Journal of Threatened Taxa | www.threatenedtaxa.org | 26 April 2023 | 15(4): 23075–23082

 

 

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print) 

https://doi.org/10.11609/jott.7290.15.4.23075-23082

#7290 | Received 02 April 2021 | Final received 20 August 2022 | Finally accepted 10 April 2023

 

 

First record of Tanaorhinus viridiluteata Walker, 1861 (Lepidoptera: Geometridae: Geometrinae) from Mizoram, India

 

B. Lalnghahpuii 1, Lalruatthara 2  & Esther Lalhmingliani 3

 

1,2,3 Systematics and Toxicology Laboratory, Department of Zoology, Mizoram University, Aizawl, Mizoram 796004, India

1 lalnanaui@gmail.com, 2 ruatthara@gmail.com, 3 es_ralte@yahoo.in (corresponding author)

 

 

Editor: Jatishwor Singh Irungbam, Sphingidae Museum, Pribram, Czech Republic.           Date of publication: 26 April 2023 (online & print)

 

Citation: Lalnghahpuii, B., Lalruatthara & E. Lalhmingliani (2023). First record of Tanaorhinus viridiluteata Walker, 1861 (Lepidoptera: Geometridae: Geometrinae) from Mizoram, India. Journal of Threatened Taxa 15(4): 23075–23082. https://doi.org/10.11609/jott.7290.15.4.23075-23082

 

Copyright: © Lalnghahpuii et al. 2023. Creative Commons Attribution 4.0 International License.  JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

 

Funding: This paper is an outcome of the project funded by Science and Engineering Research Board [Grant File. No. EEQ/2017/000805], Department of Science and Technology, New Delhi, Government of India.

 

Competing interests: The authors declare no competing interests.

 

Author details: B. Lalnghahpuii is currently a PhD candidate in the Department of Zoology, Mizoram University, Aizawl Mizoram. Her research interest is on the taxonomy of moths of the family Geometridae based on morphological and molecular approach. Lalruatthara is currently a PhD candidate in the Department of Zoology, Mizoram University, Aizawl, Mizoram. His area of interest includes morphological and molecular studies on Sphingid moths of Mizoram. Esther Lalhmingliani is an associate professor in the Department of Zoology, Mizoram University, Aizawl, Mizoram. Her research interest is on systematic and taxonomic studies of moths and herpetofauna.

 

Author contributions: BL—field survey, curation, morphological & molecular data collection, data analyses, writing original draft; LA—field survey, curation, morphological data collection, data analysis; EL—conceptualization, methodology analysis, morphological & molecular data analyses, writing original draft & review & editing, supervision.

 

Acknowledgements: We thank Isaac Zosangliana and K. Lalhmangaiha for their help in field work; Samuel Lalronunga for his help in preparation of map and figures; the chief wildlife warden, Environment, Forest and Climate Change Department, Government of Mizoram for issuing research and collection permit of entomofauna in Mizoram (A.33011/5/2011-CWLW/Vol.-II/2). We thank the Science and Engineering Research Board (SERB), Department of Science & Technology, Government of India for providing financial assistance and fellowship to BL carry out this research under EEQ (North Eastern Region Empowerment and Equity Opportunities for Excellence in Science) number EEQ/2017/000805.

 

 

Abstract: Very little work has been done to document the moth fauna of the Mizoram state in northeast India. An emerald moth collected from three localities in Aizawl District of Mizoram was identified as Tanaorhinus viridiluteata Walker, 1861 based on morphological and molecular studies. This species has been described briefly with colour photographs of male and female genitalia. Partial mitochondrial COI gene was amplified from these specimens for molecular analysis. This study represents a first record of the genus Tanaorhinus and species T. viridiluteata from Mizoram State.

 

Keywords: COI, genitalia, maximum likelihood, morphology, northeastern India, type locality.

