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Abstract: In this paper we evaluated the performance of four species distribution models: generalized linear (GLM), maximum entropy 
(MAXENT), random forest (RF) and support vector machines (SVM) model, using the distribution of the dragonfly Blue-tailed Green Darner 
Anax guttatus in the Gangetic riparian zone between Bijnor and Kanpur barrage, Uttar Pradesh, India.  We used forest cover type, land 
use, land cover and five bioclimatic variable layers: annual mean temperature, isothermality, temperature seasonality, mean temperature 
of driest quarter, and precipitation seasonality to build the models.  We found that the GLM generated the highest values for AUC, Kappa 
statistic, TSS, specificity and sensitivity, and the lowest values for omission error and commission error, while the MAXENT model generated 
the lowest variance in variable importance. We suggest that researchers should not rely on any single algorithm, instead, they should test 
performance of all available models for their species and area of interest, and choose the best one to build a species distribution model.

Keywords: Generalized linear model, Kappa statistic, maximum entropy model, omission and commission error, random forest model, 
receiver operating characteristic curve, sensitivity, specificity, support vector machines model, true skill statistic
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INTRODUCTION

Species distribution models (SDMs) are tools that 
integrate information about species occurrence or 
abundance with environmental estimates of a landscape, 
used to predict distribution of a species across landscapes 
(Elith & Leathwick 2009).  When applied in a geographic 
information system (GIS), SDMs can produce spatial 
predictions of occurrence likelihood at locations where 
information on species distribution was previously 
unavailable (Václavík & Meentemeyer 2009).  Though 
various types of algorithms are used to build different 
SDMs (Elith et al. 2006), they share common and general 
approaches (Hirzel et al. 2002) such as: (i) at a specified 
resolution, the study area is divided into grid cells; (ii) 
species presence localities (and sometimes absence 
localities) data are used as the dependent variable; 
(iii) several environmental variables (e.g., temperature, 
precipitation, soil type, aspect, land cover type) are 
collected for each grid cell as predictor variables; and (iv) 
the suitability of each cell for the species distributions 
defined as a function of the environmental variables 
(Stanton et al. 2012).  The species distribution prediction 
is central to applications in ecology, evolution and 
conservation science (Elith et al. 2006) across terrestrial, 
freshwater, and marine realms (Elith & Leathwick 2009).  
But it remains a question for researchers which model 
should be selected for particular organisms and habitats 
of interest, particularly when few samples are present 
for large under-sampled areas (Mi et al. 2017).

Riparian zones are broadly defined as terrestrial 
landscapes with characteristic vegetation associated 
with temporary or permanent aquatic ecosystems 
(Meragiaw et al. 2018).  These areas are highly complex 
biophysical systems, and their ecological functions are 
maintained by strong spatio-temporal connectivity with 
adjacent riverine and upland systems (Décamps et al. 
2009).  It has been observed that species distribution 
models are used more often for terrestrial environments 
than for aquatic or riparian ecosystems.  Globally, 
odonates are used as model organisms to study climate 
change, data simulation, environmental assessment 
and management, effects of urbanization, landscape 
planning, habitat monitoring and evaluation, and 
conservation of rare species (Bried & Samways 2015).  
To date, no work has been done on the comparative use 
of species distribution models in India using insects as 
model organisms in riparian or freshwater ecosystems.  
With this background, in the present work we evaluated 
the effectiveness of four species distribution models 
using odonates from the Gangetic riparian zone as 

model organisms.

MATERIALS AND METHODS

Study area and field data collection
For the study, we selected Anax guttatus (Burmeister, 

1839) commonly called Blue-tailed Green Darner 
(Image 1) as the model insect species.  It is a dragonfly 
(suborder Anisoptera Selys, 1854) under the family 
Aeshnidae Leach, 1815 and superfamily Aeshnoidea 
Leach, 1815 (Dijkstra et al. 2013).  The species can be 
identified in the field due to its large size, highly active 
behaviour, green colour of the thorax & first, second, & 
third abdominal segments, and presence of turquoise 
blue colour on the dorsal part of the second abdominal 
segment (Subramanian 2005).

