Journal of Threatened Taxa |
www.threatenedtaxa.org | 26 April 2023 | 15(4): 23075–23082
ISSN 0974-7907
(Online) | ISSN 0974-7893 (Print)
https://doi.org/10.11609/jott.7290.15.4.23075-23082
#7290 | Received 02
April 2021 | Final received 20 August 2022 | Finally accepted 10 April 2023
First record of Tanaorhinus viridiluteata
Walker, 1861 (Lepidoptera: Geometridae: Geometrinae) from Mizoram, India
B. Lalnghahpuii
1, Lalruatthara 2 & Esther Lalhmingliani
3
1,2,3 Systematics and Toxicology
Laboratory, Department of Zoology, Mizoram University, Aizawl, Mizoram 796004,
India
1 lalnanaui@gmail.com, 2 ruatthara@gmail.com,
3 es_ralte@yahoo.in (corresponding author)
Editor: Jatishwor Singh Irungbam, Sphingidae Museum, Pribram, Czech Republic. Date
of publication: 26 April 2023 (online & print)
Citation: Lalnghahpuii, B., Lalruatthara & E. Lalhmingliani
(2023). First record of Tanaorhinus viridiluteata
Walker, 1861 (Lepidoptera: Geometridae: Geometrinae) from Mizoram, India. Journal of Threatened Taxa 15(4): 23075–23082. https://doi.org/10.11609/jott.7290.15.4.23075-23082
Copyright: © Lalnghahpuii et al. 2023. Creative Commons Attribution 4.0
International License. JoTT allows unrestricted use, reproduction, and
distribution of this article in any medium by providing adequate credit to the
author(s) and the source of publication.
Funding: This paper is an outcome of the project funded by Science and Engineering Research Board [Grant File.
No. EEQ/2017/000805], Department of Science and Technology, New Delhi, Government of India.
Competing interests: The authors declare no competing interests.
Author details: B. Lalnghahpuii is currently a PhD candidate in the Department of Zoology, Mizoram University, Aizawl Mizoram. Her research interest is on the taxonomy of moths of the family Geometridae based on morphological and molecular approach. Lalruatthara is currently a PhD candidate in the Department of Zoology, Mizoram University, Aizawl, Mizoram. His area of interest includes morphological and molecular studies on Sphingid moths of Mizoram. Esther
Lalhmingliani is an associate professor in the Department of Zoology, Mizoram University, Aizawl, Mizoram. Her research interest is on systematic and taxonomic studies of moths and herpetofauna.
Author contributions: BL—field survey, curation, morphological & molecular data collection, data analyses, writing original draft; LA—field survey, curation, morphological data collection, data analysis; EL—conceptualization, methodology analysis, morphological & molecular data analyses, writing original draft & review & editing, supervision.
Acknowledgements: We thank Isaac Zosangliana and K. Lalhmangaiha
for their help in field work; Samuel Lalronunga for
his help in preparation of map and figures; the chief wildlife warden,
Environment, Forest and Climate Change Department, Government of Mizoram for
issuing research and collection permit of entomofauna in Mizoram
(A.33011/5/2011-CWLW/Vol.-II/2). We thank the Science and Engineering Research
Board (SERB), Department of Science & Technology, Government of India for
providing financial assistance and fellowship to BL carry out this research
under EEQ (North Eastern Region Empowerment and Equity Opportunities for
Excellence in Science) number EEQ/2017/000805.
Abstract: Very little work has been done to
document the moth fauna of the Mizoram state in northeast India. An emerald
moth collected from three localities in Aizawl District of Mizoram was
identified as Tanaorhinus viridiluteata Walker, 1861 based on morphological and
molecular studies. This species has been described briefly with colour photographs of male and female genitalia. Partial
mitochondrial COI gene was amplified from these specimens for molecular
analysis. This study represents a first record of the genus Tanaorhinus
and species T. viridiluteata from Mizoram
State.
Keywords: COI, genitalia, maximum
likelihood, morphology, northeastern India, type locality.
Introduction
Mizoram State is situated in the
southernmost tip of northeastern India, sandwiched by
Myanmar in the east and Bangladesh in the west. Though the area falls within
the Indo-Burma biodiversity hotspot (Mittermeier et al. 2004), the flora and
fauna of the area are poorly documented. However, recent studies taken up in
the area resulted in the description of several species new to science (e.g., Lalronunga et al. 2013; Giri et
al. 2019; Kirti et al. 2019; Naumann & Lalhmingliani
2019). Hebert et al. (2003) proposed the use of the mitochondrial gene
cytochrome c oxidase I (COI) as a reliable marker for accurate species
identification, particularly in animals.
