Building evidence for conservation globally
First report of the beetle *Henosepilachna nana* (Kapur, 1950) (Coleoptera: Coccinellidae) from Maharashtra with special reference to molecular phylogeny and host plants

Priyanka B. Patil & Sunil M. Gaikwad

1.2 Department of Zoology, Shivaji University, Kolhapur, Maharashtra 416004, India.
1 priyankapatil7933@gmail.com (corresponding author), 2 smg_zoo@unishivaji.ac.in

Abstract: A ladybird beetle, collected from different localities of Kolhapur and Satara districts (Maharashtra) was identified as *Henosepilachna nana* (Kapur, 1950). The presence of this species in Maharashtra considerably extends its range to the north-west by about 700 km. Since this species is found on vegetables, Pumpkin (*Cucurbita* spp.), Cucumber (*Cucumis* spp.), and Karit fruit plant (*Cucumis* spp.). It is being recorded for the first time that this species is a pest of these vegetables. Also, molecular phylogeny has been studied for the first time in this species in which, this species is the sister taxon of *Henosepilachna boisduvali*. This species has been described briefly with colour photographs of male genitalia, female coxites and the 6th sternal plate of female, tarsi, & pronotum. *Henosepilachna nana* is being reported for the first time from Maharashtra and now the molecular data of this species is available.

Keywords: Epilachna, Epilachnini, GenBank, genitalia, first record, ladybug, phylogenetic tree, vegetable pest.
INTRODUCTION

The tribe Epilachnini (Mulsant 1846) comes under the subfamily Coccinellinae (Slipinski 2013; Seago et al. 2011) but previously it was considered as a separate subfamily Epilachninae of the family Coccinellidae (Szawaryn & Tomaszewska 2014). The members of this tribe are economically important and distributed throughout the world (Szawaryn et al. 2015), comprising 27 genera (Tomaszew ska & Szawaryn 2016). There are about 1,000 herbivorous species of this tribe that feeds on plant tissues and fluids (Giorgi et al. 2009; Bustamante-Navarrete et al. 2018).

The genus Epilachna is one of the genera of the subfamily Epilachninae in which hundreds of species from all over the world have been described and later many species were subsequently removed to other genera (Jadwiszczak & Węgrzynowicz 2003). Based on basal toothed tarsal claw and longitudinally divided sixth female abdominal sternite, Li & Cook (1961) raised a separate genus Henosepilachna from Epilachna. To date, there are about 110 described species of the genus Henosepilachna from Asia and Australia (Szawaryn 2011). There are 33 species of Henosepilachna in India (Poorani 2012; Poorani et al. 2021).

The male specimen collected from Nilgiri Hills, India has been described by Kapur (1950) as E. nana and its holotype is in the Zoological Survey of India (No. 3426/13). In the world catalogue of Coccinellidae, Jadwiszczak & Węgrzynowicz (2003) placed E. nana in the genus Henosepilachna, which is followed by Poorani (2012) in the updated checklist of Coccinellidae from Indian subregion and Borowski (2020) in the inventory of world Epilachninae. In the present study, we describe the detailed morphology of the male genitalia, 6th sternal plate, female genitalia and tarsi of H. nana along with coloured photographs. In addition, this species is being reported for the first time in Maharashtra through this communication and its molecular phylogeny has been given.

MATERIAL AND METHODS

Specimens of H. nana were collected on different vegetable crops by handpicking method from Halondi (Hatkanangale), Kanthewadi (Radhanagar) and Parite (Karveer) of Kolhapur district and Sajjangad and Yerad (Patan) of Satara district of Maharashtra, India (Image 1). Specimens were photographed on stereo zoom microscope LYNX LM-52-3621 using TCapture software and preserved dry and wet and deposited at the Department of Zoology, Shivaji University, Kolhapur. Captured images stacked in Helicon Focus 7 software. Measurements were taken in ImageJ software. The genitalia was dissected and photographed using the same microscope and software. Species was identified and confirmed based on the detailed taxonomic description provided by Kapur (1950) along with genitalia description.

Molecular analysis

Genomic DNA extraction was done by the manual CTAB method (Boopathi et al. 2020). PCR of extracted DNA was carried out using the primers LepF1-5’-ATTCAACCAAATCATAAAGATTTGG-3’ and LepR1-5’-TAAACTCTGGATGTCCAAAAATCA-3’ (Hebert et al. 2004; Wilson 2012). PCR amplified mitochondrial COI gene was sequenced by the Sanger sequencing method. The obtained sequence were submitted to GenBank. To construct the phylogenetic tree, sequences for the COI gene of Henosepilachna were downloaded from NCBI. A total of 54 sequences for eleven species of Henosepilachna and one for Epilachna were downloaded from NCBI GenBank (Table 1) of which Epilachna sp. is an outgroup.