 

 

 

Introduction

 

Mizoram State is situated in the southernmost tip of northeastern India, sandwiched by Myanmar in the east and Bangladesh in the west. Though the area falls within the Indo-Burma biodiversity hotspot (Mittermeier et al. 2004), the flora and fauna of the area are poorly documented. However, recent studies taken up in the area resulted in the description of several species new to science (e.g., Lalronunga et al. 2013; Giri et al. 2019; Kirti et al. 2019; Naumann & Lalhmingliani 2019). Hebert et al. (2003) proposed the use of the mitochondrial gene cytochrome c oxidase I (COI) as a reliable marker for accurate species identification, particularly in animals.  Though faced with many criticisms and pitfalls (e.g., Tautz et al. 2003; Blaxter 2004), it is a useful tool for the identification of lepidopterans in general (Hajibabaei et al. 2006; Kim et al. 2020) and geometrid moths in particular (Brehm et al. 2016; Kumar et al. 2019).

Geometrinae (commonly known as emerald moths) is the fourth largest subfamily in the family Geometridae, with more than 27,006 valid species-group names, including 23,872 species and 3,123 subspecies worldwide (Rajaei et al. 2022). The genus Tanaorhinus Butler, 1879 contains 16 nominal species and five subspecies (Scoble & Hausmann 2007; Orhant 2014; Tautel 2014; Rajaei et al. 2022) all are restricted to Asia (Scoble 1999). However, Ban et al. (2018) revealed that the genus Geometra and Tanaorhinus are polyphyletic and revived the genus Loxochila Butler 1881 to accommodate G. burmensis, G. fragilis, G. sinoisaria, G. smaragdus, T. kina, and T. tibeta. They further speculated Tanaorhinus to be a junior synonym of Geometra. However, further molecular studies with the inclusion of more taxa are required for formal taxonomic action (Ban et al. 2018). Five species, viz., T. celebensis Yazaki, 1995, T. kina kina Swinhoe, 1893, Tanaorhinus kina embrithes Prout, 1934, T. rafflessi (Moore, [1860]), T. reciprocate reciprocata (Walker, 1861), and T. viridiluteata (Walker, 1861), were recorded from India (Kirti et al. 2019). Walker (1861)  described T. viridiluteata from Darjeeling in West Bengal State of India. Apart from the type locality, the species was further recorded from Arunachal Pradesh, Assam, and Nagaland states in northeastern India, southern China, Taiwan, and Sundaland (Anonymous 2021; Holloway 2021). The species is characterized by dark green colour with two black cell specks enclosed by a bluish tinge on both sides of the forewing, ante and post medial waved lines closed together with irregular white suffusion on dorsal side of the body. The ventral side of the forewing is heavily suffused with brown and mauve and inner margin of the hindwing is excised forming heart shaped gap. This species is most similar to T. rafflesia, but can be distinguished from it by the presence of broad, uniform, rufous border in the ventral hindwing (vs. narrower and separated from the margin by a yellow zone in T. rafflesia) in males; and harpe in male genitalia more spatulated (vs. more acute in T. rafflesia). Herein, we report the first distribution records of T. viridiluteata from the state Mizoram in northeastern India.

 

 

Materials and Methods

 