Though faced with many criticisms and pitfalls (e.g., Tautz et al. 2003; Blaxter 2004),
it is a useful tool for the identification of lepidopterans in general (Hajibabaei et al. 2006; Kim et al. 2020) and geometrid
moths in particular (Brehm et al. 2016; Kumar et al. 2019).
Geometrinae (commonly known as emerald moths)
is the fourth largest subfamily in the family Geometridae,
with more than 27,006 valid species-group names, including 23,872 species and
3,123 subspecies worldwide (Rajaei et al. 2022). The
genus Tanaorhinus Butler, 1879 contains
16 nominal species and five subspecies (Scoble &
Hausmann 2007; Orhant 2014; Tautel
2014; Rajaei et al. 2022) all are restricted to Asia
(Scoble 1999). However, Ban et al. (2018) revealed
that the genus Geometra and Tanaorhinus are polyphyletic and revived the genus Loxochila Butler 1881 to accommodate G. burmensis, G. fragilis, G. sinoisaria, G. smaragdus,
T. kina, and T. tibeta. They further
speculated Tanaorhinus to be a junior synonym
of Geometra. However, further molecular
studies with the inclusion of more taxa are required for formal taxonomic
action (Ban et al. 2018). Five species, viz., T. celebensis
Yazaki, 1995, T. kina kina Swinhoe, 1893, Tanaorhinus
kina embrithes Prout,
1934, T. rafflessi (Moore, [1860]), T.
reciprocate reciprocata (Walker, 1861), and T.
viridiluteata (Walker, 1861), were recorded from
India (Kirti et al. 2019). Walker (1861) described
T. viridiluteata from Darjeeling in West
Bengal State of India. Apart from the type locality, the species was further
recorded from Arunachal Pradesh, Assam, and Nagaland states in northeastern India, southern China, Taiwan, and Sundaland (Anonymous 2021; Holloway 2021). The species is
characterized by dark green colour with two black cell specks enclosed by a
bluish tinge on both sides of the forewing, ante and post medial waved lines
closed together with irregular white suffusion on dorsal side of the body. The
ventral side of the forewing is heavily suffused with brown and mauve and inner
margin of the hindwing is excised forming heart shaped gap. This species is
most similar to T. rafflesia, but can be
distinguished from it by the presence of broad, uniform, rufous border in the
ventral hindwing (vs. narrower and separated from the margin by a yellow zone
in T. rafflesia) in males; and harpe in male genitalia more spatulated (vs. more acute in T.
rafflesia). Herein, we report the first
distribution records of T. viridiluteata from
the state Mizoram in northeastern India.
Materials and Methods
Surveys were conducted in Mizoram
State (see materials examined section under results and discussion for details)
using a 160 W mercury vapour bulb on a 4 ft. by 6 ft. white cloth screen with a
HondaTM EP1000 portable generator as a
power source. Specimens were killed in a killing jar containing petroleum
ether, which were then removed and placed on butter paper with their wings
folded vertically. Pinning, spreading, and labeling
of specimens were done in the laboratory. Specimens were deposited in the
Entomological Collections of the Systematics and Toxicology Laboratory, Mizoram
University, Mizoram, India (MZUEC). Tissue (three legs each) was collected in a
2 ml centrifuge tube for genomic DNA extraction. The genitalia of each specimen
were dissected following Sondhi (2020). Genomic DNA
was extracted from the tissue sample using 10 µl of 20 mg/ml of Proteinase K
with 56°C overnight treatment following standard Phenol: Chloroform: Isoamyl
alcohol method (Sambrook & Russell 2001). We amplified a partial
mitochondrial COI gene using the primer pair LCO-1490 and HCO-2198 (Folmer et al. 1994). PCR amplification was carried out in
25 μl aliquots containing 12.5 μL
of EmeraldAmp® GT PCR Master Mix (2X) (TaKaRa Bio, Japan), 1 μl of each
forward and reverse primer, 2 μl of genomic DNA, and
8.5 μl of molecular grade H2O using ProFlex™ 3 x 32-well PCR system (Applied Biosystems™, USA).
