

Journal of Threatened Taxa

Building evidence for conservation globally

www.threatenedtaxa.org

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print)

SHORT COMMUNICATION

CONTRIBUTION TO THE MACROMYCETES OF WEST BENGAL, INDIA: 63–68

Rituparna Saha, Debal Ray, Anirban Roy & Krishnendu Acharya

26 October 2020 | Vol. 12 | No. 14 | Pages: 17014–17023

DOI: 10.11609/jott.4964.12.14.17014-17023

For Focus, Scope, Aims, Policies, and Guidelines visit <https://threatenedtaxa.org/index.php/JoTT/about/editorialPolicies#custom-0>

For Article Submission Guidelines, visit <https://threatenedtaxa.org/index.php/JoTT/about/submissions#onlineSubmissions>

For Policies against Scientific Misconduct, visit <https://threatenedtaxa.org/index.php/JoTT/about/editorialPolicies#custom-2>

For reprints, contact <ravi@threatenedtaxa.org>

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.

Member

Publisher & Host

Contribution to the macromycetes of West Bengal, India: 63–68

Rituparna Saha¹ Debal Ray² Anirban Roy³ & Krishnendu Acharya⁴

^{1,4}Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, West Bengal 700019, India.

²West Bengal Forest and Biodiversity Conservation Society, LB 2, Sector III, Salt Lake City, Kolkata, West Bengal 700106, India.

³West Bengal Biodiversity Board, Prani Sampad Bhawan, 5th Floor, LB - 2, Sector - III, Salt Lake City, Kolkata, West Bengal 700106, India.

¹rituparnasha2014@gmail.com, ²raydebal@gmail.com, ³dr.anirbanroy@yahoo.co.in, ⁴krish_paper@yahoo.com (corresponding author)

Abstract: West Bengal, a significant landmass of eastern India with its varied topography, edaphic, and climatic conditions facilitates diversified forest types and conducive microhabitats for a wide array of macro-fungal wealth and the members of Aphylophorales in particular. Detailed macro-microscopic characterizations and chemical reactions were performed to systematically identify the specimens using standard key and literatures. Six members of Aphylophorales collected from different parts of West Bengal, India and four species belonging to the family Polyporaceae [*Hexagonia tenuis* (Fr.) Fr., *Polyporus arcularius* (Batsch) Fr., *P. tricholoma* Mont. and *Lenzites elegans* (Spreng.) Pat.] were identified, and a single species was identified under Meripiliaceae [*Physisporinus lineatus* (Pers.) F. Wu, Jia J. Chen & Y.C. Dai] and Meruliaceae [*Berkandera fumosa* (Pers.) P. Karst.]. The detailed description along with field and herbarium photographs, macro-morphology, and microscopic features of six species are provided in this article.

Keywords: Aphylophorales, Basidiomycota, hymenophore, taxonomy, West Bengal.

During the macrofungal survey in different parts of West Bengal with various forest types (viz., mountain temperate forest, tropical mixed evergreen forests

of the foothills, the deciduous forests of the plateau fringe, and the tidal forests of Sundarbans), edaphic and climatic conditions (average annual rainfall 175cm and humidity 71%), six species of the order Aphylophorales (Basidiomycota) were identified. In continuation to our earlier publications (Acharya et al. 2017; Tarafder et al. 2017; Bera et al. 2018, Saha et al. 2018a, b, Das et al. 2020) the species are being contributed to the Macromycetes of West Bengal, with more detailed descriptions with necessary remarks.

MATERIAL AND METHODS

The macro-fungal specimens were collected during monsoon and post monsoon season from June to November (2000–2018) from different parts of West Bengal, India. Field study of the collected specimens like date and collection place, habit, habitat, types of fruiting body and their attachment to the substratum, pileus upper surface, presence or absence of hairs,

Editor: M. Krishnappa, Kuvempu University, Shimoga, India.

Date of publication: 26 October 2020 (online & print)

Citation: Saha, R., D. Ray, A. Roy & K. Acharya (2020). Contribution to the macromycetes of West Bengal, India: 63–68. *Journal of Threatened Taxa* 12(14): 17014–17023. <https://doi.org/10.11609/jott.4912.12.14.17014-17023>

Copyright: © Saha et al. 2020. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: West Bengal Biodiversity Board, Department of Environment, Government of West Bengal.

Competing interests: The authors declare no competing interests.

Acknowledgements: The authors would like to acknowledge Department of Environment, Government of West Bengal, India for providing financial assistance. The West Bengal Biodiversity Board and the Department of Botany (UGC-CAS Phase VI, VII), University of Calcutta and DST-FIST are duly acknowledged for providing necessary infrastructural and administrative supports. Authors are grateful to directorate of forest, Government of West Bengal for extending support during the field visit.

West Bengal Forest & Biodiversity
Conservation Society

hymenophore surface, types of hymenophore, margin, presence or absence of stipe and stipe attachments were noted carefully in the field book. Colour photographs of the upper surface of the pileus, hymenophore region, context and tube layers were taken for future references. The fruiting bodies were carefully separated with the help of scalpel and chisel from the substratum. Then each collection was wrapped with tissue papers and isolated in a box to avoid contamination. The collected specimens were dried in a hot air drier prior to microscopic study. Microscopic characters were noted by crushing and making transverse sections of these dried materials by mounting and staining in 10% KOH, Congo red and Melzer's reagent and observing it under a microscope. Amyloidity/non-amyloidity/dextrinoidity of the microscopic features were observed using Melzer's reagent. Microscopic characters like hyphal system, presence or absence of clamp connections, basidia, basidiospores, cystidia, cystidioles were noticed under Carl Zeiss AX10 Imager A1 phase contrast microscope for systematically identifying the specimens. Standard keys and published literatures have been referred to in order to compare our specimens and identify them correctly (Roy et al. 1996; Sharma 2012). For colour terms and codes of specimens, the Methuen Handbook of Colour was used (Kornerup et al. 1978). To calculate the dimensions of basidiospores, 30 measurements were taken from each sample. The Q value is denoted by Length/breadth ratio. The measurement of mean Q value (Q_m) was done by dividing total sum of Q value by total number of spores observed. Outline of all identifying characters were drawn using camera lucida and 0.1mm rotring pen was used to trace the lines. Standard protocol was followed to preserve the specimens (Pradhan et al. 2015). The voucher specimens were systematically deposited at CUH (Calcutta University Herbarium) (Image 1a–f), Kolkata, India.

