A comparison of four sampling techniques for assessing species richness of adult odonates at riverbanks

Apeksha Darshetkar1©, Ankur Patwardhan2 © & Pankaj Koparde4©

1© 230/12/4, Atharva Apartment, Shukrawar Peth, Pune, Maharashtra 411002, India.
2 © Annasaheb Kulkarni Department of Biodiversity, Abasaheb Garware College, Pune, Maharashtra 411044 India.
3© Faculty of Sustainability Studies, Dr. Vishwanath Karad MIT World Peace University, Pune, Maharashtra 411038, India.
4© adarshetkar25@gmail.com (corresponding author), 1ankurpatwardhan@gmail.com, 1 pankaj.koparde@mitwpu.edu.in

Abstract: Members of the insect order Odonata are known as good ecological indicators. Many are sensitive to habitat modifications and are easily monitored for use in environmental assessment studies. Rapid assessments rely on efficient sampling techniques. However, there is limited information available on sampling techniques for adult odonates, and protocols require evaluation. To do this, we standardized counting methods during sampling of odonates from August to November 2016 at the Mula River, Pune, India. We used four counting techniques; full-width belt transect (FWBT), full-circle point count (FCPC), half-width belt transect (HWBT), and half-circle point count (HCPC). For HWBT and HCPC areas facing the river were sampled, and for each technique we took multiple temporal replicates. We compared species detected per unit time, species detected per unit area, new species detected per unit time, and new species detected per unit area. Additionally, we compared species estimates. With HCPC we detected the maximum number of species and new species per unit area, whereas FWBT returned maximum coverage of recorded species. We recommend our proposed techniques be considered in the future across various habitats to decide the most suitable sampling strategy for the different habitats or situations.

Keywords: Dragonfly, ecological assessment, point count, species estimates, transect, urban wetland.

Editor: Albert G. Orr, Griffith University, Nathan, Australia.
Date of publication: 26 January 2023 (online & print)

Copyright: © Darshetkar et al. 2023. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: The project was funded by the International Dragonfly Fund, Germany.

Competing interests: The authors declare no competing interests.

Author details: APEKSHA DARSHETKAR (AD) is a MSc in Biodiversity from Garware College. She is involved in various environmental education and capacity building programs working with multiple organizations. Currently she works with InSearch Outdoors. DR. ANKUR PATWARDHAN (AP) is Head, Dept. of Biodiversity at Garware College & Chairman, Board of Studies in Biodiversity at Savitribai Phule Pune University. In honorary capacities, he coordinates research activities at RANWA, a NGO dedicated to nature conservation in Pune. He is an expert member of the Monitoring group of CAMPA, MoEF&CC, Gov. DR. PANKAJ KOPARDE (PK) is an evolutionary ecologist interested in understanding patterns & processes in species distribution. He works as an Assistant Professor at MIT-WPU Pune. He is one of the admins of DragonflySouthAsia and heads Chatur Ullu Lab, a research group dedicated to research-based conservation. His research interests include urban ecology, conservation, citizen science, and biodiversity informatics.

Author contributions: AD collected and analyzed data, and wrote the initial draft of the manuscript. PK conceptualized the study, analyzed data, and helped with writing and editing the manuscript. AP helped with logistics for the project, provided lab facilities, and edited the manuscript.

Acknowledgements: This work was partially supported by the International Dragonfly Fund under a grant awarded to Dr. Pankaj Koparde and a BitGiving crowdfunding campaign run by Apeksha Darshetkar. This project received support from Biodiversity department, Garware College, Pune.
INTRODUCTION

Odonata depend on freshwater ecosystems to complete their life cycle, as their larvae are aquatic (Corbet 1962). This dependency on freshwater ecosystems makes odonates good aquatic and terrestrial bio-indicators (Corbet 1962; Simaika & Samways 2011, 2012; Stoks & Cordoba-Aguilar 2012; Monteiro-Júnior et al. 2014; Chovanec et al. 2015). Assessment of odonates primarily deals with sampling adults and is highly recommended (Kutcher & Bried 2014; Valente-Neto et al. 2016), because in many cases collecting and identifying adults is easier than finding larvae or exuviae, especially in the case of bio-monitoring projects (Córdoba-Aguilar & Rocha-Ortega 2019) except for gomphids (da Silva-Méndez et al. 2022). Identification keys and field guides for adult odonates are mostly available, while larval identification is more problematic for many species, as the Indian Odonata literature lacks larval and exuvial identification keys (Kumar & Khanna 1983). Another aspect is the availability of comparable data over more extensive spatial coverage. Adult odonate data can be relatively easily obtained for comparison purposes, making adult sampling more popular than larval or exuvial or combined sampling.