The PCR conditions were as follows: initial denaturation was performed at 95°C
for 5 min, followed by 35 or 40 cycles of 30 s at 94°C, 30 s annealing from
42°C to 50°C (Tables S3 and S4), 30 s at 72°C, with a final 5 min extension at
72°C. Amplified PCR products were ran on 1.5% agarose gel, viewed in IG-618GD (iGene Labserve, India) gel
documentation system. The purified PCR products were sequenced bidirectionally
by Sanger sequencing technology at geneOmbio
Technologies Private Limited (Maharashtra, India). The chromatograms and raw
sequences were edited using FinchTV 1.4.0 (Geospiza Inc., USA ) and the consensus
sequences were checked by BLAST search
(https://blast.ncbi.nlm.nih.gov/Blast.cgi) and ORF finder
(https://www.ncbi.nlm.nih.gov/orffinder/). The generated sequences (615–618
base pairs) were submitted to GenBank (NCBI) to acquire the accession numbers
(MW855164– MW855166). The newly generated sequences were compared with other
sequences of Tanaorhinus available in GenBank
(Supplementary Table 1). Based on the lowest BIC (Bayesian Information
Criterion) and AICc scores (Akaike Information
Criterion, corrected), best fit nucleotide substitution model for the present
COI dataset was GTR+G+I. A Maximum Likelihood (ML) tree was constructed with
1000 bootstraps in MEGA X (Kumar et al. 2018). The barcode data of Chlorozancla falcatus (MG014741)
was used as an outgroup in the present phylogenetic analysis. The uncorrected
pairwise genetic distances (p-distances) between and within the studied species
were estimated by MEGA X (Kumar et al. 2018).
Material
examined
MZUEC 20210001–20210005; 03.xii.2020; Hmuifang
community forest reserve, Aizawl District, Mizoram; coll. B. Lalnghahpuii & party; (23.00510N 92.75210E,
elevation 1,480 m). MZUEC 20210006–20210007; 23.x.2020; 01 female (wingspan 62
mm), 01 male (wingspan 65 mm); Mizoram University Campus, Aizawl District,
Mizoram; coll. B. Lalnghahpuii & party; (23.73700N
92.66360E, elevation 790 m). MZUEC 20210008–20210009; 15.xi.2019; 01
female (wingspan 68 mm), 01 male (wingspan 60); Pachhunga
University Campus, Aizawl District, Mizoram; coll. B. Lalnghahpuii
& party; (23.72340N 92.73070E, elevation 815 m (Image
1A)).
Diagnosis: Wingspan 60–64 mm in male (four specimens) and
72 mm in female (one specimen). Upperside of forewing
dark green in colour with two black cell specks enclosed by a bluish tinge;
ante and post medial waved lines closed together with irregular white suffusion
on dorsal side of the body; lunulate markings absent beyond the postmedial
line; obscure white marks on submarginals. Underside
of forewing green with costal area to beyond cell purplish-grey; oblique
postmedial line with rufous patches at apex and outer angle; inner margin
white. Upperside of hind wing dark green in colour
except for costa which is white. Underside of hindwing yellowish with traces of
postmedial line; outer area rufous; outer marginal areas yellowish (Image
1B).
The specimens collected from the three localities in
Mizoram -agreed with the description of Tanaorhinus
viridiluteata in possessing the following
characters: dark green colour with two black cell specks enclosed by a bluish
tinge on both sides of the forewing; ante and post medial waved lines closed
together with irregular white suffusion on the dorsal side of the body; ventral
side of forewings heavily suffused with brown and mauve; presence of a broad,
uniform, rufous border in the ventral hindwing in males; slightly spatulated harpe in male genitalia. The maximum likelihood (ML) tree
(Image 1E) further revealed that the sample sequences from Mizoram, India,
formed a clade with the sequences of T. viridiluteata
along with an undetermined species of Tanaorhinus
with an uncorrected genetic distance (p-distance) of only 0.002–0.008. In the
ML tree, T. viridiluteata and T. rafflesia are sister species, which is not surprising
as the two species are very similar morphologically. The genetic distance
between the two species ranges from 0.053–0.061.
Discussion and Conclusion
As far as Mizoram is concerned, little work has been done
to document the moth fauna of the state (Ghosh 2007; Kirti & Singh 2014,
2016; Kirti et al. 2014, 2019; Lalhmingliani et al.
2013, 2014; Lalhmingliani 2015), but recent studies
have led to the description of several new species (e.g., Kirti et al. 2019,
Naumann & Lalhmingliani 2019). Ghosh (2007) and
Kirti et al. (2014, 2019) reported on geometrid moths from Mizoram State but
did not mention the genus Tanaorhinus. The
present study on Tanaorhinus viridiluteata from Mizoram represents the first record
for this genus and species in the state.