RESULTS AND DISCUSSIONS

Hexagonia tenuis (Fr.) Fr.

Epicr. syst. mycol. (Upsaliae): 498 (1838) [1836–1838]

(Image 2a, Figure 1)

Basidiocarp annual, pileate, sessile. Pileus semicircular 25–41 mm broad and wide 1–2 mm thick near the base, thin, flexible. Upper surface glabrous with concentric zones, brown (7E5, 7E7); greyish violet (17D6) in KOH when fresh and blackening in KOH when dry. Margin white (1A1), thin, entire, sometimes lobed.

Pore surface light brown (7D4) in colour, pore hexagonal, 1 per mm. Tubes light brown (7D4), 1mm deep. Hyphal peg absent. Context 1mm thick, brown (7E5).

Hyphal system trimitic; generative hyphae clamped, 2.8–3.58 μ m wide, hyaline, thin walled; skeletal hyphae 3.58–5.37 μ m wide, hyaline, thick-walled, branched; binding hyphae 1.79–3.58 μ m wide, hyaline. Cystidia absent. Basidia clavate, 29.52–35.8 \times 7.1–10.74 μ m in diameter, hyaline, thin walled, 4-sterigmate. Basidioles clavate, 20.41–28.64 \times 7.16–8.59 μ m in diameter, hyaline, thin walled. Basidiospores cylindrical, (13.60–)14.32–16.38–18.26(–22.19) \times 3.58–3.77–4.29 μ m in diameter, $Q=3.42–5.63$, $Q_m=4.33$, hyaline, thin walled, non-dextrinoid.

Habit and habitat: Solitary to gregarious, grown on dead wood of *Mangifera indica* L.

Specimen examined: CUH AM559, 27.vi.2017, 22.527°N & 88.362°E, elevation 13m, Ballygunge Science College, Kolkata, West Bengal, India, coll. R. Saha & K. Acharya.

Geographical distribution: India (Leelavathy et al. 2000; Sharma 2012), eastern Africa (Ryvarden & Johansen 1980), and Malawi (Morris et al. 1990).

Remarks: The present specimen is characterized by its sessile basidiocarp, semicircular, glabrous pelius with concentric zones; greyish violet (17D6) in KOH when fresh and blackening in KOH when dry; hexagonal shaped pores, 1 per mm; trimitic type of hyphal system; clamped generative hyphae; basidiospores measuring 13.60–22.19 \times 3.58–4.29 μ m in diameter with mean Q value of 4.33.

The description of our collection matches with the description reported from Uttarakhand (Sharma 2012) and East Africa. The specimen from Kerala (Leelavathy et al. 2000) differs from the present collection with regard to slightly smaller basidiospores (9–15.5 \times 3–4.5 μ m vs 13.60–22.19 \times 3.58–4.29 μ m).

Among morphologically closely related species, *Hexagonia hirta* (P. Beauv.) Fr. differs by the presence of long, dark stiff, erect or branched hairs; *Hexagonia papyracea* Berk. differs by the presence of smaller basidiospores (up to 13 μ m long) (Sharma 2012).

Polyporus arcularius (Batsch) Fr.

Syst. mycol. (Lundae) 1: 342 (1821)

(Image 2b, Figure 2)

Basidiocarp pileate, centrally stipitate. Pileus round 13–14 mm in diameter, funnel shaped, depressed at disc. Upper surface light brown (6D4) when young and dark brown (9F4) at maturity. Margin thin, ciliated, inrolled when dry. Pore surface greyish-orange (5B3)

Image 1. Herbarium photographs of the specimens: a—*Hexagonia tenuis* | b—*Polyporus arcularius* | c—*Polyporus tricholoma* | d—*Lenzites elegans* | e—*Physisporinus lineatus* | f—*Bjerkandera fumosa*.

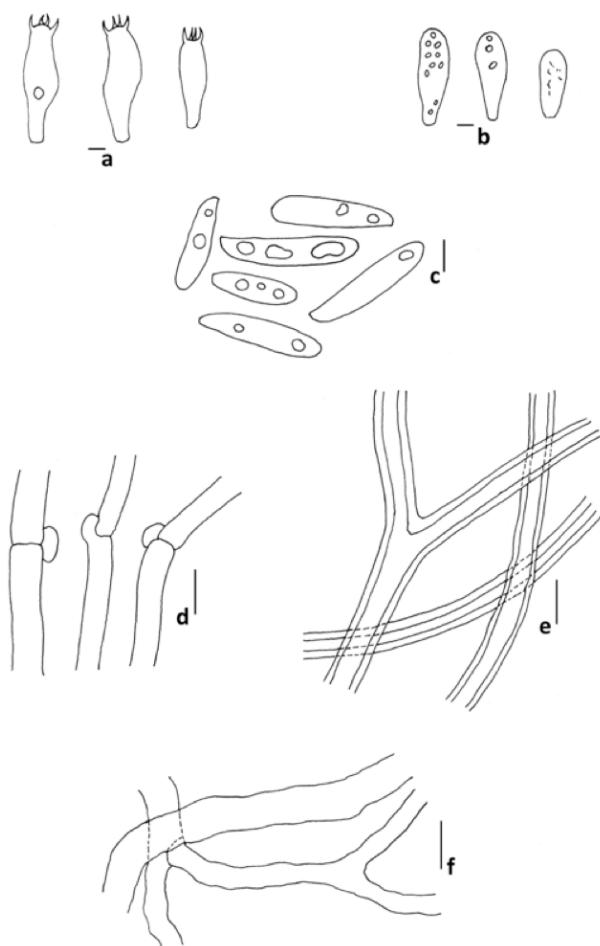


Figure 1. *Hexagonia tenuis*: a—basidia | b—basidioles | c—basidiospores | d—generative hyphae | e—skeletal hyphae | f—binding hyphae. Bars = 5 μ m. Drawing by Rituparna Saha.