Surveys were conducted in Mizoram State (see materials examined section under results and discussion for details) using a 160 W mercury vapour bulb on a 4 ft. by 6 ft. white cloth screen with a HondaTM EP1000 portable generator as a power source. Specimens were killed in a killing jar containing petroleum ether, which were then removed and placed on butter paper with their wings folded vertically. Pinning, spreading, and labeling of specimens were done in the laboratory. Specimens were deposited in the Entomological Collections of the Systematics and Toxicology Laboratory, Mizoram University, Mizoram, India (MZUEC). Tissue (three legs each) was collected in a 2 ml centrifuge tube for genomic DNA extraction. The genitalia of each specimen were dissected following Sondhi (2020). Genomic DNA was extracted from the tissue sample using 10 µl of 20 mg/ml of Proteinase K with 56°C overnight treatment following standard Phenol: Chloroform: Isoamyl alcohol method (Sambrook & Russell 2001). We amplified a partial mitochondrial COI gene using the primer pair LCO-1490 and HCO-2198 (Folmer et al. 1994). PCR amplification was carried out in 25 μl aliquots containing 12.5 μL of EmeraldAmp® GT PCR Master Mix (2X) (TaKaRa Bio, Japan), 1 μl of each forward and reverse primer, 2 μl of genomic DNA, and 8.5 μl of molecular grade H2O using ProFlex™ 3 x 32-well PCR system (Applied Biosystems™, USA). The PCR conditions were as follows: initial denaturation was performed at 95°C for 5 min, followed by 35 or 40 cycles of 30 s at 94°C, 30 s annealing from 42°C to 50°C (Tables S3 and S4), 30 s at 72°C, with a final 5 min extension at 72°C. Amplified PCR products were ran on 1.5% agarose gel, viewed in IG-618GD (iGene Labserve, India) gel documentation system. The purified PCR products were sequenced bidirectionally by Sanger sequencing technology at geneOmbio Technologies Private Limited (Maharashtra, India). The chromatograms and raw sequences were edited using FinchTV 1.4.0 (Geospiza Inc., USA ) and the consensus sequences were checked by BLAST search (https://blast.ncbi.nlm.nih.gov/Blast.cgi) and ORF finder (https://www.ncbi.nlm.nih.gov/orffinder/). The generated sequences (615–618 base pairs) were submitted to GenBank (NCBI) to acquire the accession numbers (MW855164– MW855166). The newly generated sequences were compared with other sequences of Tanaorhinus available in GenBank (Supplementary Table 1). Based on the lowest BIC (Bayesian Information Criterion) and AICc scores (Akaike Information Criterion, corrected), best fit nucleotide substitution model for the present COI dataset was GTR+G+I. A Maximum Likelihood (ML) tree was constructed with 1000 bootstraps in MEGA X (Kumar et al. 2018). The barcode data of Chlorozancla falcatus (MG014741) was used as an outgroup in the present phylogenetic analysis. The uncorrected pairwise genetic distances (p-distances) between and within the studied species were estimated by MEGA X (Kumar et al. 2018).

 

Material examined

MZUEC 20210001–20210005; 03.xii.2020; Hmuifang community forest reserve, Aizawl District, Mizoram; coll. B. Lalnghahpuii & party; (23.00510N 92.75210E, elevation 1,480 m). MZUEC 20210006–20210007; 23.x.2020; 01 female (wingspan 62 mm), 01 male (wingspan 65 mm); Mizoram University Campus, Aizawl District, Mizoram; coll. B. Lalnghahpuii & party; (23.73700N 92.66360E, elevation 790 m). MZUEC 20210008–20210009; 15.xi.2019; 01 female (wingspan 68 mm), 01 male (wingspan 60); Pachhunga University Campus, Aizawl District, Mizoram; coll. B. Lalnghahpuii & party; (23.72340N 92.73070E, elevation 815 m (Image 1A)).

Diagnosis: Wingspan 60–64 mm in male (four specimens) and 72 mm in female (one specimen). Upperside of forewing dark green in colour with two black cell specks enclosed by a bluish tinge; ante and post medial waved lines closed together with irregular white suffusion on dorsal side of the body; lunulate markings absent beyond the postmedial line; obscure white marks on submarginals. Underside of forewing green with costal area to beyond cell purplish-grey; oblique postmedial line with rufous patches at apex and outer angle; inner margin white. Upperside of hind wing dark green in colour except for costa which is white. Underside of hindwing yellowish with traces of postmedial line; outer area rufous; outer marginal areas yellowish (Image 1B).   