We conducted the study during May 2019 from 
Bijnor, Uttar Pradesh to Kanpur, Uttar Pradesh (Fig. 
1).  The river flows through alluvial plain and covers a 
length of about 450km in this stretch.  For the study we 
selected four sites, and the distance between each two 
successive sites was about 150km.  In each site we chose 
a 10km river stretch and observed the presence of Blue-
tailed Green Darner.  We collected a total of 10 sighting 
locations.

Data processing and analysis
We derived the thematic layer of LULC (N.R.S.C. 

2016) from multi-temporal advanced wide field sensor 
(AWiFS) images with 56m spatial resolution using digital 
and rule-based image classification methods, and forest 

Image 1. Anax guttatus (Burmeister, 1839) – Blue-tailed Green Darner

© Kritish De
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cover type (F.S.I. 2009) from IRS P6 (Linear Imaging Self 
Scanning Sensor) LISS III with 23.5m spatial resolution 
using a combined method of digital and on-screen 
visual image classification and bioclimatic layers from 
worldclim gridded climatic data (Fick & Hijmans 2017) 
with 1km spatial resolution.  For analysis, we took 2km 
buffer zones from the river bank and resampled all the 
layers to 1km spatial resolution. 

We used ‘stack’ function of package ‘raster’ (Hijmans 
2019) to stack all the 19 available bioclimatic variable, 
forest cover and land use land cover (LULC) layers.  After 
that we used ‘pairs’ function of the package ‘raster’ 
(Hijmans 2019) to find the correlation coefficient 
between stacked layers.  Then we selected the variables 
which had a correlation coefficient less than 0.60 
(Pozzobom et al. 2020), and again stacked the selected 
layers with ‘stack’ function of package ‘raster’ (Hijmans 
2019).  These selected layers were LULC, forest cover 
and five bioclimatic layers: annual mean temperature 
(Bio 1), isothermality (Bio 3), temperature seasonality 
(Bio 4), mean temperature of driest quarter (Bio 9), and 
precipitation seasonality (Bio 15). 

We built four species distribution models: generalized 
linear model (GLM), maximum entropy (MAXENT) 

model, random forest (RF) model, and support vector 
machines (SVM).

GLM is an extension of classic linear regression 
modeling, where the iterative weighted linear regression 
technique is used to estimate maximum-likelihood of the 
parameters, with observations distributed in terms of an 
exponential family and systematic effects made linear 
by the suitable transformation that allow for analysis 
of non-linear effects among variables and non-normal 
distributions of the independent variables (McCullagh 
& Nelder 1989; Chefaoui & Lobo 2008; Shabani et al. 
2016).

RF modeling is a machine learning technique which 
is a bootstrap-based classification and regression 
trees method (Cutler et al. 2007).  It is used to model 
species distributions from both the abundance and 
the presence-absence data (Howard et al. 2014).  It is 
insensitive to data distribution (Hill et al. 2017) and also 
takes a large number of potentially collinear variables; 
it is robust to over-fitting which makes it very useful for 
prediction (Prasad et al. 2006; Segal 2004). 

MAXENT modeling is a general-purpose machine 
learning method to estimate a target probability 
distribution by finding the probability distribution of 

Figure 1. Study area on the river Ganga between Bijnour and Kanpur.  The red circles represent sampling sites, and green circles represent 
species sighting locations. 
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maximum entropy and it has several aspects that make 
it well-suited for species distribution modelling (Phillips 
et al. 2006).  It is relatively less sensitive to the spatial 
errors associated with location data and needs few 
locations to build useful models (Baldwin 2009) and 
it is one of the most accurate and trusted modelling 
methods for presence-only distribution data (Huerta & 
Peterson 2008; Srinivasulu & Srinivasulu 2016).