when young, orange gray (5B2) at maturity, pores 1–2 per mm, angular to pentagonal. Pore tubes greyish-orange (5B3) to orange grey (5B2), tubes up to 1 mm deep. Context 0.5–1 mm, thin, greyish-orange (5B3) to orange grey (5B2). Stipe straight, cylindrical, broad towards base, 24–44 \times 14–20 mm in diameter, slightly pubescent towards base, brownish-orange (5C4) when young, greyish brown (8E3) at maturity, base strigose, solid.

Hyphal system dimitic; in context region generative hyphae clamped, branched, mostly thin-walled, some with thick-walled, 3.5–6.6 μ m wide, hyaline; gloeopherous hyphae 3.58–7.16 μ m wide with clamp connection. On the pileus upper surface generative hyphae much wider, swelled, 4.9–11.6 μ m wide, thin to thick walled; some thin to thick walled, intertwined generative hyphae also present, usually 7.16–14.32 μ m in diameter. Binding hyphae hyaline, thick-walled to solid, dendritic, branched, 3.5–6.5 μ m wide. Some thin

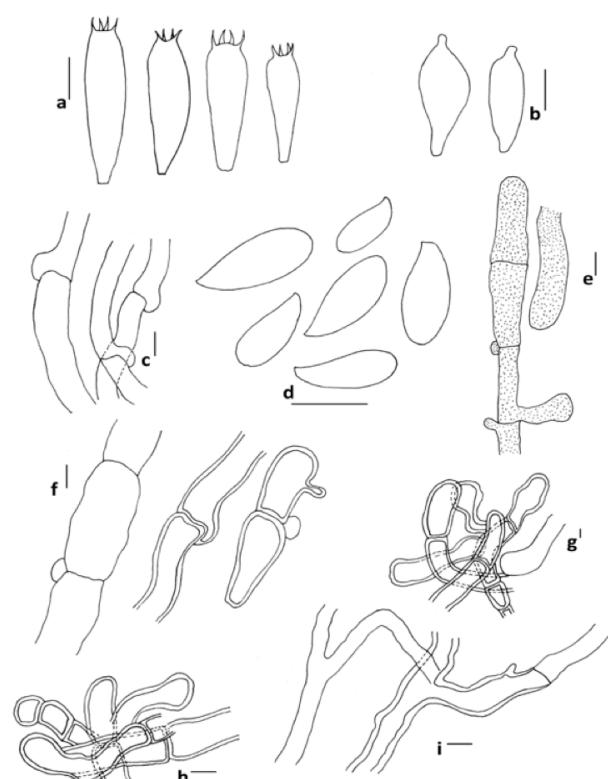


Figure 2. *Polyporus arcularius*: a—basidia | b—cystidioles | c—generative hyphae of context | d—basidiospores | e—gloeopherous hyphae | f—generative hyphae of pileus surface | g—interwoven generative hyphae of pileus surface | h—interlocking generative hyphae of stipe | i—binding hyphae. Bars = 5 μ m. Drawing by Rituparna Saha.

to thick-walled, interlocking generative hyphae present at brownish base of stipe, 4.99–8.33 μ m wide. Cystidiole 12.53–14.32 \times 3.58–5.37 μ m in diameter, hyaline, thin-walled. Basidia 4-sterigmate, clavate, 12.5–17.9 \times 3.5–4.29 μ m in diameter, hyaline, thin walled. Basidiospores cylindrical with apiculate, guttulate, (5–)6.4–7–7.88 \times (1.7–)2.5–2.9–3.58 μ m in diameter, $Q=1.67–4$, $Q_m=2.48$, hyaline, thin walled.

Habit and habitat: Solitary to gregarious, grown on dead wood of angiosperm.

Specimen examined: CUH AM560, 5.vi.2017, 26.885°N & 88.182°E, elevation 1650.22m, Mirik, Darjeeling District, West Bengal, India, coll. S. Paloi & E. Tarafder. CUH AM555, 17.vii.2017, 26.192°N & 89.273°E, elevation 47m, Dehibari, New Coochbehar District, West Bengal, India, coll. R. Saha & K. Acharya.

Geographical distribution: India (Roy et al. 1996; Leelavathy et al. 2000), East Africa (Ryvarden & Johansen 1980), Malaya (Corner 1984), Austria (Krüger et al. 2004), USA (Krüger et al. 2004) and China (Krüger et al. 2004).

Remarks: *Polyporus arcularius* (Batsch) Fr. possesses characteristic features like centrally stipitate basidiocarp; thin, ciliated margin; pores 1–2 per mm, angular to pentagonal; slightly pubescent stipe towards the base; dimitic type of hyphal system; clamped generative hyphae; dendritic type of binding hyphae; hyaline, cylindrical, apiculate, guttulate basidiospores measuring 5–7.88 × 1.7–3.58 µm in diameter with mean Q value of 2.48.

The description of our collection agreeably matches with the previous report from Malaya and Bardwan (Roy et al. 1996). The specimen reported from eastern Africa and Uttarakhand (Sharma 2012) differs by having larger spores (7–11 × 2–3.5 µm, Ryvarden & Johansen (1980) and 7–9 × 2–3 µm, Sharma (2012)) that may be attributed to the reason of climatic and geographical variations. The specimen reported from Kerala (Leelavathy et al. 2000) varies a bit from the present collection with regard to the absence of cystidiole.