For
image - - click here for complete PDF
References
Anonymous (2021). Tanaorhinus viridiluteatus
(Walker, 1861). In Sondhi, S., Y. Sondhi,
P. Roy & K. Kunte (Chief Editors). Moths of
India, v. 2.31. Indian Foundation for Butterflies.
https://www.mothsofindia.org/sp/355696/Tanaorhinus-viridiluteatus
Ban, X, N. Jiang, R. Cheng, D. Xue
& H. Han (2018). Tribal classification and phylogeny
of Geometrinae (Lepidoptera: Geometridae)
inferred from seven gene regions. Zoological Journal of the Linnean Society 184(3): 653–672. https://doi.org/10.1093/zoolinnean/zly013
Blaxter, M.L. (2004). The promise of
a DNA taxonomy. Philosophical Transactions of The Royal Society B Biological
Sciences 359: 669–679. https://doi.org/10.1098/rstb.2003.1447
Brehm, G., P.D.N. Hebert, R.K. Colwell, M.-O. Adams, F.
Bodner, K. Friedemann, L. Möckel
& K. Fiedler (2016). Turning up the heat on a hotspot:
DNA barcodes reveal 80% more species of Geometrid Moths along an Andean
Elevational Gradient. PLoS ONE 11(3):
e0150327. https://doi.org/10.1371/journal.pone.0150327
Folmer, O., M. Black, W. Hoeh, R.
Lutz & R. Vrijenhoek (1994). DNA primers for amplification of mitochondrial
cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular
Marine Biology and Biotechnology 3: 294–299.
Giri, V.B., R. Chaitanya, S. Mahony, S. Lalronunga,
C. Lalrinchhana, A. Das, S. Vivek,
K. Praveen & V. Deepak (2019). On the
systematic status of the genus Oriocalotes Günther, 1864 (Squamata: Agamidae:
Draconinae) with the description of a new species
from Mizoram state, Northeast India. Zootaxa
4638(4): 451–484. https://doi.org/10.11646/zootaxa.4638.4.1
Ghosh, S.K. (2007).
Lepidoptera: Geometridae, pp. 389–398. In: Director
(ed.). Fauna of Mizoram. State Fauna Series No.14.
Zoological Survey of India, Kolkata, India, 691 pp.
Hajibabaei, M., D.H. Janzen, J.M. Burns, W. Hallwachs
& P.D.N. Hebert (2006). DNA barcodes distinguish species of
tropical Lepidoptera. Proceedings of the National Academy of Sciences of the
United States of America 103(4): 968–971. https://doi.org/10.1073/pnas.0510466103
Hebert, P.D.N., A. Cywinska,
S.L. Ball & J.R. deWaard (2003). Biological identifications through DNA barcodes. Proceedings
of the Royal Society B: Biological Sciences 270: 313–321. https://doi.org/10.1098/rspb.2002.2218
Holloway, J.D. (1996). The
moths of Borneo (part 9); Family Geometridae:
Subfamilies Oenochrominae, Desmobathrinae,
Geometrinae. Malayan Nature Journal 49:
147–326.
Kim, S., Y. Lee, M. Mutanen, J.
Seung & S. Lee (2020). High functionality of DNA barcodes
and revealed cases of cryptic diversity in Korean curved-horn moths
(Lepidoptera: Gelechioidea). Scientific Reports
10: 6208. https://doi.org/10.1038/s41598-020-63385-x
Kirti, J.S. & N. Singh (2014). Arctiid Moths of India. Volume 1. Nature Books
India, New Delhi, India, 205pp.
Kirti, J.S. & N. Singh (2016). Arctiid Moths of India. Volume 1. Nature Books
India, New Delhi, India, 214pp.
Kirti, J.S., K. Chandra, A. Saxena & N. Singh (2019). Geometrid moth of India. Nature Books India, New
Delhi, India, 296 pp.