Odonates play a crucial role as predators in freshwater ecosystems. They are very useful as ecosystem service providers, especially in urban wetlands which are the freshwater ecosystems available in human-modified landscapes (Bolund & Hunhammar 1999; Angold et al. 2006; Suhling et al. 2015, Córdoba-Aguilar & Rocha-Ortega 2019). Studying such freshwater ecosystems is vital, as they may provide information about understanding the pace of urbanization and species losses (McKinney 2008; Johnson et al. 2013, Córdoba-Aguilar & Rocha-Ortega 2019), aiding conservation management.

Various methods have been employed to study odonates, such as collecting individuals with sweep nets, and using lights and malaise traps, line transects, and point counts (Almeida et al. 2013; Bried & Ervin 2006; Bried et al. 2012; Patten et al. 2015). Currently, relatively little published literature is available on standardized methods for sampling adult odonates. Taking transect surveys on a fixed route is the most popular method (Córdoba-Aguilar & Rocha-Ortega 2019). Quadrangular or rectangular survey plots have been used by some ecologists. For ponds and wetlands, sweep-nets have been used (Oertli 2008). Point counts (PC) have been used especially across pond ecosystems. Distance sampling methods have been used in rainforest ecosystems with scattered water resources (Oppel 2006). Random visual scanning method and visual scanning following a transect have been suggested for counting adult odonates (Sutherland 2006). For sampling adult odonates at rivers and streams, transects along the riparian zone are suggested (Panzer et al. 2005; Smallshire & Beynon 2010). Aerial netting is more useful when specimen collection is the primary aim. For systematic sampling, to come up with diversity indices and species estimates, non-invasive methods such as transects are expected to be more useful (Oppel 2006). Presently available sampling protocols have seldom been critically evaluated to identify the most efficient protocol that captures a reliable estimate of the species richness in a habitat.

In the present study, we tried to standardize a method of counting adult odonates at the riverbanks of a tropical urban river. We compared four different sampling techniques to check the best method which provides a complete assessment of the species richness of the selected urbanized site. This short-term study provides a baseline for future research on counting adult odonates.

MATERIALS AND METHODS

Sampling Methods

The study area was the riparian zone of the Mula River, Aundh, Pune, Maharashtra, India (18.5687 N, 73.8198 E, 551 m). The study site is present in the city and is much disturbed by humans. They carry out activities like cattle grazing nearby, and polluting the river by washing their clothes, among other activities. The study duration was four months from August 2016 to November 2016. We used direct observations for the identification of adult odonates at the site with the aid of binoculars. We identified species using field guides (Subramanian 2005) and referred to previously published material from the Pune area (Kulkarni & Subramanian 2013; Koparde 2016). The habitat sampled consisted of the stream bed and marginal vegetation. We used a transect length of 300 m, as at the study site it was the length that we could walk continuously without any breaks in the transect due to water level, mud, garbage, and uneven terrain. We standardized point count timing to two mins after a pilot survey. During our pilot sampling, we observed, while walking the transects, odonates aggregated in high numbers in the area facing the river rather than inland. We observed a similar pattern while conducting point counts. Therefore, we decided
Comparison of four sampling techniques for counting adult odonates
Darshetkar et al.

To add a variant in method, where we maximized the sampling effort at the riverside. Finally, we used two main sampling methods (belt transect and point count) with a variant in each (Table 1, Figure 1, Figure 2). We used two variants of the belt transect method:
1. Full-width belt transect, where we counted the adult individuals of the species present on the banks inland and at the riverside covering the 300 m belt transect (Table 1, Figure 1).
2. Half-width belt transect, where we counted the adult individuals of the species present only at the riverside covering the 300 m belt transect (Table 1, Figure 1).
3. Full-circle point count, where we counted the adult individuals of the species present in a circle of 5 m radius across a 300 m straight line at each 25 m interval (Table 1, Figure 2).
4. Half-circle point count, where we counted the adult individuals of the species present in a half circle facing the riverside across a 300 m straight line at each 25 m interval (Table 1, Figure 2).