Among macro-microscopically alike species of *Polyporus arcularius* (Batsch) Fr., *P. umbellatus* (Pers.) Fr. differs by having basidiocarp with several pilei from a common base; *Polyporus gramocephalus* Berk. differs by having laterally stipitate basidiocarp; and *Polyporus tricholoma* Mont. differs by having 6–8 pores per mm (Sharma 2012).

Polyporus tricholoma Mont.

Ann. Sci. Nat., Bot., sér. 2 8: 365 (1837)

(Image 2c, Figure 3)

Basidiocarp annual, centrally stipitate. Pileus 5–11 mm in diameter, upper surface reddish brown (9D4), smooth, glabrous, centrally depressed. Margin thin, ciliated. Pore surface whitish (1A1), pores round to angular, 5–7 per mm. Context thin, 1 mm thick, whitish (1A1). Tubes whitish (1A1), 1 mm thick. Stipe 4–10 mm long and 1–2 mm thick, pale reddish brown (8D4), glabrous, solid and cylindrical.

Hyphal system dimitic; in the context generative hyphae clamped, thin walled, 3.58–5.73 µm wide hyaline, branched, sometimes thick walled, 6.44–7.88 µm wide. On the pileus surface generative hyphae thin to thick walled, 6.44–7.88 µm wide, hyaline, branched. Some strongly interwoven to skin like appearance; gloeopherous hyphae 3.58–5.37 µm wide, hyaline; binding hyphae dendritic, thick walled, 3.58–5.37 µm wide, branched, solid, hyaline, septate, some are gradually swelled, 7.16–9.67 µm wide. Basidia not observed. Basidiospores cylindrical, 5.01–6.57–7.16 × 1.79–2.98–3.58 µm in diameter, Q=1.5–3, Q_m=2.29, hyaline, thin walled.

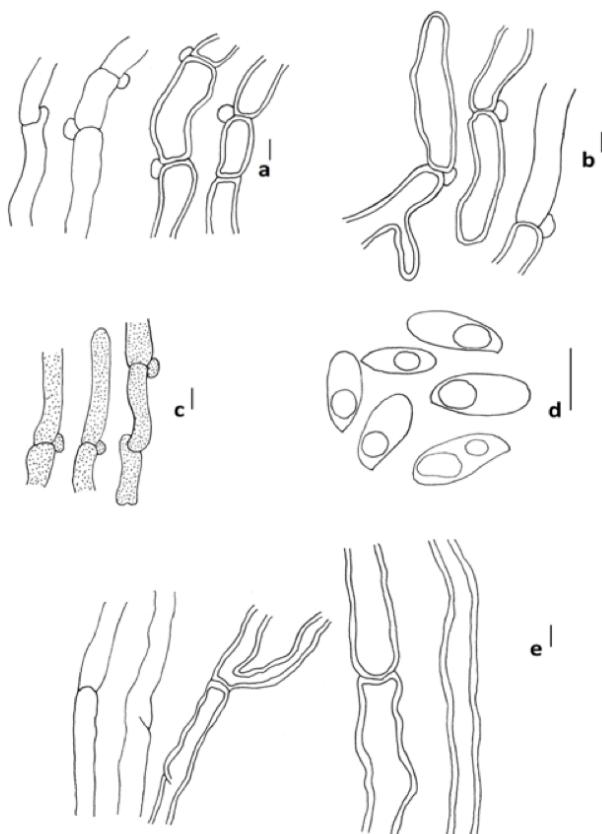


Figure 3. *Polyporus tricholoma*: a—generative hyphae of context | b—generative hyphae of pileus surface | c—gloeopherous hyphae | d—basidiospores | e—binding hyphae. Bars = 5 µm. Drawing by Rituparna Saha.

Habit and habitat: Solitary to gregarious, grown on dead wood of angiosperm.

Specimen examined: CUH AM591, 15.x.2017, 26.684°N & 88.350°E, 124.57m, Sukna, Siliguri District, West Bengal, India, coll. K. Acharya, R. Saha & A. Roy.

Geographical distribution: India (Roy et al. 1996; Leelavathy et al. 2000), Brazil (Núñez et al. 1995), eastern Africa (Ryvarden & Johansen 1980), Costa Rica (Krüger et al. 2004), Mexico (Krüger et al. 2004), and USA (Krüger et al. 2004).

Remarks: The present specimen is characterized by its centrally stipitate basidiocarp; ciliated margin; 5–7 per mm pores; dimitic hyphal system, clamped generative hyphae and dendritic type of binding hyphae; basidiospores measuring 5.01–7.16 × 1.79–3.58 µm diam. with mean Q value of 2.29. Our present specimen satisfactorily matches with the earlier report of Burdwan (Roy et al. 1996), Uttarakhand (Sharma 2012), Brazil and East Africa. The species reported from Kerala (Leelavathy et al. 2000), as described, slightly differs from our collection by having a bit larger basidiospores