Kumar, S., G. Stecher, M. Li,
C. Knyaz & K. Tamura (2018). MEGA X: Molecular Evolutionary Genetics Analysis across
Computing Platforms. Molecular Biology and Evolution 35(6): 1547–1549. https://doi.org/10.1093/molbev/msy096
Kumar, V., S. Kundu, R. Chakraborty, A. Sanyal, A. Raha, O. Sanyal, R. Ranjan, A. Pakrashi,
K. Tyagi & K. Chandra (2019). DNA barcoding of
Geometridae moths (Insecta:
Lepidoptera): a preliminary effort from Namdapha
National Park, Eastern Himalaya. Mitochondrial DNA Part B 4(1): 309–315.
https://doi.org/10.1080/23802359.2018.1544037
Lalhmingliani, E. (2015). Biodiversity
and molecular phylogeny of wild silk moths in Mizoram based on 16S rRNA and CO1
Gene markers. PhD Thesis. Department of Zoology, Mizoram University, v+160 pp.
Lalhmingliani, E., G. Gurusubramanian, R. Lalfelpuii, N.S. Kumar, S. Lalronunga
& H.T. Lalremsanga (2013). Wild silk moth (Lepidoptera: Saturniidae)
of Mizoram University campus, Aizawl, Mizoram, northeast India, pp. 223–228.
In: Singh, K.K., K.C. Das & H. Lalruatsanga
(eds.). Bioresources and Traditional Knowledge of Northeast India. Mizo
Post Graduate Science Society, India, 424 pp.
Lalhmingliani, E., G. Gurusubramanian, H.T. Lalremsanga, C. Lalrinchhana
& S. Lalronunga (2014). Wild silk moths (Lepidoptera: Saturniidae)
of Hmuifang community forest, Aizawl Mizoram:
Conservation concerns, pp. 261–267. In: Lalnuntluanga,
J. Zothanzama, Lalramliana,
Lalduhthlana & H.T. Lalremsanga
(eds.). Issues and Trends of Wildlife Conservation in Northeast India.
Mizo Academy of Sciences, India, 277 pp.
Lalronunga, S., Lalnuntluanga & Lalramliana (2013). Schistura maculosa, a new species of loach (Teleostei: Nemacheilidae) from
Mizoram, northeastern India. Zootaxa
3718(6): 583–590. https://doi.org/10.11646/zootaxa.3718.6.6
Mittermeier, R.A., P. Robles-Gil, M. Hoffmann, J.
Pilgrim, T. Brooks, C.G. Mittermeier, J. Lamoreux
& G.A.B. da Fonseca (2004). Hotspots
Revisited: Earth’s Biologically Richest and Most Endangered Terrestrial
Ecoregions. CEMEX, Mexico City, 390 pp.
Naumann, S. & E. Lalhmingliani
(2019). Notes on taxa of the Salassa
lemaii group (Lepidoptera: Saturniidae)
with the description of a new species from Mizoram, India. Bionotes
21(4): 152–158.
Orhant, G. (2014). Contribution à
la connaissance du genre Tanaorhinus
- Description d’une nouvelle espèce
des Moluques. Découverte et
description du mâle de Tanaorhinus
tibeta Chu, 1982 (Lepidoptera, Geometridae, Geometrinae). Bulletin
de la Société Entomologique de Mulhouse 70:
59–64.
Rajaei, H., A. Hausmann, M. Scoble,
D. Wanke, D. Plotkin, G. Brehm, L. Murillo-Ramos
& P. Sihvonen (2022). An online taxonomic facility of Geometridae
(Lepidoptera), with an overview of global species richness and systematics. Integrative
Systematics 5(2): 145–192. https://doi.org/10.18476/2022.577933
Sambrook, J. & D.W. Russell (2001). Molecular Cloning: A Laboratory Manual. 3rd
Edition, Vol. 1, Cold Spring Harbor Laboratory Press,
New York, 2344 pp.
Scoble, M.J. (1999). Geometrid
moths of the world: a catalogue (Lepidoptera, Geometridae).
Collingwood: CSIRO Publishing. 1200 pp.
Scoble, M.J. & A. Hausmann (2007). Online list of valid and available names of the Geometridae of the world. Available from:
http://www.lepbarcoding.org/geometridae/species_checklists.php. Downloaded on
25 March 2021.
Sondhi, S., D.N. Basu, Y. Sondhi & K. Kunte (2020). A new species of Metallolophia
Warren, 1895 (Lepidoptera: Geometridae: Geometrinae), and notes on M. opalina
(Warren, 1893), from eastern Himalaya, India. Zootaxa
4838(2): 289–297. https://doi.org/10.11646/zootaxa.4838.2.9
Tautel, C. (2014). Deux nouveaux Tanaorhinus pour la Wallacea
(Lepidoptera: Geometridae: Geometrinae).