Generated COI gene sequences were edited in BioEdit Sequence Alignment Editor Software. Multiple sequence alignment was carried out using MUSCLE (Edgar 2004) in MEGA 7 (Kumar et al. 2016). Phylogenetic analysis was done for COI sequences for 13 taxa.

Phylogenetic analysis was carried out using Maximum Likelihood (ML) method (Felsenstein 1981). MEGA 7 was used to find out the best-fit nucleotide model for the dataset under the corrected Akaike Information Criterion (AICc). The best nucleotide substitution model was T92+G, which is not implemented in the RAxML program, so we used the default model which was GTR + G (Lanave et al. 1984; Gu et al. 1995). ML analysis was performed on RAxML HPC2 (Stamatakis 2014) at the CIPRES portal (Miller et al. 2010). Bootstrap support values were obtained with the rapid bootstrap algorithm with 1000 bootstrap replicates.

RESULTS

Henosepilachna nana (Kapur, 1950)

Diagnostics: Length 6.0–6.6 mm, width 4.6–5.2 mm. The body is oval with 6 black elytral spots over grey background (Image 2a). The black elytral spots are surrounded by a brown ring. The dorsal body shows grey pubescence except for black spots. Brick red coloured pronotum with four black spots (Image 2m). In many examples, pronotal spots on the same side join to form a quadrate spot, which is nearer to the base than the apex and does not touch to anterolateral margins and pronotal median line (Image 2l). Scutellum brown, triangular, pointed at the elytral side (Image 2i). Ventrally brown except dark patches on metasternum and abdominal sternites. Tarsi are pseudotrimerous having bifid tarsal claws (Image 2o). The tarsal claw is with a basal tooth (Image 2p). Sixth abdominal sternite is divided in females (Image 2h) and emarginated in males (Image 2j).

Male genitalia: Penis is thin, with a slightly broad penis capsule (Image 2f). Penis apex is with V-shaped notch and a small projection at the notch base (Image 2d,e). Tegmen with paramere tip rounded having many setae at the apex and fewer setae on the distal half. Penis guide is uniformly curved at the distal half, curved and pointed at the apex (Image 2b,c).

Female genitalia: Female coxites quadrate with blunt corners, inner margin is straight except for a shallow notch at the base and with a pear-shaped small stylus with numerous setae (Image 2g).

Host plants: The specimens of *Henosepilachna nana* were found to be associated with Cucumber (*Cucumis* spp.), Pumpkin (*Cucurbita* spp.), and Karit fruit plant (*Cucumis* spp.). On the underside of leaves, in a bunch, approximately 20 elliptical, yellow, sparsely laid eggs were observed. Both the larvae and adults of *H. nana* skeletonize the leaves of the above vegetables by eating the chlorophyll and can act as a serious pest.
First report of the beetle Henosepilachna nana from Maharashtra Patil & Gaikwad

Table 1. Taxa used in phylogeny analysis with their GenBank accession numbers.

<table>
<thead>
<tr>
<th>Taxa</th>
<th>GenBank accession numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Henosepilachna niponica</td>
<td>LC228599, LC228594, LC228597, AB002185, LC228600</td>
</tr>
<tr>
<td>2 Henosepilachna pustulosa</td>
<td>AB300448, LC228587, AB300446, LC228586, AB495213, AB495212, AB495210, AB300447, AB300454, AB300457, AB495211, LC228585, AB300452, LC228588, AB300456, AB002183, AB300451, AB300453, AB300450, AB300449, LC228582</td>
</tr>
<tr>
<td>3 Henosepilachna vigintioctopunctata</td>
<td>KU234209, KU234206, KU234207, KU234208, KU234204, KU234205, KU234199, KU234210, KU234203, KU234201, KU234200, AB002180, KU234211, KU234202</td>
</tr>
<tr>
<td>4 Henosepilachna yasutomii</td>
<td>LC228592, AB002184</td>
</tr>
<tr>
<td>5 Henosepilachna enneasticta</td>
<td>AB002173</td>
</tr>
<tr>
<td>6 Henosepilachna pusillanima</td>
<td>MH395854, AB002177, MT985168</td>
</tr>
<tr>
<td>7 Henosepilachna implicata</td>
<td>MT985166</td>
</tr>
<tr>
<td>8 Henosepilachna sp. 1</td>
<td>MH395855</td>
</tr>
<tr>
<td>9 Henosepilachna sp. 2</td>
<td>AB002174</td>
</tr>
<tr>
<td>10 Henosepilachna boisduvali</td>
<td>AB002175</td>
</tr>
<tr>
<td>11 Henosepilachna septima</td>
<td>KT693136, AB002176, KX503056, MT98516S</td>
</tr>
<tr>
<td>Epilachna sp.</td>
<td>AB002179</td>
</tr>
</tbody>
</table>