SVM modeling is developed from the theory of 
statistical learning, in which the error involved with 
sample size is minimized and the upper limit of the error 
involved in model generalization is narrowed, which 
solve the problems of nonlinearity, over-learning and the 
curse of dimensionality during modelling (Fielding & Bell 
1997; Howley & Madden 2005; Huang & Wang 2006).  
It can be used on small data sets as it is independent of 
any distributional assumptions or asymptotic arguments 
(Wilson 2008).

We used ‘load_var’ function to normalize and 
load environmental variables, then used ‘load_occ’ 
function to load species occurrence data and then 
used ‘modelling’ function to build the models with 100 
iterations by the package ‘SSDM’ (Schmitt et al. 2017) to 
plot the models.

We evaluated and compared four models by 
comparing values of area under the receiver operating 
characteristic curve (AUC), Kohen’s Kappa, true skill 
statistic (TSS), model sensitivity, model specificity, and 
omission error.

The area under the receiver operating characteristic 
curve or AUC measures the ability of a model to 
discriminate between the sites where a species is present 
and the sites where a species is absent (Fielding & Bell 
1997; Elith et al. 2006) and it provides a single measure 
of overall accuracy that is independent of a particular 
threshold (Fielding & Bell 1997).  The evaluation criteria 
for the AUC statistic are as follows: excellent (0.90–1.00), 
very good (0.8–0.9), good (0.7–0.8), fair (0.6–0.7), and 
poor (0.5–0.6) (Swets 1988; Duan et al. 2014).

The Kappa statistic is based on the optimal threshold, 
measure the performance of the model by using the 
best of the information in the mixed matrix (Duan et al. 
2014) ranges from −1 to +1, where +1 indicates perfect 
agreement and values of zero or less than zero indicate 
a performance no better than random (Allouche et al. 
2006; Cohen 1960) and the  evaluation criteria for the 
Kappa statistic are as follows: excellent (0.85–1.0), very 
good (0.7–0.85), good (0.55–0.7), fair (0.4–0.55), and fail 
(<0.4) (Duan et al. 2014; Monserud & Leemans 1992).

The true skill statistic (TSS) is expressed as Sensitivity 
+ Specificity – 1 (Allouche et al. 2006) and ranges from −1 

to +1, where +1 indicates a perfectly performing model 
with no error, 0 indicates the model with totally random 
error and -1 indicates the model with total error (Marcot 
2012; Ruete & Leynaud 2015).

The model sensitivity denotes the proportion of 
correctly predicted presences, thus quantifying omission 
errors (Ward 2007; Shabani et al. 2016) and model 
specificity denotes the proportion of correctly predicted 
presences, thus quantifying commission errors (Shabani 
et al. 2016).

Omission error (1- sensitivity) is the under-prediction 
or false-negative result in areas being classified as 
unsuitable when they are not and commission error (1- 
specificity) is the over-prediction or false-positive result 
in areas being classified as suitable when they are not 
(Ward 2007) and for a good SDM, both of the omission 
error and commission error should be low.

For evaluation of model performance and variable 
importance we used ‘knitr::kable(Modelname@
evaluation)’ function and ‘knitr::kable(Modelname@
variable.importance)’ function of the package ‘SSDM’ 
(Schmitt et al. 2017), respectively.

We chose five probability classes (0 to <0.20, 0.20 to 
<0.40, 0.40 to <0.60, 0.60 to <0.80 and 0.80 to 1.00) to 
know what percentage of the area is being declared the 
best and worst by each of the models by ‘ratify’ function 
of package ‘raster’ (Hijmans 2019)

We performed all the analysis in the ArcMap 10.3.1, 
QGIS 2.14.7 and in R language and environment for 
statistical computing (R Core Team 2019). 