Antenor 1: 191–198.
Tautz, D., P. Acrtander, A. Minelli,
R.H. Thomas & A.P. Vogler (2003). A plea for DNA
taxonomy. Trends in Ecology & Evolution 18: 70–74. https://doi.org/10.1016/S0169-5347(02)00041-1
Walker, F. (1861). List of the specimens of
Lepidopterous insects in the collection of the British Museum - Part XXII.
London, 499–755 pp.
Supplementary Table 1. Cytochrome Oxidase subunit I
(COI) gene sequences used for molecular analysis in this study.
|
|
Species |
Voucher code |
Collection Locality |
GenBank accession number |
References |
|
1 |
Tanaorhinus viridiluteatus |
IOZ LEP M 10029 |
Fujian, China |
MG014838 |
Ban et al. 2018 |
|
2 |
Tanaorhinus viridiluteatus |
IOZ LEP M 2325 |
Hainan, China |
MG014839 |
Ban et al. 2018 |
|
3 |
Tanaorhinus viridiluteatus |
IOZ LEP M 8110 |
Hainan, China |
MG014840 |
Ban et al. 2018 |
|
4 |
Tanaorhinus viridiluteatus |
IOZ LEP M 8283 |
Guangdong, China |
MG014841 |
Ban et al. 2018 |
|
5 |
Tanaorhinus viridiluteatus |
MZUEC 20210004 |
Mizoram, India |
MW855164 |
Present study |
|
6 |
Tanaorhinus viridiluteatus |
MZUEC 20210006 |
Mizoram, India |
MW855165 |
Present study |
|
7 |
Tanaorhinus viridiluteatus |
MZUEC20210008 |
Mizoram, India |
MW855166 |
Present study |
|
8 |
Tanaorhinus rafflesii |
RMNH.INS.13846 |
Kalimantan Timur,
Indonesia |
HM387094 |
GenBank |
|
9 |
Tanaorhinus rafflesii |
RMNH.INS.14079 |
Kalimantan Timur,
Indonesia |
GU662706 |
GenBank |
|
10 |
Tanaorhinus rafflesii |
RMNH.INS.13847 |
Kalimantan Timur,
Indonesia |
GU662754 |
GenBank |
|
11 |
Tanaorhinus rafflesii |
RMNH.INS.13845 |
Kalimantan Timur,
Indonesia |
GU662818 |
GenBank |
|
12 |
Tanaorhinus rafflesii |
RMNH.INS.13843 |
Kalimantan Timur,
Indonesia |
GU662820 |
GenBank |
|
13 |
Tanaorhinus sp. |
Lep8581 |
China |
MN132787 |
Wang et al. 2019 |
|
14 |
Tanaorhinus luteivirgatus |
IOZ LEP M 16545 |
Yunnan, China |
MG014835 |
Ban et al. 2018 |
|
15 |
Tanaorhinus reciprocata |
IOZ LEP M 17064 |
Gansu, China |
MG014837 |
Ban et al. 2018 |
|
16 |
Geometra albovenaria |
IOZ LEP M 5523 |
Shaanxi, China |
MG014759 |
Ban et al. 2018 |
|
17 |
Geometra euryagyia |
IOZ LEP M 16429 |
Shaanxi, China |
MG014760 |
Ban et al. 2018 |
|
18 |
Geometra glaucaria |
IOZ LEP M 16501 |
Beijing, China |
MG014764 |
Ban et al. 2018 |
|
19 |
Geometra neovalida |
IOZ LEP M 4763 |
Shaanxi, China |
MG014767 |
Ban et al. 2018 |
|
20 |
Geometra papilionaria |
NS03 |
Avinurme, Estonia |
GU580772 |
Wahlberg et al. 2010 |
|
21 |
Geometra sponsaria |
IOZ LEP M 8581 |
Liaoning, China |
MG014773 |
Ban et al. 2018 |
|
22 |
Geometra symaria |
IOZ LEP M 9287 |
Hubei, China |
MG014775 |
Ban et al. 2018 |
|
23 |
Geometra ussuriensis |
IOZ LEP M 4682 |
Shaanxi, China |
MG014776 |
Ban et al. 2018 |
|
24 |
Geometra valida |
IOZ LEP M 8567 |
Liaoning, China |
MG014779 |
Ban et al. 2018 |
|
25 |
Loxochila fragilis |
IOZ LEP M 9212 |
Yunnan, China |
MG014763 |
Ban et al. 2018 |
|
26 |
Loxochila kina |
IOZ LEP M 17078 |
Tibet, China |
MG014834 |
Ban et al. 2018 |
|
27 |
Loxochila sinoisaria |
IOZ LEP M 9457 |
Sichuan, China |
MG014769 |
Ban et al. 2018 |
|
28 |
Loxochila smaragdus |
IOZ LEP M 16551 |
Yunnan, China |
MG014770 |
Ban et al. 2018 |
|
29 |
Chlorozancla falcatus |
IOZ LEP M 20201 |
Guangxi, China |
MG014741 |
Ban et al. 2018 |
Supplementary Table 2. Uncorrected p-distances between
Cytochrome Oxidase subunit I (COI) gene sequences used in the study. GenBank
accession numbers are listed after the name of the species. Letters in bold
indicates the newly generated sequences in this study.