The specimens collected from the three localities in Mizoram -agreed with the description of Tanaorhinus viridiluteata in possessing the following characters: dark green colour with two black cell specks enclosed by a bluish tinge on both sides of the forewing; ante and post medial waved lines closed together with irregular white suffusion on the dorsal side of the body; ventral side of forewings heavily suffused with brown and mauve; presence of a broad, uniform, rufous border in the ventral hindwing in males; slightly spatulated harpe in male genitalia. The maximum likelihood (ML) tree (Image 1E) further revealed that the sample sequences from Mizoram, India, formed a clade with the sequences of T. viridiluteata along with an undetermined species of Tanaorhinus with an uncorrected genetic distance (p-distance) of only 0.002–0.008. In the ML tree, T. viridiluteata and T. rafflesia are sister species, which is not surprising as the two species are very similar morphologically. The genetic distance between the two species ranges from 0.053–0.061.

 

 

Discussion and Conclusion

 

As far as Mizoram is concerned, little work has been done to document the moth fauna of the state (Ghosh 2007; Kirti & Singh 2014, 2016; Kirti et al. 2014, 2019; Lalhmingliani et al. 2013, 2014; Lalhmingliani 2015), but recent studies have led to the description of several new species (e.g., Kirti et al. 2019, Naumann & Lalhmingliani 2019). Ghosh (2007) and Kirti et al. (2014, 2019) reported on geometrid moths from Mizoram State but did not mention the genus Tanaorhinus. The present study on Tanaorhinus viridiluteata from Mizoram represents the first record for this genus and species in the state.

 

For image - - click here for complete PDF

 

References

 

Anonymous (2021). Tanaorhinus viridiluteatus (Walker, 1861). In Sondhi, S., Y. Sondhi, P. Roy & K. Kunte (Chief Editors). Moths of India, v. 2.31. Indian Foundation for Butterflies. https://www.mothsofindia.org/sp/355696/Tanaorhinus-viridiluteatus

Ban, X, N. Jiang, R. Cheng, D. Xue & H. Han (2018). Tribal classification and phylogeny of Geometrinae (Lepidoptera: Geometridae) inferred from seven gene regions. Zoological Journal of the Linnean Society 184(3): 653–672. https://doi.org/10.1093/zoolinnean/zly013

Blaxter, M.L. (2004). The promise of a DNA taxonomy. Philosophical Transactions of The Royal Society B Biological Sciences 359: 669–679. https://doi.org/10.1098/rstb.2003.1447

Brehm, G., P.D.N. Hebert, R.K. Colwell, M.-O. Adams, F. Bodner, K. Friedemann, L. Möckel & K. Fiedler (2016). Turning up the heat on a hotspot: DNA barcodes reveal 80% more species of Geometrid Moths along an Andean Elevational Gradient. PLoS ONE 11(3): e0150327. https://doi.org/10.1371/journal.pone.0150327

Folmer, O., M. Black, W. Hoeh, R. Lutz & R. Vrijenhoek (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294–299.

Giri, V.B., R. Chaitanya, S. Mahony, S. Lalronunga, C. Lalrinchhana, A. Das, S. Vivek, K. Praveen & V. Deepak (2019). On the systematic status of the genus Oriocalotes Günther, 1864 (Squamata: Agamidae: Draconinae) with the description of a new species from Mizoram state, Northeast India. Zootaxa 4638(4): 451–484. https://doi.org/10.11646/zootaxa.4638.4.1

Ghosh, S.K. (2007). Lepidoptera: Geometridae, pp. 389–398. In: Director (ed.). Fauna  of Mizoram. State Fauna Series No.14. Zoological Survey of India, Kolkata, India, 691 pp.

Hajibabaei, M., D.H. Janzen, J.M. Burns, W. Hallwachs & P.D.N. Hebert (2006). DNA barcodes distinguish species of tropical Lepidoptera. Proceedings of the National Academy of Sciences of the United States of America 103(4): 968–971. https://doi.org/10.1073/pnas.0510466103

Hebert, P.D.N., A. Cywinska, S.L. Ball & J.R. deWaard (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society B: Biological Sciences 270: 313–321. https://doi.org/10.1098/rspb.2002.2218

Holloway, J.D. (1996). The moths of Borneo (part 9); Family Geometridae: Subfamilies Oenochrominae, Desmobathrinae, Geometrinae. Malayan Nature Journal 49: 147–326.

