22391

First occurrence record of Indian Roundleaf Bat *Hipposideros lankadiva* in Rajasthan, India

– Dharmendra Khandal, Dau Lal Bohra & Shyamkant S. Talmale, Pp. 22392–22398

Food availability and food selectivity of Sri Lanka Grey Hornbill *Ocyceros gingalensis* Shaw, 1811 in Mihintale Sanctuary, Sri Lanka

– Iresha Wijerathne, Pavithra Panduwawala & Sriyani Wickramasinghe, Pp. 22399–22409

Conservation significance of Changaram wetlands - a key wintering site for migratory shorebirds and other waterbirds in the western coast of Kerala, India

– Jasmine Anand, H. Byju, Aymen Nefla, S. Abhijith, Omer R Reshi & K.M. Aarif, Pp. 22410–22418

Long-term monitoring of pelicans in National Chambal Sanctuary, India

– Lala A.K. Singh & Rishikesh Sharma, Pp. 22419–22429

A checklist of avifauna of Mangalore University, Karnataka, India

– K. Maxim Rodrigues, K. Vineeth Kumar, Vivek Hasyagar, M.C. Prashantha Krishna & Deepak Naik, Pp. 22430–22439

Biology of *Bhutanitis ludlowi* Gabriel, 1942 (Lepidoptera: Papilionidae) Bumdeling Wildlife Sanctuary, Bhutan

– Tshering Dendup, Namgay Shacha, Karma Tempa & Tez Bdr Ghalley, Pp. 22440–22447

Biodiversity of butterflies (Lepidoptera: Rhopalocera) in the protected landscape of Nandhour, Uttarakhand, India

– Hem Chandra, Manoj Kumar Arya & Aman Verma, Pp. 22448–22470

A comparison of four sampling techniques for assessing species richness of adult odonates at riverbanks

– Apeksha Darshetkar, Ankur Patwardhan & Pankaj Koparde, Pp. 22471–22478

Floristic diversity of native wild ornamental plants of Aravalli Hill Range: a case study from district Rewari, Haryana, India

– Pradeep Bansal, Amrender Singh Rao, Surender Singh Yadav, M.S. Bhandoria & S.S. Dash, Pp. 22479–22493

Flowering and fruiting of Tape Seagrass *Enhalus acoroides* (L.f.) Royle from the Andaman Islands: observations from inflorescence buds to dehiscent fruits

– Swapnali Gole, Sivakumar Kuppusamy, Himansu Das & Jeyaraj Antony Johnson, Pp. 22494–22500

Short Communications

Status of Swamp Deer *Rucervus duvaucelii duvaucelii* (G. Cuvier, 1823) in grassland-wetland habitats in Dudhwa Tiger Reserve, India

– Sankarshan Rastogi, Ashish Bista, Sanjay Kumar Pathak, Pranav Chanchani & Mudit Gupta, Pp. 22501–22504

First photographic evidence of Indian Pangolin *Manis crassicaudata* Geoffroy, 1803 (Mammalia: Pholidota: Manidae), in Colonel Sher Jung National Park, Himachal Pradesh, India

– Nidhi Singh, Urjit Bhatt, Saurav Chaudhary & Salvador Lyngdoh, Pp. 22505–22509

The Marine Otter *Lontra felina* (Molina, 1782) (Mammalia: Carnivora: Mustelidae) along the marine protected areas in Peru

– José Pizarro-Neyra, Pp. 22510–22514

First record of the genus *Acropyga* Roger, 1862 (Hymenoptera: Formicidae: Formicinae) in Kerala, India

– Merin Elizabeth George & Gopalan Prasad, Pp. 22515–22521

First report of a coreid bug *Aurelianus yunnanensis* Xiong, 1987 (Hemiptera: Heteroptera: Coreidae) from India

– Hemant V. Ghate, Pratik Pansare & Rahul Lodh, Pp. 22522–22527

First record of the long-horned beetle *Niphona fuscatrix* (Fabricius, 1792) (Coleoptera: Cerambycidae: Lamiinae) from the Western Ghats, India

– Yogesh K. Mane, Priyanka B. Patil & Sunil M. Gaikwad, Pp. 22528–22532

Incidence of *Clinostomum complanatum* (Trematoda: Clinostomidae) in *Trichogaster fasciata* (Actinopterygii: Osphronemidae), the first report from Deepor Beel, Assam, India

– Bobita Bordoloi & Arup Kumar Hazarika, Pp. 22533–22537

Sauromatum horsfieldii (Araceae): a new addition to the flora of Manipur, northeastern India

– Kazuhrii Eshuo & Adani Lokho, Pp. 22538–22542

Rhynchosstiellia menadensis (Sande Lac.) E.B. Bartram and *R. scabriseta* (Schwagr.) Broth.: two new records of mosses (Brachytheciaceae: Bryophyta) for peninsular India

– V.K. Rajilesh, C.N. Manju & R. Prakashkumar, Pp. 22543–22547

Notes

Installation of hot boxes for conservation in the last nursery roost of Greater Horseshoe Bats *Rhinolophus ferrumequinum* in Austria

– Lukas Zangl, Alexander Gutstein, Wolfgang Paill, Edmund Weiss & Peter Sackl, Pp. 22548–22550

New prey record of giant ladybird beetle *Anisolemnia dilatata* (Fabricius) (Coccinellidae: Coleoptera) feeding on Som Plant Aphid *Aiceona* sp.

– Suprakash Pal, Biwash Gurung, Ponnusamy Natarajan & Partha Sarathi Medda, Pp. 22551–22555

Book Review

Book Review - Under the Feet of Living Things

Editors — Aparajita Datta, Rohan Arthur & T.R. Shankar Raman

– Review by Melito Prinson Pinto, Pp. 22556–22558

Publisher & Host