Data Analysis
We performed the analysis in the statistical software PAST (v.3.) (Hammer et al. 2008) and R (R core team 2014). We compared the cumulative number of species detected per unit area, cumulative number of species detected per unit time, new species added per unit area, and new species added per unit time. We used nested analysis of variance (ANOVA) to compare the four techniques: FWBT, HWBT, FCPC and HCPC. Additionally, we used box-plots to visualize the differences in the capture of parameters across the techniques. We calculated species estimates CHAO1 (Chao 1984; Colwell & Coddington 1994), CHAO2 (Chao 1987; Colwell &

Table 1. Details of four sampling techniques evaluated during the study.

<table>
<thead>
<tr>
<th>Technique</th>
<th>Dimensions & Details</th>
<th>Area Sampled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full-width Belt Transect (FWBT)</td>
<td>300 m X 10 m (length X width) transect covered while walking at the speed of 25 m per two minutes.</td>
<td>3,000 m² in 24 minutes</td>
</tr>
<tr>
<td>Half-width Belt Transect (HWBT)</td>
<td>300 m X 5 m (length X width) transect covered while walking at the speed of 25 m per two minutes. The width of the transect was restricted to the area facing the riverside.</td>
<td>1,500 m² in 24 minutes</td>
</tr>
<tr>
<td>Full-circle Point Count (FCPC)</td>
<td>Point counts with a radius of 5 m (full circle) placed at an interval of 25 m (such as 0 m, 25 m, 50 m, and so on) across a 300 m straight line.</td>
<td>78.54 m² per point X 13 stations = 1,021.02 m² surveyed in 26 minutes</td>
</tr>
<tr>
<td>Half-circle Point Count (HCPC)</td>
<td>Point counts with a radius of 5 m (semi-circle) placed at an interval of 25 m (such as 0 m, 25 m, 50 m, and so on) across a 300 m straight line. The semi-circle was restricted to cover the area facing riverside.</td>
<td>39.27 m² per point X 13 stations = 510.51 m² surveyed in 26 minutes</td>
</tr>
</tbody>
</table>

Figure 1. Graphic explaining Full-width Belt Transect (FWBT) and Half-width Belt Transect (HWBT) techniques. The details of the dimensions are provided in Table 1.
Comparison of four sampling techniques for counting adult odonates

Darshetkar et al.

RESULTS

In total, we recorded 19 odonate species at the site; a complete list of species detected is given in Supplementary Table 1. We obtained statistically significant results for comparisons among techniques (Supplementary Table 2 & 3) for species detected per unit area ($F = 28.79$, $P << 0.0001$) (Figure 3A) and new species added per unit area ($F = 5.15$, $P = 0.0012$) (Figure 3B), through nested ANOVA (Supplementary Table 3).

The proportion of species detected and new species added per square meter were highest for HCPC (Figure 3A, 3B). There was no significant difference across techniques for species detected and new species added per minute ($P > 0.3$) (Figure 3C, 3D). We found through species estimate analysis all techniques except FWBT produced conservative estimates (Table 2).

DISCUSSION

Given equal effort in terms of replicates, HWBT, FCPC, and HCPC methods produced comparable ranges of species estimates, whereas the FWBT method had the maximal coverage (89.5% of 19) of the total number of species observed at the site (Table 2). Overall, belt transects had higher coverage of total species richness (80–90%) than point counts (63–74%), indicating that belt transects are highly time-efficient techniques, suggesting the reason for their popularity amongst ecologists. Our comparison of sampling techniques revealed that through the HCPC technique, we recorded significantly more species per unit area (Figure 3A & 3B, Supplementary Table 1 & 2). A reason for this is probably the more intensive search (two minutes) in a smaller area (39.25 m2) per point count that can be achieved through HCPC compared with other techniques used. The HCPC method perhaps is the best method for intensive sampling but is not time-efficient.

This was a short-term study, but it provided some future research directions. We carried out standardization of adult odonate sampling technique only at one field site, however, taking multiple temporal replicates helped in eliminating sampling errors. Our analysis provided statistically significant results, but we think this procedure needs to be replicated at several sites for an extended time period to test if our results are consistent. In addition, these techniques need to be evaluated at other types of wetlands such as ponds, lakes, and streams, to come up with standard methods for assessing adult odonates at various habitats. For all the techniques used in the present study, double-counting seems to be a potential flaw. Individuals aggregating at a location may also introduce overestimation error.