RESULT

The plot for each of the four models is given in Fig. 
2.  We found that the AUC value was highest for GLM 
(0.983), followed by RF (0.833), MAXENT (0.829) and 
SVM (0.667); the value of Kappa statistic was highest for 
RF (0.667), followed by GLM (0.356), SVM (0.333) and 
MAXENT (0.049); the value of TSS was highest for GLM 
(0.965), followed by RF (0.666), MAXENT (0.658) and 
SVM (0.334); the value of model sensitivity was 1 for 
GLM, 0.833 for both MAXENT and RF and 0.667 for SVM; 
the value of model specificity was maximum for GLM 
(0.965), followed by RF (0.833), MAXENT (0.825) and 
SVM) (0.667); the omission error was lowest for GLM 
(0.00), for both MAXENT and RF models it was 0.167 and 
for SVM it was 0.333; the commission error was lowest 
for GLM (0.035), followed by RF model (0.167), MAXENT 
(0.175) and SVM (0.333) (Table 1, Fig. 3)

For GLM, RF, and SVM models the forest had 
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the highest importance but for MAXENT model the 
Precipitation seasonality (Bio 15) had the highest 
importance (Table 2, Fig. 4).  For GLM and SVM models 
the Precipitation seasonality (Bio 15) had lowest 
importance, for MAXENT forest had lowest importance, 
while for RF model Isothermality (Bio 3) had lowest 
importance (Table 2, Fig. 4).  Overall, the variation in the 
variable importance was lowest in MAXENT model (SD = 
3.367), followed by GLM (SD = 24.344), RF (SD = 30.868) 
and SVM (SD = 37.071) (Fig. 5).

By comparative analysis, we found that GLM showed 
1.62% of total area as the best (occurrence probability, 
0.80 to 1) and 65.50% of total area as the worst 
(occurrence probability, 0 to 0.20) for suitable habitat.  
MAXENT model showed 10.08% of total area as the 
best and 77.70% of total area as the worst for suitable 
habitat.  RF model showed 5.39% of total area as the 
best and 23.79% of total area as the worst for suitable 
habitat.  SVM model showed 4.53% of total area as the 

best and 27.68% of total area as the worst for suitable 
habitat (Table 3, Fig. 6).

Figure 2. Comparative account of four species distribution models – generalized linear model (GLM), maximum entropy (MAXENT), random 
forest (RF), and support vector machines (SVM).  The legend in each model shows probability of occurrence and the red dotes represents the 
occurrence location of the species.

Table 1. Values of AUC, Kappa statistic, TSS, sensitivity, specificity, 
omission error, and commission error generated by generalized 
linear model (GLM), maximum entropy (MAXENT) model, random 
forest (RF) model, and support vector machines (SVM) model.

GLM MAXENT RF SVM

AUC 0.983 0.829 0.833 0.667

Kappa statistic 0.356 0.049 0.667 0.333

True skill statistic 0.965 0.658 0.666 0.334

Sensitivity 1 0.833 0.833 0.667

Specificity 0.965 0.825 0.833 0.667

Omission error 0 0.167 0.167 0.333

Commission error 0.035 0.175 0.167 0.333
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DISCUSSION

Freshwater ecosystems, which include rivers, lakes, 
peat lands, swamps, fens, and springs, are highly dynamic 
and host a great diversity of life forms, particularly 
freshwater endemic species (He et al. 2019; Tickner 
et al. 2020).  They are among the most threatened 
ecosystems (He et al. 2019), as globally wetlands are 
vanishing more rapidly than forests and freshwater 
species are declining faster than terrestrial or marine 
populations (Tickner et al. 2020).  Therefore, for proper 
conservation management, we should understand the 
distribution of plants and animals inhabiting aquatic 
ecosystems.  Species distribution models can play an 
important role on such efforts, because they can produce 
credible, defensible and repeatable information and 
provide tools for mapping habitats to inform decisions 
(Sofaer et al. 2019).  Species distribution models can 
forecast the potential impacts of future environmental 
changes (Howard et al. 2014) and predict how species 

will respond (Buckley et al. 2010).  Yet debate remains 
over the most robust species distribution modelling 
approaches for making projections (Howard et al. 2014), 
because these models have sensitivity to data inputs 
and methodological choices.  This makes it important to 
assess the reliability and utility of the model predictions 
(Sofaer et al. 2019).