described by Gordon (1975) is different from E. nana having different characteristics than E. nana which was described by Kapur (1950). Later, Kapur informed Gordon that the nomenclature E. nana is already given to one ladybird species and then Gordon (1985) replaced the E. nana name with E. minuta. The Holotype of E. nana was collected in 1892 and paratypes were collected in 1914 from Nilgiri Hills and Parambikulam (Kerala), respectively (Kapur 1950). The species is distributed over the Nilgiri Hills of southern India (Kapur 1950; Poorani 2012; Borowski 2020). The localities in Maharashtra, which are being reported in the present article, will add H. nana to the Fauna of Maharashtra, proving that the range extension of this species towards the north-west by about 700 km.

According to the illustrations and description given by Kapur (1950), the specimens recorded during the study are treated here as H. nana. Every specimen of H. nana collected during the study show 12 elytral spots without any variation in the count. Based on the number of elytral spots, H. nana differs from the other Henosepilachna species. The species H. boisduvali is yellowish-red having a median black pronotal spot and 12 elytral spots (Li & Cook 1961; Li 1993). The species H. nana is varying from H. boisduvali in having two spots present on each side of the median line, there is no median pronotal spot and the median area is always spotless. In the male genitalia, the penis tip of

of cucurbitaceous plants. Under laboratory conditions, conspecific egg predation by this species was observed (Image 2n).

Phylogeny (Figure 1): COI gene sequences for Henosepilachna nana generated during this study were first time submitted to NCBI GenBank under accession numbers ON220741 (for SUKDZLB94) and ON220742 (for SUKDZLB311). The phylogenetic tree is rooted with numbers ON220741 (for SUKDZLB94) and ON220742 (for SUKDZLB311). The phylogenetic tree is rooted with the first sub-clade, H. septima and Henosepilachna sp.1 are the sister taxon to all remaining species with high support (bootstrap (BS) 99). The second sub-clade, H. boisduvali is sister taxa to H. nana with a high bootstrap value (BS 88). Within the second sub-clade, Henosepilachna sp.2 and H. implicata are sisters to H. pusillanima with high support (BS 98). The third sub-clade shows three different Henosepilachna sp. named H. vigintioctopunctata showing its variation among its congeners. The sub-clade at the top of the tree shows two nodes, one for H. enneasticta and the other for H. vigintioctopunctata complex consisting of H. niponica, H. pustulosa, H. yasutomii, and H. vigintioctopunctata. The species H. nana is genetically closer to H. boisduvali than other congeners.

DISCUSSION

Kapur (1950) wrote a note on Epilachna ocellata with a description of three species, viz., E. nana, E. anita, and E. manipurensis. It includes details of identification and genitalia description along with images of all four species. After 25 years, Gordon (1975) revised Epilachninae of the Western hemisphere in which he described one new species named E. nana. However, the species which was described by Gordon (1975) is different from E. nana having different characteristics than E. nana which was described by Kapur (1950). Later, Kapur informed Gordon that the nomenclature E. nana is already given to one ladybird species and then Gordon (1985) replaced the E. nana name with E. minuta. The Holotype of E. nana was collected in 1892 and paratypes were collected in 1914 from Nilgiri Hills and Parambikulam (Kerala), respectively (Kapur 1950). The species is distributed over the Nilgiri Hills of southern India (Kapur 1950; Poorani 2012; Borowski 2020). The localities in Maharashtra, which are being reported in the present article, will add H. nana to the Fauna of Maharashtra, proving that the range extension of this species towards the north-west by about 700 km.

According to the illustrations and description given by Kapur (1950), the specimens recorded during the study are treated here as H. nana. Every specimen of H. nana collected during the study show 12 elytral spots without any variation in the count. Based on the number of elytral spots, H. nana differs from the other Henosepilachna species. The species H. boisduvali is yellowish-red having a median black pronotal spot and 12 elytral spots (Li & Cook 1961; Li 1993). The species H. nana is varying from H. boisduvali in having two spots present on each side of the median line, there is no median pronotal spot and the median area is always spotless. In the male genitalia, the penis tip of
Figure 1. Maximum likelihood phylogenetic tree for *Henosepilachna* species based on COI sequences.