Figure 2. Graphic explaining Half-circle Point Count (HCPC) and Full-circle Point Count (FCPC). Both the methods were carried out along 300 m straight distance. The details of the dimensions are provided in Table 1.
especially if such sites fall on point count stations. These potential flaws can be fixed only with capturing and marking individuals or alternatively, by adding several sampling replicates to reduce the error. Since dragonflies and damselflies have different flight abilities and habits, it is necessary to adjust strategies and techniques to sample them (Koparde 2016). A one size fits all strategy is not suitable to sample both the suborders or habitats.

We draw attention to the desirability of standardized sampling protocols in species diversity sampling. Our preliminary analysis indicates that HCPC might be a suitable method to sample adult odonates at the riverbanks when time is not a limiting factor, and FWBT when it is.

Table 2. Species estimates across various adult odonate counting methods. The cumulative number of species observed across all techniques was 19.

<table>
<thead>
<tr>
<th>Estimate</th>
<th>FWBT (n = 5)</th>
<th>HWBT (n = 4)</th>
<th>FCPC (n = 5)</th>
<th>HCPC (n = 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAO 1</td>
<td>18</td>
<td>15</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>CHAO 2</td>
<td>26.7</td>
<td>18.13</td>
<td>20</td>
<td>17.6</td>
</tr>
<tr>
<td>Jack 1</td>
<td>23.6</td>
<td>18.75</td>
<td>15.2</td>
<td>18.2</td>
</tr>
<tr>
<td>Jack 2</td>
<td>26.45</td>
<td>19.92</td>
<td>17.15</td>
<td>19.25</td>
</tr>
<tr>
<td>Observed</td>
<td>17</td>
<td>15</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>% coverage</td>
<td>89.5</td>
<td>80</td>
<td>63.2</td>
<td>73.7</td>
</tr>
</tbody>
</table>

n—number of temporal replicates | FWBT—Full-width Belt Transect | HWBT—Half-width Belt Transect | FCPC—Full-circle Point Count | HCPC—Half-circle Point Count.
REFERENCES

Supplementary Table 1. List of species recorded during the study.

<table>
<thead>
<tr>
<th>Species Name</th>
<th>FWBT (n = 17)</th>
<th>HWBT (n = 15)</th>
<th>FCPC (n = 12)</th>
<th>HCPC (n = 14)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANISOPTERA (n = 12)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aeshnidae (n = 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anax guttatus (Burmeister, 1839)</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gomphidae (n = 1)</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Ictinogomphus rapax (Rambur, 1842)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Libellulidae (n = 10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acisoma panorpoides (Rambur, 1842)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brachythemis contaminata (Fabricius, 1793)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Crocophthemia scylla (Drury, 1770)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Orthetrum pruinosum (Burmeister, 1839)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orthetrum sabina (Drury, 1770)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Pantala falvissense (Fabricius, 1798)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Rhyothemis variegata (Linnaeus, 1763)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tramea basilaris (Palisot de Beauvois, 1805)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Trithemis aurora (Burmeister, 1839)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Trithemis palidinervis (Kirby, 1889)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ZYGOPHORA (n = 7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coenagrionidae (n = 6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agriocnemis pygmaea (Rambur, 1842)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Ceriagrion coromandelanum (Fabricius, 1798)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Ischnura aurora (Brauer, 1865)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ischnura senegalensis (Rambur, 1842)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Pseudagrion decorum (Rambur, 1842)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Pseudagrion hypermelas (Selys, 1876)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Platycnemididae (n = 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disparoneura quadriraculata (Rambur, 1842)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N—Number of species | FWBT—Full-width Belt Transect | HWBT—Half-width Belt Transect | FCPC—Full-circle Point Count | HCPC—Half-circle Point Count | X—Presence

Supplementary Table 2. Point count standardization at six point count stations. Each PC column represents the cumulative number of species observed and numbers in brackets represent the cumulative number of individuals observed.