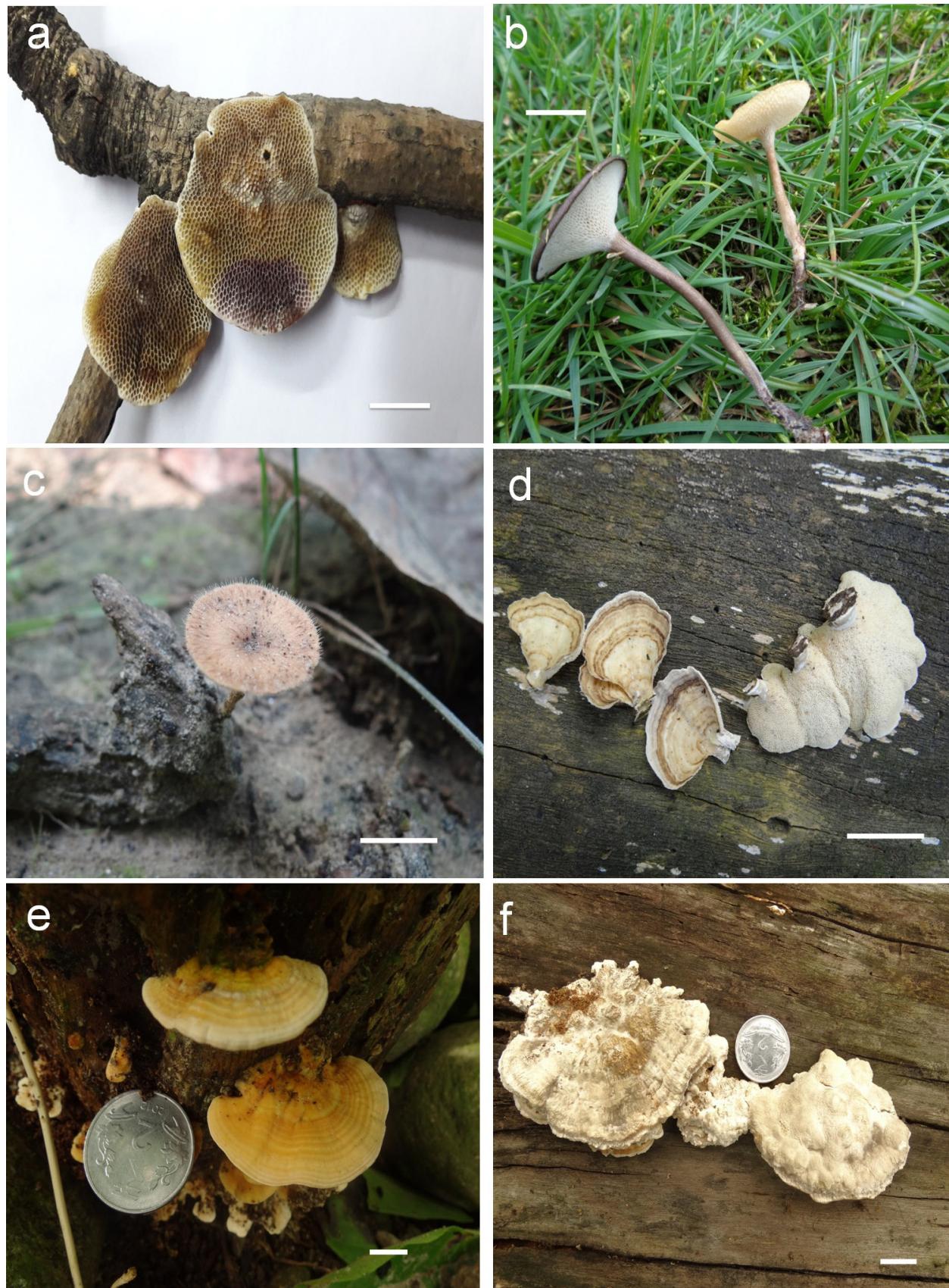


Image 2. Field photographs of the basidiocarp: a—*Hexagonia tenuis* | b—*Polyporus arcularius* | c—*Polyporus tricholoma* | d—*Lenzites elegans* | e—*Physisporinus lineatus* | f—*Bjerkandera fumosa*. Bars = 10mm. © Rituparna Saha.

($7.5\text{--}8.7 \times 3\text{--}3.7 \mu\text{m}$ vs $5.01\text{--}7.16 \times 1.79\text{--}3.58 \mu\text{m}$).

Among macro-microscopically closely related species, *Polyporus umbellatus* (Pers.) Fr. differs by having basidiocarp with several pilei from a common base; *Polyporus gramocephalus* Berk. differs by having laterally stipitate basidiocarp; and *Polyporus arcularius* (Batsch) Fr. differs by having 1–2 pores per mm (Sharma 2012).

Lenzites elegans (Spreng.) Pat.

Essai Tax. Hyménomyc. (Lons-le-Saunier): 89 (1900)
(Image 2d, Figure 4)

Fruit body annual, sub-stipitate, laterally attached, $20\text{--}50 \times 21\text{--}25$ mm in diameter, 2–6 mm thick towards base, hard, glabrous. Upper surface of pileus orange white (6A2) with dark coloured violet brown (10E4, 10F4) concentric zonations. Margin grey (1D1), sulcate, thin. Hymenophore orange white (6A2), hymenophore irpicoid to daedaloid, partly lamellate, lamellae 3–4 per mm, 1–2 mm thick, orange white (6A2). Context single layered, white (1A1), 1–5 mm thick towards base.

Hyphal system trimitic; generative hyphae clamped at septa, $2.51\text{--}3.58 \mu\text{m}$ wide, thin, hyaline walled; skeletal hyphae solid, thick-walled, $3.58\text{--}7.16 \mu\text{m}$ wide, hyaline; binding hyphae branched, hyaline, solid, septate, $1.43\text{--}3.58 \mu\text{m}$ wide. Cystidia absent. Basidia not observed. Basidiospores cylindrical, smooth, $(4.65\text{--})5.73\text{--}6.66\text{--}7.52 \times 1.79\text{--}2.97\text{--}3.58 \mu\text{m}$, $Q=1.6\text{--}3.49$, $Q_m=2.23$, hyaline.

Habit and habitat: Solitary to gregarious, grown on dead wood of *Shorea robusta* C.F. Gaertn.

Specimen examined: CUH AM593, 15.vii.2017, 26.32°N & 89.32°E , 115m, Damanpur kathgola, Alipurduar District, West Bengal, India, coll. K. Acharya, R. Saha & A. Roy.