|
|
Species |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
|
1 |
Geometra albovenaria (MG014759) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
Geometra euryagyia (MG014760) |
0.089 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
Geometra fragilis (MG014763) |
0.093 |
0.091 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
Geometra glaucaria (MG014764) |
0.078 |
0.048 |
0.089 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
Geometra neovalida (MG014767) |
0.042 |
0.070 |
0.068 |
0.055 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
Geometra papilionaria (GU580772) |
0.091 |
0.078 |
0.112 |
0.074 |
0.086 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
Geometra sinoisaria (MG014769) |
0.118 |
0.116 |
0.095 |
0.106 |
0.112 |
0.116 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
Geometra smaragdus (MG014770) |
0.131 |
0.112 |
0.086 |
0.110 |
0.112 |
0.129 |
0.105 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
Geometra sponsaria (MG014773) |
0.065 |
0.061 |
0.089 |
0.057 |
0.040 |
0.089 |
0.122 |
0.116 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
Geometra symaria (MG014775) |
0.093 |
0.076 |
0.110 |
0.067 |
0.084 |
0.044 |
0.114 |
0.131 |
0.082 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
Geometra ussuriensis (MG014776) |
0.072 |
0.068 |
0.086 |
0.065 |
0.049 |
0.087 |
0.110 |
0.118 |
0.061 |
0.084 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
Geometra valida (MG014779) |
0.023 |
0.072 |
0.082 |
0.057 |
0.029 |
0.087 |
0.114 |
0.118 |
0.042 |
0.082 |
0.059 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
Tanaorhinus viridiluteata (MG014838) |
0.099 |
0.089 |
0.112 |
0.078 |
0.087 |
0.103 |
0.118 |
0.125 |
0.089 |
0.103 |
0.097 |
0.087 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
Tanaorhinus sp. (MN132787) |
0.097 |
0.087 |
0.114 |
0.080 |
0.086 |
0.106 |
0.120 |
0.125 |
0.087 |
0.106 |
0.093 |
0.086 |
0.008 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
Tanaorhinus viridiluteata (MG014841) |
0.097 |
0.087 |
0.110 |
0.076 |
0.086 |
0.103 |
0.116 |
0.124 |
0.087 |
0.103 |
0.095 |
0.086 |
0.002 |
0.006 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
Tanaorhinus viridiluteata (MG014840) |
0.097 |
0.091 |
0.112 |
0.080 |
0.086 |
0.105 |
0.116 |
0.127 |
0.089 |
0.105 |
0.091 |
0.086 |
0.006 |
0.006 |
0.004 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
Tanaorhinus viridiluteata (MG014839) |
0.095 |
0.086 |
0.110 |
0.078 |
0.084 |
0.106 |
0.120 |
0.122 |
0.086 |
0.106 |
0.091 |
0.084 |
0.008 |
0.004 |
0.006 |
0.006 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
Tanaorhinus rafflesii (HM387094) |
0.095 |
0.086 |
0.106 |
0.080 |
0.082 |
0.101 |
0.120 |
0.127 |
0.080 |
0.097 |