<table>
<thead>
<tr>
<th>Minutes</th>
<th>PC 1</th>
<th>PC2</th>
<th>PC3</th>
<th>PC4</th>
<th>PC5</th>
<th>PC6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>1 (1)</td>
<td>3 (3)</td>
<td>1 (1)</td>
<td>1 (1)</td>
<td>1 (1)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>2nd</td>
<td>3 (3)</td>
<td>4 (6)</td>
<td>1 (1)</td>
<td>1 (1)</td>
<td>1 (1)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>3rd</td>
<td>3 (4)</td>
<td>5 (8)</td>
<td>1 (1)</td>
<td>1 (1)</td>
<td>2 (2)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>4th</td>
<td>3 (5)</td>
<td>5 (9)</td>
<td>2 (2)</td>
<td>1 (1)</td>
<td>2 (2)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>5th</td>
<td>4 (6)</td>
<td>5 (9)</td>
<td>2 (2)</td>
<td>1 (1)</td>
<td>2 (2)</td>
<td>1 (1)</td>
</tr>
</tbody>
</table>
Supplementary Table 3. Nested ANOVA across techniques reveal significant differences in species detected per unit area ($F = 28.79, P << 0.0001$) and new species added per unit area ($F = 5.15, P = 0.012$) across techniques.

<table>
<thead>
<tr>
<th></th>
<th>Sum of squares</th>
<th>Degrees of freedom</th>
<th>Mean square</th>
<th>F_s</th>
<th>P</th>
<th>Variance component (percentage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species detected per unit area</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>among groups</td>
<td>0.0146</td>
<td>3</td>
<td>0.0048</td>
<td>28.79</td>
<td>0.0000</td>
<td>50.51</td>
</tr>
<tr>
<td>subgroups within groups</td>
<td>0.0025</td>
<td>15</td>
<td>0.0001</td>
<td>1.016</td>
<td>0.4457</td>
<td>0.14</td>
</tr>
<tr>
<td>within subgroups</td>
<td>0.0153</td>
<td>92</td>
<td>0.0001</td>
<td></td>
<td></td>
<td>49.35</td>
</tr>
<tr>
<td>total</td>
<td>0.0325</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Species detected per unit time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>among groups</td>
<td>1.1142</td>
<td>3</td>
<td>0.3714</td>
<td>1.0956</td>
<td>0.3834</td>
<td>50.51</td>
</tr>
<tr>
<td>subgroups within groups</td>
<td>5.0768</td>
<td>14.92</td>
<td>0.3389</td>
<td>1.6005</td>
<td>0.0887</td>
<td>9.2833</td>
</tr>
<tr>
<td>within subgroups</td>
<td>19.4552</td>
<td>92</td>
<td>0.2114</td>
<td></td>
<td></td>
<td>90.215</td>
</tr>
<tr>
<td>total</td>
<td>25.6464</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New species added per unit area</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>among groups</td>
<td>0.0010</td>
<td>3</td>
<td>0.0003</td>
<td>5.1571</td>
<td>0.0119</td>
<td>19.345</td>
</tr>
<tr>
<td>subgroups within groups</td>
<td>0.0011</td>
<td>15.93</td>
<td>0.0000</td>
<td>1.4270</td>
<td>0.1542</td>
<td>6.9312</td>
</tr>
<tr>
<td>within subgroups</td>
<td>0.0034</td>
<td>71</td>
<td>0.0000</td>
<td></td>
<td></td>
<td>73.723</td>
</tr>
<tr>
<td>total</td>
<td>0.0055</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New species added per unit time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>among groups</td>
<td>0.3424</td>
<td>3</td>
<td>0.1141</td>
<td>1.1728</td>
<td>0.3530</td>
<td>0.9945</td>
</tr>
<tr>
<td>subgroups within groups</td>
<td>1.5558</td>
<td>15.93</td>
<td>0.0973</td>
<td>1.4417</td>
<td>0.1477</td>
<td>8.7746</td>
</tr>
<tr>
<td>within subgroups</td>
<td>4.7885</td>
<td>71</td>
<td>0.0674</td>
<td></td>
<td></td>
<td>90.23073</td>
</tr>
<tr>
<td>total</td>
<td>6.6868</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NAAS rating (India) 5.64