Geographical distribution: India (Sharma 2012), eastern Africa (Ryvarden & Johansen 1980), and North Carolina (Grand 2011).

Remarks: *Lenzites elegans* (Spreng.) Pat. is characterized by its lateral stipe; daedaloid to lamellate hymenophore; single layered white context, trimitic type of hyphal system; basidiospores measuring $4.65\text{--}7.52 \times 1.79\text{--}3.58 \mu\text{m}$ diam. with mean Q value of 2.23.

In the Indian context, the present taxon was previously reported from Uttarakhand (Dehra Dun). Our collection mostly matches with the specimens reported from Dehra Dun (Sharma 2012) except having slight variations in basidiocarp size. The present specimen is smaller in size with respect to the specimen of Dehra Dun i.e., 100–200 mm wide and 10–30 mm thick (Sharma 2012) that may be attributed due to the reason

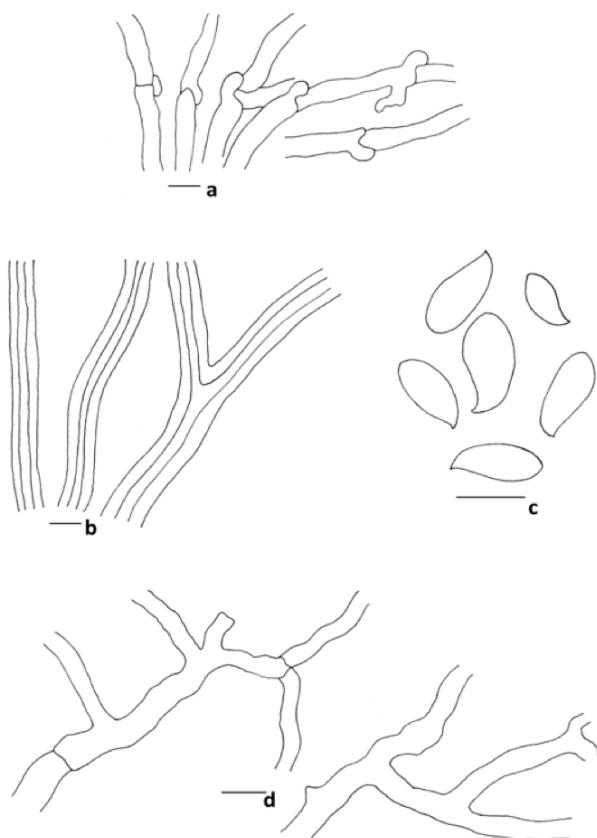


Figure 4. *Lenzites elegans*: a—generative hyphae | b—skeletal hyphae | c—basidiospores | d—binding hyphae. Bars = 5 μm . Drawing by Rituparna Saha.

of climatic and geographical variations. The collection, however, reported from eastern Africa (Ryvarden & Johansen 1980) and North Carolina (Grand 2011) matches with the description of our collected specimen.

Among macro-microscopically similar taxa, *Lenzites betulinus* (L.) Fr. differs by the presence of finely hirsute and concentrically zonate pileus surface; and *Lenzites stereoides* (Fr.) Ryvarden differs by the presence of whitish to wood coloured with pinkish tint basidiocarp and spiny to toothed hymenophore; and *Lenzites acutus* Berk. differs by having 3–6 lamellae per cm (Sharma 2012).

Physisporinus lineatus (Pers.) F. Wu, Jia J. Chen & Y.C. Dai

Mycologia 109(5): 760 (2017)
(Image 2e, Figure 5)

Basidiocarp annual, pileate, sessile. Pileus dimidiate, $23\text{--}31 \times 15\text{--}20$ mm in diam., 1–6 mm thick at base. Pileus upper surface glabrous, greyish orange (5B6) to brownish-orange (7C7) towards base and with brownish-orange (6C7) concentric zones. Margin entire, thin,

Figure 5. *Physisporinus lineatus*: a—basidia | b—generative hyphae | c—apically encrusted cystidia | d—strongly encrusted cystidia | e—pseudo-parenchymatous cells | f—cystidioles | g—acanthophyses | h—basidiospores. Bars = 5 µm. Drawing by Rituparna Saha.

decurved on drying, greyish-orange (6B3). Pore surface greyish-orange (6B3), pores circular to angular, 7–10 per mm. Context up to 1mm thick, greyish-orange (6B3) in colour. Tubes 1–2 mm deep, not stratified, concolorous with the context.

Hyphal system monomitic; generative hyphae 3.58–7.88 µm wide, simple septate, hyaline, solid, thin to thick-walled. Cystidia are of two types— one is apically encrusted club shaped cystidia with hyaline, thick-walled, 14.68–21.48 × 4.29–8.95 µm in diameter, apical part wide and basal part tube-like, and the other is strongly encrusted cystidia with highly thick-walled, solid, 6.04–11.09 µm wide, embedded in the trama and sometimes partly projecting into the hymenial region. Cystidioles mucronate, tips pointed, 10.74–26.85 × 3.58–7.16 µm in diameter, hyaline. Acanthophyses thick walled, 5.37–8.95 µm wide, hyaline, solid. Pseudo-parenchymatous cell present just below the context region; cells globose to subglobose, thin-walled, 7.16–11.09 × 6.44–7.52 µm in diameter, hyaline. Basidia short,

barrel shape, 7.88–14.32 × 5.37–7.88 µm in diameter, hyaline, 4-sterigmate, sterigmata short. Basidiospores thin-walled, globose to subglobose, often with one oil droplet, 3.94–4.58–5.37(–6.44) × 3.58–4.03–5.01 µm in diameter, $Q=1$ –1.27, $Q_m=1.13$, hyaline, (–) ve in Melzer's reagent.

