SHORT COMMUNICATION

INCURSION OF THE KILLER SPONGE *TERPIOS HOSHINOTA* RÜTZLER & MUZIK, 1993 ON THE CORAL REEFS OF THE LAKSHADWEEP ARCHIPELAGO, ARABIAN SEA

Rocktim Ramen Das, Chemmencheri Ramakrishnan Sreeraj, Gopi Mohan, Kottarathil Rajendran Abhilash, Vijay Kumar Deepak Samuel, Purvaja Ramachandran & Ramesh Ramachandran

26 October 2020 | Vol. 12 | No. 14 | Pages: 17009–17013
Abstract: Our study documents the outbreak of a coral-killing sponge *Terpios hoshinota* in the coral reefs of Lakshadweep archipelago and highlights that it has further extended its territory into the isolated atolls of Arabian Sea and maybe a growing threat to the existing coral reefs in the region.

Keywords: Atoll, Black disease, Indian Ocean.

Abbreviations: GOM—Gulf of Mannar | PB—Palk Bay | QGIS—Quantum Geographic Information System.

*The terms Black disease and Killer sponge are used synonymously.

Coral killing sponges have the potential to overgrow live corals, eventually killing the coral polyps, and thus leading to an epidemic (Bryan 1973). The cyanobacterio
(Montano et al. 2015), Mauritius (Elliott et al. 2016) and our present observation, confirms that the species has further extended its habitat into the pristine atolls of Lakshadweep (Image 1) (Arabian Sea) and requires urgent attention.

During the coral reef surveys conducted at Lakshadweep in November 2016, *T. hoshinota* was observed overgrowing on several colonies of *Acropora muricata*, *Isopora palifera*, *Cyphastrea* sp., *Dipsastraea lizarvensis* and *Porites lutea* (Image 2 and 3) in the atoll encircling Bangaram and Thinnakara Islands. Out of 34 sites surveyed, six exhibited the presence of *T. hoshinota* (Image 1). The coral colonies in atoll were patchy and the depth of the atoll varied between 2 and 12 meters. As depth increased, (i.e., >5m) large boulder corals were observed whereas the shallow regions (<5m) had greater coral diversity. Certain areas consisting of large *Acropora* beds, rocks, rubbles, and dead reef were also observed. The affected corals displayed grayish/blackish encrustations of *T. hoshinota* forming a mat-like layer on live corals taking the shape of the coral in all cases. The osculum in the sponge, a primary character with a radiating network of canals, was clearly visible and the thickness of the mat was less than 1mm (Image 2). It was observed that the encrusting sponges were propagating laterally and infecting the other live coral colonies. Other associated communities such as ascidians and clams remain unaffected but interestingly the calcareous serpulid tubes, though overgrown by the *Terpios*, the animal was unharmed (Elliott et al. 2016) (Image 2d). Further, in some colonies along with *T. hoshinota*, algal presence was noted (Image 3a) but the sponge was absent in the colonies which were completely covered with turf algae (Image 3b). Environmental parameters assessed with a multiparameter water quality probe (YSI optic probe no. 15K100034) revealed that the area was unpolluted with an optimum level of dissolved oxygen (5.04~8.21 mg/l), and low turbidity (0.3 to 0.8 NTU). Sea surface temperature (SST) during the survey was 28.2~30.1°C. It is important to note that, Bangaram and Thinnakara is one of the few atolls in Lakshadweep where tourism is permitted, as a result, limited amounts of diving and other water-related recreational activities can be seen in the area.
Previous studies (Rützler & Muzik 1993; Thinesh et al. 2015) suspected that the outbreak of *T. hoshinota* is related to increased water turbidity or due to high anthropogenic stress/pollution its close proximity to mainland, as reported in the south eastern reefs of India (~800km from Lakshadweep) (Thinesh et al. 2015, 2017; Raj et al. 2018a), Guam (Plucer-Rosario 1987; Rützler & Muzik 1993) and in Green island (Chen et al. 2009). A similar conclusion, however, cannot be applied in the case of Lakshadweep because of its isolated geography (Arthur et al. 2005) and with comparatively less anthropogenic activities. As a result, our observation contradicts the above statements and is more in line with the findings of Shi et al. (2012) who observed *T. hoshinota* outbreak in unpolluted areas of Yongxing Island (South China Sea), highlighting the difficulty in establishing a negative co-relationship between water quality and black disease outbreak (Sung-Yin Yang pers comm. 2020). In terms of host selectivity, the killer sponge has affected several coral species in different parts of the world (Bryan 1973; Thinesh et al. 2015; Elliott et al. 2016; Raj et al. 2018a) and in the reefs of Palk Bay (PB), it has affected all genus surveyed (Thinesh et al. 2015). In Vaan Island (GOM) the dominant genus *Montipora* was the most susceptible (Raj et al. 2018a). Our observation though could not reveal any specific host coral selectivity, we can speculate that the dense branching *Acropora* coral beds (ACB) in site 3, 5 and 6 were more easily overgrown because the killer sponge prefers branching corals as reported from Mauritius (Elliott et al. 2016). We would further conclude that the coral composition in any specific location may play an important role in determining its host.