0.074 |
0.074 |
0.055 |
0.055 |
0.053 |
0.057 |
0.051 |
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
Tanaorhinus rafflesii (GU662818) |
0.097 |
0.087 |
0.108 |
0.082 |
0.084 |
0.101 |
0.124 |
0.127 |
0.082 |
0.097 |
0.076 |
0.076 |
0.059 |
0.059 |
0.057 |
0.061 |
0.055 |
0.004 |
|
|
|
|
|
|
|
|
|
|
|
|
20 |
Tanaorhinus rafflesii (GU662820) |
0.097 |
0.087 |
0.108 |
0.082 |
0.084 |
0.101 |
0.124 |
0.127 |
0.082 |
0.097 |
0.076 |
0.076 |
0.059 |
0.059 |
0.057 |
0.061 |
0.055 |
0.004 |
0.000 |
|
|
|
|
|
|
|
|
|
|
|
21 |
Tanaorhinus rafflesii (GU662706) |
0.097 |
0.087 |
0.108 |
0.082 |
0.084 |
0.101 |
0.124 |
0.127 |
0.082 |
0.097 |
0.076 |
0.076 |
0.059 |
0.059 |
0.057 |
0.061 |
0.055 |
0.004 |
0.000 |
0.000 |
|
|
|
|
|
|
|
|
|
|
22 |
Tanaorhinus rafflesii (GU662754) |
0.095 |
0.086 |
0.106 |
0.080 |
0.082 |
0.099 |
0.122 |
0.129 |
0.080 |
0.095 |
0.074 |
0.074 |
0.057 |
0.057 |
0.055 |
0.059 |
0.053 |
0.006 |
0.002 |
0.002 |
0.002 |
|
|
|
|
|
|
|
|
|
23 |
Tanaorhinus viridiluteata (MW855166) |
0.099 |
0.091 |
0.114 |
0.080 |
0.087 |
0.105 |
0.118 |
0.127 |
0.089 |
0.105 |
0.095 |
0.087 |
0.002 |
0.006 |
0.004 |
0.004 |
0.006 |
0.057 |
0.061 |
0.061 |
0.061 |
0.059 |
|
|
|
|
|
|
|
|
24 |
Tanaorhinus viridiluteata (MW855164) |
0.099 |
0.091 |
0.114 |
0.080 |
0.087 |
0.105 |
0.118 |
0.127 |
0.089 |
0.105 |
0.095 |
0.087 |
0.002 |
0.006 |
0.004 |
0.004 |
0.006 |
0.057 |
0.061 |
0.061 |
0.061 |
0.059 |
0.000 |
|
|
|
|
|
|
|
25 |
Tanaorhinus viridiluteata (MW855165) |
0.099 |
0.091 |
0.114 |
0.080 |
0.087 |
0.105 |
0.118 |
0.127 |
0.089 |
0.105 |
0.095 |
0.087 |
0.002 |
0.006 |
0.004 |
0.004 |
0.006 |
0.057 |
0.061 |
0.061 |
0.061 |
0.059 |
0.000 |
0.000 |
|
|
|
|
|
|
26 |
Tanaorhinus kina (MG014834) |
0.114 |
0.078 |
0.072 |
0.080 |
0.099 |
0.103 |
0.091 |
0.097 |
0.097 |
0.095 |
0.082 |
0.105 |
0.114 |
0.118 |
0.112 |
0.114 |
0.114 |
0.097 |
0.099 |
0.099 |
0.099 |
0.097 |
0.116 |
0.116 |
0.116 |
|
|
|
|
|
27 |
Tanaorhinus reciprocata (MG014837) |
0.099 |
0.061 |
0.112 |
0.067 |
0.086 |
0.095 |
0.131 |
0.127 |
0.087 |
0.097 |
0.087 |
0.084 |
0.099 |
0.095 |
0.097 |
0.095 |
0.093 |
0.097 |
0.099 |
0.099 |
0.099 |
0.097 |
0.099 |
0.099 |
0.099 |
0.106 |
|
|
|
|
28 |
Tanaorhinus luteivirgatus (MG014835) |
0.097 |
0.078 |
0.099 |
0.067 |
0.080 |
0.093 |
0.101 |
0.122 |
0.093 |
0.078 |
0.080 |
0.086 |
0.097 |
0.099 |
0.097 |
0.095 |
0.101 |
0.101 |
0.105 |
0.105 |
0.105 |
0.103 |
0.097 |
0.097 |
0.097 |
0.099 |
0.080 |
|
|
|
29 |
Chlorozancla falcatus (MG014741) |
0.112 |
0.097 |
0.097 |
0.082 |
0.089 |
0.108 |
0.118 |
0.120 |
0.097 |
0.105 |
0.099 |
0.101 |
0.099 |
0.105 |
0.101 |
0.103 |
0.101 |
0.110 |
0.114 |
0.114 |
0.114 |
0.112 |
0.099 |
0.099 |
0.099 |
0.097 |
0.105 |
0.087 |
|