Journal of Threatened Taxa

Birds

Dr. Hem Sagar Baral, Charles Sturt University, NSW Australia
Mr. M. Biju, Coimbatore, Tamil Nadu, India
Dr. Chris Bowden, Royal Society for the Protection of Birds, Sandy, UK
Dr. Priya Davidar, Pondicherry University, Kalapatp, Puducherry, India
Dr. J.W. Dowdworth, IUCN SSC, UK
Dr. Rajay Jayal, SACC, Coimbatore, Tamil Nadu, India
Dr. Raj S. Kali, M.L.N. College, Yamuna Nagar, Haryana, India
Dr. V. Santharam, Rich Valley Education Centre, Chittoor Dt., Andhra Pradesh, India
Dr. S. Balachandran, Bombay Natural History Society, Mumbai, India
Mr. J. Praveen, Bengaluru, India
Dr. C. Srinivasulu, Osmania University, Hyderabad, India
Dr. K.S. Gopi Sundar, International Crane Foundation, Baraboo, USA
Dr. Gombarrao Sunde, Professor of Ornithology, Ulanabaat, Mongolia
Prof. Reuven Yosef, International Birding & Research Centre, Eilat, Israel
Dr. Taej Mundur, Wetlands International, Wageningen, The Netherlands
Dr. Carol Inskeep, Bishop Auckland Co., Durham, UK
Dr. Tim Inskeep, Bishop Auckland Co., Durham, UK
Dr. V. Gokula, National College, Tiruchirapalli, Tamil Nadu, India
Dr. Aralady Lelley, Russian Academy of Sciences, Novosibirsk, Russia
Dr. Simon Dowell, Science Director, Chester Zoo, UK
Dr. Mario Gabriel Santos dos Santos, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, Vila Real, Portugal
Dr. Grant Connette, Smithsonian Institution, Royal, VA, USA
Dr. M. Zafar-ul Islam, Prince Saud Al Faisal Wildlife Research Center, Taif, Saudi Arabia

Mammals

Dr. Giovanni Amori, CNR - Institute of ecosystem Studies, Rome, Italy
Dr. Anwaruddin Chowdhury, Guwahati, Assam, India
Dr. David Mallon, Zoological Society of London, UK
Dr. Shomita Mukherjee, SACC, Coimbatore, Tamil Nadu, India
Dr. Angie Appel, WISI, Madison, Wisconsin, USA
Dr. P.O. Nameer, Kerala Agricultural University, Thrissur, Kerala, India
Dr. Ian Redmond, UNEP Convention on Migratory Species, Lansdown, UK
Dr. Heidi S. Riddle, Riddle’s Elephant and Wildlife Sanctuary, Arkansas, USA
Dr. Karin Schwartz, George Mason University, Fairfax, Virginia, USA
Dr. Lala A.K. Singh, Bhushanwair, Orissa, India
Dr. Mewa Singh, Myose University, Myose, India
Dr. Paul Racey, University of Exeter, Devon, UK
Dr. Honnavali N. Kumar, SACC, Anakatte P.O., Coimbatore, Tamil Nadu, India
Dr. Nisith Dharaia, HNG University, Patan, Gujarat, India
Dr. Spartaco Gippoliti, Sotio Oroario Societa Italiana per la Storia della Fauna “Giuseppe Alottbeo”, Rome, Italy
Dr. Justu Joshua, Green Future Foundation, Tiruchirapalli, Tamil Nadu, India
Dr. H. Raghumur, The American College, Madurai, Tamil Nadu, India
Dr. Paul Bates, Harison Institute, Kent, UK
Dr. Jim Sanderson, Small Wild Cat Research and Conservation Fund, USA
Dr. Grant Connette, Smithsonian Institution, Royal, VA, USA
Dr. Brian L. Cypher, California State University-Stanislaus, Bakerfield, CA
Dr. S.S. Tamale, Zoological Survey of India, Pune, Maharashtra, India
Dr. Keshava Dev, Wildlife Information Liaison Development Society, Theophrastus, UK
Dr. Susan Cheyne, Borneo Nature Foundation International, Palangkaraya, Indonesia
Dr. Hemanta Kaffey, Wildlife Fisheries, Tarleton State University, Texas, USA

Other Disciplines

Dr. Aniruddha Belsare, Columbia MO 65203, USA (Veterinary)
Dr. Mandar P. Sainpur, University of Pune, Pune, Maharashtra, India (Molecular)
Dr. Jack Tordoff, Critical Ecosystem Partnership Fund, Arlington, USA (Communities)
Dr. Ulrike Streicher, University of Oregon, Eugene, USA (Veterinary)
Dr. Hari Balasubramanian, EcoAdvisors, Nova Scotia, Canada (Communities)
Dr. Nele Helms Santlos Rezerra, Universidade Federal de Sergipe, São Cristóvão, Brazil
Dr. Gombobaatar Sundev, Professor of Ornithology, Ulaanbaat, Mongolia
Dr. Timothy E. Votaw, Rainforest, USA (Veterinary)
Dr. Paul Bates, Harison Institute, Kent, UK
Dr. Justu Joshua, Green Future Foundation, Tiruchirapalli, Tamil Nadu, India
Dr. H. Raghumur, The American College, Madurai, Tamil Nadu, India
Dr. Paul Bates, Harison Institute, Kent, UK
Dr. Jim Sanderson, Small Wild Cat Conservation Foundation, Harvard, USA
Dr. David Mallon, Manchester Metropolitan University, Derbyshire, UK
Dr. Brian L. Cypher, California State University-Stanislaus, Bakerfield, CA
Dr. S.S. Tamale, Zoological Survey of India, Pune, Maharashtra, India
Dr. Keshava Dev, Wildlife Information Liaison Development Society, Theophrastus, UK