Habit and habitat: Solitary to gregarious, grown on dead wood of angiosperm.

Specimen examined: CUH AM604, 19.ix.2017, 26.28°N & 88.63°E, 137m, Targhera, Jalpaiguri District, West Bengal, India, coll. R. Saha, K. Acharya & A. Roy.

Geographical distribution: India (Leelavathy et al. 2000; Sharma 2012), eastern Africa (Ryvarden & Johansen 1980) and Europe (Ryvarden & Gilbertson 1994).

Remarks: *Physisporinus lineatus* (Pers.) F. Wu, Jia J. Chen & Y.C. Dai possesses characteristic features of an annual habit; sessile basidiocarp coloured greyish-orange (5B6) to brownish-orange (7C7) towards base and with brownish-orange (6C7) concentric zonations; pores 7–10 per mm; monomitic type of hyphal system; simple septate generative hyphae; two types of cystidia—one being apically encrusted club shaped, apical part wide and basal part tube like, 14.68–21.48 × 4.29–8.95 µm in diameter and the other being strongly encrusted, highly thick-walled; mucronate cystidioles; thick-walled acanthophyses; and thin-walled, globose to sub-globose basidiospores measuring 3.94–6.44 × 3.58–5.01 µm diam. with mean Q value of 1.13.

Our collection appropriately matches with the previous reports of Uttarakhand (Sharma 2012), Kerala (Leelavathy et al. 2000) and eastern Africa (Ryvarden & Johansen 1980). The specimen reported from Europe bears most resemblances with our collection except for having a larger basidiocarp.

Among the macro and micro-morphologically closely related species, *Physisporinus vitreus* (Pers.) P. Karst. differs from *P. lineatus* (Pers.) F. Wu, Jia J. Chen & Y.C. Dai due to absence of cystidia (Sharma 2012).

Bjerkandera fumosa (Pers.) P. Karst.

Meddn Soc. Fauna Flora Fenn. 5: 38 (1879)
(Image 2f, Figure 6)

Basidiocarp annual, effused reflexed, sessile, broadly attached to the substratum. Pileus dimidiate, 46–55 × 29–46 mm in diameter and 2–17 mm thick towards base. Upper surface white (1A1) to purplish grey (13D2), glabrous, azonate, irregular. Margin concolourous, 1–2 mm thick. Pore surface grey (7B1) to greyish red (7B3); pores 2–6 per mm, circular to angular towards margin and radially elongate from centre to base. Context

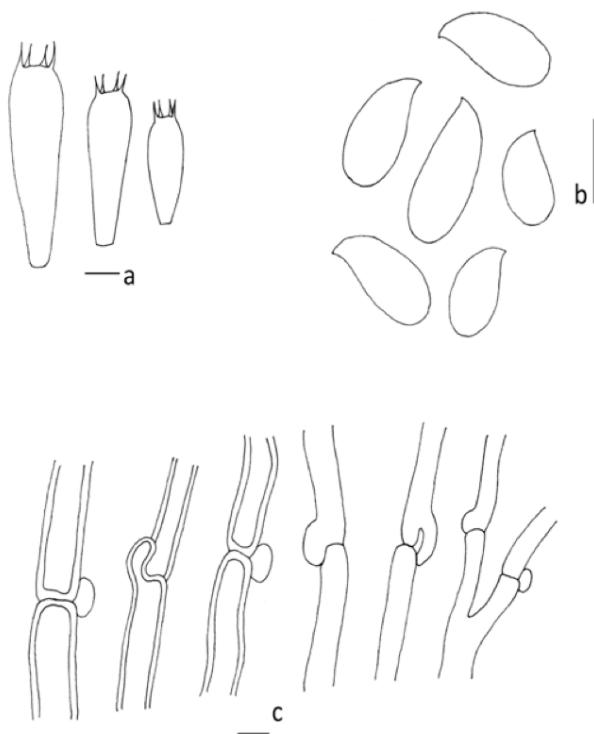


Figure 6. *Bjerkandera fumosa*: a—basidia | b—basidiospores | c—generative hyphae. Bars = 5µm. Drawing by Rituparna Saha.

double layered, upper layer whitish and lower layer greyish orange (6B3) near the base, 3–14 mm thick towards base. Tubes 1–3 mm deep, grey (7B1).

Hyphal system monomitic; generative hyphae 3.22–7.16 µm wide, hyaline in water and KOH, thin to thick walled, branched, clamped at septa. Cystidia absent. Basidia clavate, 4-sterigmate, 14.32–25.06 × 5.37–7.16 µm in diameter, hyaline, thin walled. Basidiospores thin-walled, cylindrical, (5.37–)6.44–6.89–7.16(–8.59) × 3.22–3.48–3.58 µm in diameter, $Q=1.5–2.39$, $Q_m=1.98$, hyaline, smooth.

Habit and habitat: Solitary to gregarious, dead wood of *Shorea robusta* C.F. Gaertn.

Specimen examined: CUH AM606, 19.ix.2017, 26.28°N & 88.63°E, 137m, Targhera, Jalpaiguri District, West Bengal, India, coll. R. Saha, K. Acharya & A. Roy.

Geographical distribution: India (Roy et al. 1996; Sharma 2012), Russia (Ryvarden & Gilbertson 1993), Korea (Jung et al. 2014), America (Jung et al. 2014), and Europe (Zmitrovich et al. 2016).

Remarks: *Bjerkandera fumosa* (Pers.) P. Karst. is well characterized by its white (1A1) to purplish-grey (13D2) pileus upper surface; grey (7B1) to greyish-red (7B3) hymenophore; double layered context, upper whitish and lower greyish-orange (6B3) near the base; thin

to thick-walled clamped generative hyphae; hyaline, cylindrical, smooth basidiospores measuring 5.37–8.59 × 3.22–3.58 µm diam. with mean Q value of 1.98.