In the present study we compared the GLM, 
MAXENT, RF, and SVM approaches.  We found that GLM 
generated the highest values for AUC, TSS, specificity 
and sensitivity, and the lowest values for omission error 
and commission error.  The value of Kappa statistic was 
highest for RF modelling.  The MAXENT model used 
roughly all variables equally, which is not true of the 
other models which put more emphasis on forest cover.

The success of a model depends on many factors, 
such as sample size, spatial extent of the study area, and 
number of ecological and statistical significant variables 
which affect the distribution of species of interest. We 
acknowledge that there were some limitations to the 
current work, such as that our sample size was small (only 
10 presence locations), we used only seven variables, 
we tested only four species distribution models, and we 
selected a species whose distribution depends on other 
factors, such as the physiochemical parameters of water 
and availability of resources. We did not include such 

Table 2. Comparative importance (%) of seven variables from generalized linear model (GLM), maximum entropy (MAXENT) model, random 
forest (RF) model, and support vector machines (SVM) model.

GLM MAXENT RF SVM

Annual mean temperature (Bio 1) 11.831 16.352 2.254 0.198

Isothermality (Bio 3) 8.062 14.789 0.513 0.337

Temperature seasonality) (Bio 4) 5.709 15.405 4.076 0.239

Mean temperature of driest quarter (Bio 9) 3.241 13.638 0.907 0.069

Precipitation seasonality (Bio 15) 1.103 16.417 2.817 0.019

Forest 68.799 7.014 84.186 98.353

Land use land cover 1.252 16.384 5.247 0.785

Table 3. Comparison of percentage of total area obtained from each 
model for five occurrence probability classes,

Occurrence probability 
class Models

GLM MAXENT RF SVM

0 to <0.20 65.50 77.70 23.79 27.68

0.20 to <0.40 7.94 3.93 35.61 42.55

0.40 to <0.60 19.58 4.04 17.97 18.04

0.60 to <0.80 5.35 4.24 17.24 7.19

0.80 to 1.00 1.62 10.08 5.39 4.53

Figure 3. Bar diagram showing comparative account of values of 
AUC, Kappa statistic, TSS, sensitivity, specificity , omission error and 
commission error for four models – generalized linear model (GLM), 
maximum entropy (MAXENT) model, random forest (RF) model, and 
support vector machines (SVM) model.
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Figure 4. Pie diagram showing percentage importance for seven variables for four models – generalized linear model (GLM), maximum entropy 
(MAXENT) model, random forest (RF) model, and support vector machines (SVM) model.

Figure 5. Comparison of standard deviation of variable importance 
for generalized linear model (GLM), maximum entropy (MAXENT) 
model, random forest (RF) model, and support vector machines 
(SVM) model.  The black dotted line represents the mean value.

variables as this study was preliminary.
Collins & McIntyre (2015) reviewed 30 studies on 

species distribution modelling of odonates across the 
world, and found that 43% used GLM, 33% MAXENT 
and 20% RF models.  Other models used were BIOMOD, 
general additive model (GAM), generalized boosted 
model (GBM), artificial neural networks (ANN), 
multivariate adaptive regression splines (MARS), 
classified tree analysis (CTA), flexible discriminant 
analysis (FDA), boosted regression trees (BRT), surface 
range envelopes (SRE), and mixture discriminant analysis 
(MDA).  Different species distribution models produce 
different results (Shabani et al. 2016), and the same 
model can give different results for different species 
and areas.  We urge researchers not to rely on just one 
model, rather they should compare different available 
species distribution models and select the best one.  
Our study was in India where an insect was used for 
comparative evaluation of species distribution models 
in a riverine riparian zone.  We recommend that further 
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Figure 6. Pie diagram showing percentage area for five occurrence probability classes for four models – generalized linear model (GLM), 
maximum entropy (MAXENT) model, random forest (RF) model, and support vector machines (SVM) model.

studies on different species distribution models using 
different animals and ecological variables should be 
carried out in the riparian zones of Indian river systems 
for proper design and implementation of ecological 
habitat management plans.
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