Reviewers 2019–2021

Due to paucity of space, the list of reviewers for 2018-2020 is available online.

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.
Communications

Asian Black Bear Ursus thibetanus attacks in Kashmir Valley, India

Food habits of the Red Fox Vulpes vulpes (Mammalia: Carnivora: Canidae) in Dachigam National Park of the Kashmir Himalaya, India
– Kulsum Ahmad Bhat, Bilal A. Bhat, Bashir A. Ganai, Aamir Majeed, Naizya Khurshid & Muniza Manzoor, Pp. 22364–22370

Status distribution and factors affecting the habitat selection by Sambar Deer Rusa unicolor in Pench Tiger Reserve, Madhya Pradesh, India
– Abdul Haleem & Orus Ilyas, Pp. 22371–22380

Assessing illegal trade networks of two species of pangolins through a questionnaire survey in Nepal

First occurrence record of Indian Roundleaf Bat Hipposideros lankadiva in Rajasthan, India
– Dharmendra Khandal, Dau Lal Bohra & Shyamkant S. Talmale, Pp. 22392–22398

Food availability and food selectivity of Sri Lanka Grey Hornbill Ocyceros gingolensis Shaw, 1811 in Mihintale Sanctuary, Sri Lanka
– Iresha Wijerathne, Pavithra Panduwawala & Sriyani Wickramasinghe, Pp. 22399–22409

Conservation significance of Changaram wetlands - a key wintering site for migratory shorebirds and other waterbirds in the western coast of Kerala, India

Long-term monitoring of pelicans in National Chambal Sanctuary, India
– Lala A.K. Singh & Rishikesh Sharma, Pp. 22419–22429

A checklist of avifauna of Mangalore University, Karnataka, India

Biology of Bhtanitis ludlowi Gabriell, 1942 (Lepidoptera: Papilionidae) Bumdeling Wildlife Sanctuary, Bhutan
– Tshering Dedup, Namgay Shacha, Karma Tempa & Tse Dr Ghalley, Pp. 22440–22447

Biodiversity of butterflies (Lepidoptera: Rhopalocera) in the protected landscape of Nandhour, Uttarakhand, India
– Hem Chandra, Manoj Kumar Arya & Aman Verma, Pp. 22448–22470

A comparison of four sampling techniques for assessing species richness of adult odonates at riverbanks
– Apeksha Darshetkar, Ankur Patwardhan & Pankaj Koparde, Pp. 22471–22478

Floristic diversity of native wild ornamental plants of Aravalli Hill Range: a case study from district Rewari, Haryana, India

Flowering and fruiting of Tape Seagrass Enhalus acoroides (L.f.) Royle from the Andaman Islands: observations from inflorescence buds to dehiscent fruits

Notes

Installation of hot boxes for conservation in the last nursery roost of Greater Horseshoe Bats Rhinolophus ferrumequinum in Austria

New prey record of giant ladybird beetle Anisolemnia dilatata (Fabricius) (Coccinellidae: Coccinellinae) feeding on Som Plant Aphid (Heteroptera: Coreidae) from India

Incidence of Clinostomum complanatum (Trematoda: Clinostomidae) in Trichogaster fasciata (Actinopterygii: Osphronemidae), the first report from Deepor Beel, Assam, India
– Bobita Bordoloi & Arup Kumar Hazarika, Pp. 22555–22558

Saurornatum horsfieldii (Araceae): a new addition to the flora of Manipur, northeastern India
– Kazhuhrii Eshuo & Adani Lokho, Pp. 22558–22562

Book Review

Book Review - Under the Feet of Living Things
Editors — Aparajita Datta, Rohan Arthur & T.R. Shankar Raman
– Review by Melito Prinson Pinto, Pp. 22566–22568