Kim, S., Y. Lee, M. Mutanen, J. Seung & S. Lee (2020). High functionality of DNA barcodes and revealed cases of cryptic diversity in Korean curved-horn moths (Lepidoptera: Gelechioidea). Scientific Reports 10: 6208. https://doi.org/10.1038/s41598-020-63385-x

Kirti, J.S. & N. Singh (2014). Arctiid Moths of India. Volume 1. Nature Books India, New Delhi, India, 205pp.

Kirti, J.S. & N. Singh (2016). Arctiid Moths of India. Volume 1. Nature Books India, New Delhi, India, 214pp.

Kirti, J.S., K. Chandra, A. Saxena & N. Singh (2019). Geometrid moth of India. Nature Books India, New Delhi, India, 296 pp.

Kumar, S., G. Stecher, M. Li, C. Knyaz & K. Tamura (2018). MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution 35(6): 1547–1549. https://doi.org/10.1093/molbev/msy096

Kumar, V., S. Kundu, R. Chakraborty, A. Sanyal, A. Raha, O. Sanyal, R. Ranjan, A. Pakrashi, K. Tyagi & K. Chandra (2019). DNA barcoding of Geometridae moths (Insecta: Lepidoptera): a preliminary effort from Namdapha National Park, Eastern Himalaya. Mitochondrial DNA Part B 4(1): 309–315. https://doi.org/10.1080/23802359.2018.1544037

Lalhmingliani, E. (2015). Biodiversity and molecular phylogeny of wild silk moths in Mizoram based on 16S rRNA and CO1 Gene markers. PhD Thesis. Department of Zoology, Mizoram University, v+160 pp.

Lalhmingliani, E., G. Gurusubramanian, R. Lalfelpuii, N.S. Kumar, S. Lalronunga & H.T. Lalremsanga (2013). Wild silk moth (Lepidoptera: Saturniidae) of Mizoram University campus, Aizawl, Mizoram, northeast India, pp. 223–228. In: Singh, K.K., K.C. Das & H. Lalruatsanga (eds.). Bioresources and Traditional Knowledge of Northeast India. Mizo Post Graduate Science Society, India, 424 pp.

Lalhmingliani, E., G. Gurusubramanian, H.T. Lalremsanga, C. Lalrinchhana & S. Lalronunga (2014). Wild silk moths (Lepidoptera: Saturniidae) of Hmuifang community forest, Aizawl Mizoram: Conservation concerns, pp. 261–267. In: Lalnuntluanga, J. Zothanzama, Lalramliana, Lalduhthlana & H.T. Lalremsanga (eds.). Issues and Trends of Wildlife Conservation in Northeast India. Mizo Academy of Sciences, India, 277 pp.

Lalronunga, S., Lalnuntluanga & Lalramliana (2013). Schistura maculosa, a new species of loach (Teleostei: Nemacheilidae) from Mizoram, northeastern India. Zootaxa 3718(6): 583–590. https://doi.org/10.11646/zootaxa.3718.6.6

Mittermeier, R.A., P. Robles-Gil, M. Hoffmann, J. Pilgrim, T. Brooks, C.G. Mittermeier, J. Lamoreux & G.A.B. da Fonseca (2004). Hotspots Revisited: Earth’s Biologically Richest and Most Endangered Terrestrial Ecoregions. CEMEX, Mexico City, 390 pp.

Naumann, S. & E. Lalhmingliani (2019). Notes on taxa of the Salassa lemaii group (Lepidoptera: Saturniidae) with the description of a new species from Mizoram, India. Bionotes 21(4): 152–158.

Orhant, G. (2014). Contribution à la connaissance du genre Tanaorhinus - Description d’une nouvelle espèce des Moluques. Découverte et description du mâle de Tanaorhinus tibeta Chu, 1982 (Lepidoptera, Geometridae, Geometrinae). Bulletin de la Société Entomologique de Mulhouse 70: 59–64.