H. nana is similar to *H. boisduvali* but differs in having a small projection at the base of the notch. Poorani et al. (2021) have also mentioned 5–7 pronotal spots in *H. implicata*. In *H. nana*, the total number of pronotal spots is 2–4 and elytral black spots are 12 (6 on each elytron) which agrees with the observations of Kapur (1950) and confirms the identification of *H. nana*. The species *H. implicata* is with 20–28 black spots on the elytra, resembles other 28-spotted species of *Henosepilachna* such as *H. vigintioctopunctata*, *H. septima*, and *H. pusillanima* (Poorani et al. 2021). Although the tegmen of *H. implicata* and *H. nana* look a bit similar but it differs in their penis structure. The penis apex in *H. implicata* is with a shallow notch (Poorani et al. 2021) while the penis apex in the species under study is with a deep notch having a central small projection at the base of the notch which is similar to the penis illustration of *H. nana* given by Kapur (1950). So far, no information is available about the host plant of *H. nana*. Kapur (1950) wrote a note on *E. ocellata* including *H. nana* in which he mentioned that *E. ocellata* is found on potato but he does not mention the host of *H. nana*. According to Katoh et al. (2014), adults and larval stages of all Epilachnini species show phytotrophic feeding nature. The record of this species on the Cucurbitaceae plant is providing new host records for the species under study and related species.
First report of the beetle *Henosepilachna nana* from Maharashtra

Patil & Gaikwad

In the present study, *H. nana* specimens were observed on the leaves of pumpkin, cucumber, and karit fruit plant which are additional host records.

A recent study on DNA sequence data and phylogenetic tree of *Henosepilachna* species includes five species (Poorani et al. 2021) excluding species *H. nana*. Therefore, the COI gene sequence of *H. nana* is becoming available in the NCBI database for the first time. The present consensus tree arrangement shows the co-evolution of species from common ancestors. When the phylogenetic tree of *H. nana* was constructed using COI gene sequences of eleven species of the
Henosepilachna genus and one outgroup Epilachna sp. from the same family from NCBI's database. The species H. nana shows variation among its congeners.

REFERENCES

Article

Documenting butterflies with the help of citizen science in Darjeeling-Sikkim Himalaya, India
-- Aditya Pradhan, Rohit George & Sailendra Dewan, Pp. 22771–22790

Communications

Determinants of diet selection by Blackbuck Antilope cervicapra at Point Calimere, southern India: quality also matters
-- Selvarasu Sathishkumar, Subhasish Arandhara & Nagarajan Baskaran, Pp. 22791–22802

An update on the conservation status of Tibetan Argali Ovis ammon hodgsonii (Mammalia: Bovidae) in India
-- Munib Khanyari, Rigzen Dorjay, Sherab Lobzang, Karma Sonam & Kulbhusansingh Ramesh Suryawanshi, Pp. 22803–22812

An annotated checklist of the avifauna of Karangadu mangrove forest, Ramanathapuram, Tamil Nadu, with notes on the site’s importance for waterbird conservation

Habitats and nesting sites of Streaked Weaver Ploceus monyar in select wetlands in the northern districts of Tamil Nadu, India
-- M. Pandian, Pp. 22823–22833

Genetic evidence on the occurrence of Channa harcourtbutleri (Annandale, 1918) in Eastern Ghats, India: first report from mainland India
-- Boni Amin Laskar, Harikumar Adimalla, Shantanu Kundu, Deepa Jaiswal & Pallavi Das & V.P. Uniyal, Pp. 22834–22849

First report of the beetle Henosepilachna nana (Kapur, 1950) (Coleoptera: Coccinellidae) from Maharashtra with special reference to molecular phylogeny and host plants
-- Priyanka B. Patil & Sunil M. Gaikwad, Pp. 22859–22865

Assessment of population, habitat, and threats to Cycas pectinata Buch.-Ham. (Cycadaceae), a vulnerable cycad in Bhutan
-- Sonam Tobgay, Tenjur Wangdi, Karma Wangchuck, Jamyang Dolkar & Tshering Nidup, Pp. 22866–22873

Ecological niche modeling to find potential habitats of Vanda thwaitesii, a notified endangered orchid of Western Ghats, India
-- S. William Decruse, Pp. 22874–22882

Occurrence of opportunistic invasive macroalgal genus Caulerpa and Halimeda opuntia in coral reefs of Gulf of Mannar