T. hoshinota is a belligerent contender for space (Plucer-Rosario 1987) and is known to overgrow corals from its base where it interacts with turf algae (Elliott et al. 2016). Branching *Acropora* beds in site 3, 5 and 6 (Image 3a) consisted both algae (e.g., *Dictyota* sp.)...
and the killer sponge. Additionally, a massive turf algae covered area of ~0.35km in *T. hoshinota* occurrence site (5, 6) highlights a complex ecological scenario (Image 3b). Such complexity between sponges, corals and algae can be only understood through long term monitoring. González-Rivero et al. (2011) stated that sponges can act as a potential group that can facilitate and influence coral-algal shifts by acting as a “third antagonist” as observed in Glover’s atoll (Belize).

Based on our knowledge of the life history of *T. hoshinota* we can hypothesize site 5/6 scenario as follows: - (1) *T. hoshinota* invades and overgrows the *Acropora* beds → (2) The coral dies which is followed by the death of the killer sponge → (3) Turf algae takes over (Image 3a, b). Moreover, reports of turf algae being a dominant component in the atolls (Arthur et al. 2005) might indicate a faster transition. Globally Elevated SST is a major threat to coral reefs (Hughes et al. 2018), and the reefs of India (Edward et al. 2018; Krishnan et al. 2018; Raj et al. 2018b) including the atolls (Vinoth et al. 2012) are no different. With reports indicating that elevated SST has already depleted the coral ecosystem of Lakshadweep, which was evident during 1998 (Arthur et al. 2005), 2010 (Vinoth et al. 2012), and 2016 (Hughes et al. 2018) mass bleaching events, it can provide an opportunity for sponges to invade (Bell et al. 2013). The dynamics of waterflow (Arthur et al. 2005) might also play a crucial role in this regard.

Our findings confirm that the infestation of *T. hoshinota* on the coral colonies of Lakshadweep is currently limited to only Bangaram and Thinnakara as it was not observed in the other atolls surveyed. Although there is a possibility that the killer sponge could invade nearby atolls as seen in other regions (Bryan 1973; Reimer et al. 2011), large-scale damage cannot be concluded at this stage. This is in fact the first documentation of *T. hoshinota* on the reefs of Lakshadweep and can be regarded as a baseline for subsequent studies. Further, to protect the reefs of Lakshadweep, a long term coral health monitoring program is required which will allow us to understand the nature of occurrence, distribution, the impact and the causative factors of the killer sponge and to understand it’s larger threat to the reefs. Black disease along with other coral associated diseases needs enlarged emphasis according to which various coral reef management plans can be initiated.

REFERENCES

Incursion of killer sponge on coral reefs

Das et al.

Evaluating performance of four species distribution models using Blue-tailed Green Darter Anax guttatus (Insecta: Odonata) as model organism from the Gangetic riparian zone

Butterfly species richness and diversity in rural and urban areas of Sirajganj, Bangladesh

Chroococcal blue green algae from the paddy fields of Satara District, Maharashtra, India

Short Communications

Avifaunal diversity along the riverine habitats of Papikonda National Park, Andhra Pradesh, India

Medetomidine may cause heart murmur in Cougars and Jaguars: case report

Description of a new species of Omyomyrma Schauf from India with a key to Oriental species and first report of Palaeoneura markhoddei Triapitsyn (Hymenoptera: Myrmaridae) from the Indian subcontinent

Incursion of the killer sponge Terpios hoshinota Rützler & Muzik, 1993 on the coral reefs of the Lakshadweep archipelago, Arabian Sea

Contribution to the macromycetes of West Bengal, India: 63–68

Notes

A rare camera trap record of the Hispid Hare Caprolagus hispidus from Dudhwa Tiger Reserve, Terai Arc Landscape, India

First distributional record of the Lesser Adjutant Leptoptilos javanicus Horsfield, 1821 (Ciconiiformes: Ciconiidae) from Sindhuli District, Nepal

First record of African Sailfin Flying Fish Parexocoetus mento (Valenciennes, 1847) (Beloniformes: Exocoetidae), from the waters off Andaman Islands, India

A first distribution record of the Indian Peacock Softshell Turtle Nilssonia hurum (Gray, 1830) (Reptilia: Testudines: Trionychidae) from Mizoram, India

A frog that eats foam: predation on the nest of Polypedates sp. (Rhacophoridae) by Euphlyctis sp. (Dicroglossidae)

New distribution record of two endemic plant species, Euphorbia kadapensis Sarojin. & R.R.V. Raju (Euphorbiaceae) and Lepidagathis keralensis Madhus. & N.P. Singh (Acanthaceae), for Karnataka, India

Cirsium wallichii DC. (Asteraceae): a key nectar source of butterflies

Hypecoum pendulum L. (Papaveraceae: Ranunculales): a new record for the flora of Haryana, India

Addendum

Erratum and addenda to the article ‘A history of primatology in India’