Rajaei, H., A. Hausmann, M. Scoble, D. Wanke, D. Plotkin, G. Brehm, L. Murillo-Ramos & P. Sihvonen (2022). An online taxonomic facility of Geometridae (Lepidoptera), with an overview of global species richness and systematics. Integrative Systematics 5(2): 145–192. https://doi.org/10.18476/2022.577933

Sambrook, J. & D.W. Russell (2001). Molecular Cloning: A Laboratory Manual. 3rd Edition, Vol. 1, Cold Spring Harbor Laboratory Press, New York, 2344 pp.

Scoble, M.J. (1999). Geometrid moths of the world: a catalogue (Lepidoptera, Geometridae). Collingwood: CSIRO Publishing. 1200 pp.

Scoble, M.J. & A. Hausmann (2007). Online list of valid and available names of the Geometridae of the world. Available from: http://www.lepbarcoding.org/geometridae/species_checklists.php. Downloaded on 25 March 2021.

Sondhi, S., D.N. Basu, Y. Sondhi & K. Kunte (2020). A new species of Metallolophia Warren, 1895 (Lepidoptera: Geometridae: Geometrinae), and notes on M. opalina (Warren, 1893), from eastern Himalaya, India. Zootaxa 4838(2): 289–297. https://doi.org/10.11646/zootaxa.4838.2.9

Tautel, C. (2014). Deux nouveaux Tanaorhinus pour la Wallacea (Lepidoptera: Geometridae: Geometrinae). Antenor 1: 191–198.

Tautz, D., P. Acrtander, A. Minelli, R.H. Thomas & A.P. Vogler (2003). A plea for DNA taxonomy. Trends in Ecology & Evolution 18: 70–74. https://doi.org/10.1016/S0169-5347(02)00041-1

Walker, F. (1861). List of the specimens of Lepidopterous insects in the collection of the British Museum - Part XXII. London, 499–755 pp.

 

 

 

Supplementary Table 1. Cytochrome Oxidase subunit I (COI) gene sequences used for molecular analysis in this study.

 

Species

Voucher code

Collection Locality

GenBank accession number

References

1

Tanaorhinus viridiluteatus

IOZ LEP M 10029

Fujian, China

MG014838

Ban et al. 2018

2

Tanaorhinus viridiluteatus

IOZ LEP M 2325

Hainan, China

MG014839

Ban et al. 2018

3

Tanaorhinus viridiluteatus

IOZ LEP M 8110

Hainan, China

MG014840

Ban et al. 2018

4

Tanaorhinus viridiluteatus

IOZ LEP M 8283

Guangdong, China

MG014841

Ban et al. 2018

5

Tanaorhinus viridiluteatus

MZUEC 20210004

Mizoram, India

MW855164

Present study

6

Tanaorhinus viridiluteatus

MZUEC 20210006

Mizoram, India

MW855165

Present study

7

Tanaorhinus viridiluteatus

MZUEC20210008

Mizoram, India

MW855166

Present study

8

Tanaorhinus rafflesii

RMNH.INS.13846

Kalimantan Timur, Indonesia

HM387094

GenBank

9

Tanaorhinus rafflesii

RMNH.INS.14079

Kalimantan Timur, Indonesia

GU662706

GenBank

10

Tanaorhinus rafflesii

RMNH.INS.13847

Kalimantan Timur, Indonesia

GU662754

GenBank

11

Tanaorhinus rafflesii

RMNH.INS.13845

Kalimantan Timur, Indonesia

GU662818

GenBank

12

Tanaorhinus rafflesii

RMNH.INS.13843

Kalimantan Timur, Indonesia

GU662820

GenBank

13

Tanaorhinus sp.

Lep8581

China

MN132787

Wang et al. 2019

14

Tanaorhinus luteivirgatus

IOZ LEP M 16545

Yunnan, China

MG014835

Ban et al. 2018

15

Tanaorhinus reciprocata

IOZ LEP M 17064

Gansu, China

MG014837

Ban et al. 2018

16

Geometra albovenaria

IOZ LEP M 5523

Shaanxi, China

MG014759

Ban et al. 2018

17

Geometra euryagyia

IOZ LEP M 16429

Shaanxi, China

MG014760

Ban et al. 2018

18

Geometra glaucaria

IOZ LEP M 16501

Beijing, China

MG014764

Ban et al. 2018

19

Geometra neovalida

IOZ LEP M 4763

Shaanxi, China

MG014767

Ban et al. 2018

20

Geometra papilionaria

NS03

Avinurme, Estonia

GU580772

Wahlberg et al. 2010

21

Geometra sponsaria

IOZ LEP M 8581

Liaoning, China

MG014773

Ban et al. 2018

22

Geometra symaria

IOZ LEP M 9287

Hubei, China

MG014775

Ban et al. 2018

23

Geometra ussuriensis

IOZ LEP M 4682

Shaanxi, China

MG014776

Ban et al. 2018

24

Geometra valida

IOZ LEP M 8567

Liaoning, China

MG014779

Ban et al. 2018

25

Loxochila fragilis

IOZ LEP M 9212

Yunnan, China

MG014763

Ban et al. 2018

26

Loxochila kina

IOZ LEP M 17078

Tibet, China

MG014834

Ban et al. 2018

27

Loxochila sinoisaria

IOZ LEP M 9457

Sichuan, China

MG014769

Ban et al. 2018

28

Loxochila smaragdus

IOZ LEP M 16551

Yunnan, China

MG014770

Ban et al. 2018

29

Chlorozancla falcatus

IOZ LEP M 20201

Guangxi, China

MG014741

Ban et al. 2018

 

 

Supplementary Table 2. Uncorrected p-distances between Cytochrome Oxidase subunit I (COI) gene sequences used in the study. GenBank accession numbers are listed after the name of the species. Letters in bold indicates the newly generated sequences in this study.

 

Species

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

1

Geometra albovenaria (MG014759)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

Geometra euryagyia (MG014760)

0.089

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

Geometra fragilis (MG014763)

0.093

0.091

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

Geometra glaucaria (MG014764)

0.078

0.048

0.089

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

Geometra neovalida (MG014767)

0.042

0.070

0.068

0.055

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

Geometra papilionaria (GU580772)

0.091

0.078

0.112

0.074

0.086

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7

Geometra sinoisaria (MG014769)

0.118

0.116

0.095

0.106

0.112

0.116

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8

Geometra smaragdus (MG014770)

0.131

0.112

0.086

0.110

0.112

0.129

0.105

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9

Geometra sponsaria (MG014773)

0.065

0.061

0.089

0.057

0.040

0.089

0.122

0.116

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

Geometra symaria (MG014775)

0.093

0.076

0.110

0.067

0.084

0.044

0.114

0.131

0.082

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11

Geometra ussuriensis (MG014776)

0.072

0.068

0.086

0.065

0.049

0.087

0.110

0.118

0.061

0.084

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12

Geometra valida (MG014779)

0.023

0.072

0.082

0.057

0.029

0.087

0.114

0.118

0.042

0.082

0.059

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

13

Tanaorhinus viridiluteata (MG014838)

0.099

0.089

0.112

0.078

0.087

0.103

0.118

0.125

0.089

0.103

0.097

0.087

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

14

Tanaorhinus sp. (MN132787)

0.097

0.087

0.114

0.080

0.086

0.106

0.120

0.125

0.087

0.106

0.093

0.086

0.008

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

15

Tanaorhinus viridiluteata (MG014841)

0.097

0.087

0.110

0.076

0.086

0.103

0.116

0.124

0.087

0.103

0.095

0.086

0.002

0.006

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

16

Tanaorhinus viridiluteata (MG014840)

0.097

0.091

0.112

0.080

0.086

0.105

0.116

0.127

0.089

0.105

0.091

0.086

0.006

0.006

0.004

 

 

 

 

 

 

 

 

 

 

 

 

 

 

17

Tanaorhinus viridiluteata (MG014839)

0.095

0.086

0.110

0.078

0.084

0.106

0.120

0.122

0.086

0.106

0.091

0.084

0.008

0.004

0.006

0.006

 

 

 

 

 

 

 

 

 

 

 

 

 

18

Tanaorhinus rafflesii (HM387094)

0.095

0.086

0.106

0.080

0.082

0.101

0.120

0.127

0.080

0.097

0.074

0.074

0.055

0.055

0.053

0.057

0.051

 

 

 

 

 

 

 

 

 

 

 

 

19

Tanaorhinus rafflesii (GU662818)

0.097

0.087

0.108

0.082

0.084

0.101

0.124

0.127

0.082

0.097

0.076

0.076

0.059

0.059

0.057

0.061

0.055

0.004

 

 

 

 

 

 

 

 

 

 

 

20

Tanaorhinus rafflesii (GU662820)

0.097

0.087

0.108

0.082

0.084

0.101

0.124

0.127

0.082

0.097

0.076

0.076

0.059

0.059

0.057

0.061

0.055

0.004

0.000

 

 

 

 

 

 

 

 

 

 

21

Tanaorhinus rafflesii (GU662706)

0.097

0.087

0.108

0.082

0.084

0.101

0.124

0.127

0.082

0.097

0.076

0.076

0.059

0.059

0.057

0.061

0.055

0.004

0.000

0.000

 

 

 

 

 

 

 

 

 

22

Tanaorhinus rafflesii (GU662754)

0.095

0.086

0.106

0.080

0.082

0.099

0.122

0.129

0.080

0.095

0.074

0.074

0.057

0.057

0.055

0.059

0.053

0.006

0.002

0.002

0.002

 

 

 

 

 

 

 

 

23

Tanaorhinus viridiluteata (MW855166)

0.099

0.091

0.114

0.080

0.087

0.105

0.118

0.127

0.089

0.105

0.095

0.087

0.002

0.006

0.004

0.004

0.006

0.057

0.061

0.061

0.061

0.059

 

 

 

 

 

 

 

24

Tanaorhinus viridiluteata (MW855164)

0.099

0.091

0.114

0.080

0.087

0.105

0.118

0.127

0.089

0.105

0.095

0.087

0.002

0.006

0.004

0.004

0.006

0.057

0.061

0.061

0.061

0.059

0.000

 

 

 

 

 

 

25

Tanaorhinus viridiluteata (MW855165)

0.099

0.091

0.114

0.080

0.087

0.105

0.118

0.127

0.089

0.105

0.095

0.087

0.002

0.006

0.004

0.004

0.006

0.057

0.061

0.061

0.061

0.059

0.000

0.000

 

 

 

 

 

26

Tanaorhinus kina (MG014834)

0.114

0.078

0.072

0.080

0.099

0.103

0.091

0.097

0.097

0.095

0.082

0.105

0.114

0.118

0.112

0.114

0.114

0.097

0.099

0.099

0.099

0.097

0.116

0.116

0.116

 

 

 

 

27

Tanaorhinus reciprocata (MG014837)

0.099

0.061

0.112

0.067

0.086

0.095

0.131

0.127

0.087

0.097

0.087

0.084

0.099

0.095

0.097

0.095

0.093

0.097

0.099

0.099

0.099

0.097

0.099

0.099

0.099

0.106

 

 

 

28

Tanaorhinus luteivirgatus (MG014835)

0.097

0.078

0.099

0.067

0.080

0.093

0.101

0.122

0.093

0.078

0.080

0.086

0.097

0.099

0.097

0.095

0.101

0.101

0.105

0.105

0.105

0.103

0.097

0.097

0.097

0.099

0.080

 

 

29

Chlorozancla falcatus (MG014741)

0.112

0.097

0.097

0.082

0.089

0.108

0.118

0.120

0.097

0.105

0.099

0.101

0.099

0.105

0.101

0.103

0.101

0.110

0.114

0.114

0.114

0.112

0.099

0.099

0.099

0.097

0.105

0.087