Considering morphological features, the description of our collected specimen matches with the earlier report of Uttarakhand (Sharma 2012) and the collection reported from Bardwan (Roy et al. 1996) and America (Jung et al. 2014) varies a bit from the present collection with regards to the longer size of the basidiospores (4–6.5 × 2–3.5 µm and 5–5.5 × 2–3.5 µm respectively). The description reported from Russia and Europe, however, matches well with the description of our collected specimen.

Among macro-microscopically closely related taxa, *Bjerkandera adusta* (Willd.) P. Karst. differs by having thinner context (up to 6mm) and a greyish-black zone between the context and tube layer which is concolorous with the tube layer (Sharma 2012).

REFERENCES

Acharya, K., E. Tarafder, P. Pradhan, A.K. Dutta, S. Paloi, M. Datta & A. Roy (2017). Contribution to the Macromycetes of West Bengal, India: 18–22. *Research Journal of Pharmacy and Technology* 10(9): 3061–3068.

Bera, M., S. Paloi, A.K. Dutta, P. Pradhan, A. Roy & K. Acharya (2018). Contribution to the Macromycetes of West Bengal, India: 23–27. *Journal of Threatened Taxa* 10(9): 12270–12276. <https://doi.org/10.11609/jott.3875.10.9.12270-12276>

Corner, E.J.H. (1984). *Ad Polyporaceas II & III*. Beiheftezur Nova Hedwigia 78: 1–222.

Das, D., E. Tarafder, M. Bera, A. Roy & K. Acharya (2020). Contribution to the macromycetes of West Bengal, India: 51–56. *Journal of Threatened Taxa* 12(9): 16110–16122. <https://doi.org/10.11609/jott.5115.12.9.16110-16122>

Grand, L.F. (2011). *Lenzites elegans* profile. Mycological Herbarium NCSU. 1–3 pp; <https://ncslg.cals.ncsu.edu/files/2014/05/Lenzites-elegans.pdf>

Jung, P.E., J.J. Fong, M.S. Park, S.Y. Oh, C. Kim & Y.W. Lim (2014). Sequence Validation for the Identification of the White-Rot Fungi *Bjerkandera* in Public Sequence Databases. *Journal of Microbiology and Biotechnology* 24(10): 1301–1307.

Kornerup, A. & J.H. Wanscher (1978). *Methuen Handbook of Colour*. Methuen Publishing Ltd, London, 256pp.

Krüger, D., K.W. Hughes & R.H. Petersen (2004). The tropical *Polyporus tricholoma* (Polyporaceae) – taxonomy, phylogeny, and the development of methods to detect cryptic species. *Mycological Progress* 3(1): 65–79.

Leelavathy, K.M. & P.N. Ganesh (2000). *Polypores of Kerala*. Daya Publishing House, Delhi, 166pp.

Morris, B. (1990). An annotated check-list of the macrofungi of Malawi. *Kirkia* 13(2): 323–364.

Núñez, M. & L. Ryvarden (1995). *Polyporus* (Basidiomycotina) and related genera. *Synopsis Fungorum* 10:1–85.

Pradhan, P., A.K. Dutta & K. Acharya (2015). A low-cost long term preservation of macromycetes for fungarium. *Protocol Exchange*. Available on 17th March 2015. <https://doi.org/10.1038/protex.2015.026>.

Roy, A. & A.B. De (1996). *Polyporaceae of India*. International Book Distributors, Dehra Dun, 287pp.

Ryvarden, L. & I. Johansen (1980). *A preliminary polypore flora of East Africa*. Fungiflora, Oslo, 636pp.

Ryvarden, L. & R.L. Gilbertson (1993). European polypores. Part 1. *Synopsis Fungorum* 6: 1–387.

Ryvarden, L. & R.L. Gilbertson (1994). European polypores. Part 2. *Synopsis Fungorum* 7: 394–743.

Saha, R., A.K. Dutta, S. Paloi, A. Roy & K. Acharya (2018b). Contribution to the Macromycetes of West Bengal, India: 28–33. *Journal of Threatened Taxa* 10(15): 13006–13013. <https://doi.org/10.11609/jott.4188.10.15.13006-13013>

Saha, R., D. Das, E. Tarafder, A. Roy & K. Acharya (2018a). Contribution to the Macromycetes of West Bengal, India: 34–39. *Research Journal of Pharmacy and Technology* 11(11): 5123–5129.

Sharma, J.R. (2012). *Aphylloporales of Himalaya*. Botanical Survey of India, Kolkata, 590pp.

Tarafder, E., A.K. Dutta, P. Pradhan, B. Mondal, N. Chakraborty, S. Paloi, A. Roy & K. Acharya (2017). Contribution to the Macromycetes of West Bengal, India: 13–17. *Research Journal of Pharmacy and Technology* 10(4): 1123–1130.

Zmitrovich, I.V., M.A. Bondartseva & N.P. Vasilyev (2016). The Meruliaceae of Russia. I. *Bjerkandera*. *Turczaninowia* 19(1): 5–18.

Article

Elevational pattern and seasonality of avian diversity in Kaligandaki River Basin, central Himalaya

– Juna Neupane, Laxman Khanal, Basant Gyawali & Mukesh Kumar Chalise, Pp. 16927–16943

Communications

A highway to hell: a proposed, inessential, 6-lane highway (NH173) that threatens the forest and wildlife corridors of the Western Ghats, India

– H.S. Sathya Chandra Sagar & Mrunmayee, Pp. 16944–16953

Species diversity and feeding guilds of birds in Malaysian agarwood plantations

– Nor Nasibah Mohd Jamil, Husni Ibrahim, Haniza Hanim Mohd Zain & Nur Hidayat Che Musa, Pp. 16954–16961

Evaluating performance of four species distribution models using Blue-tailed Green Darner *Anax guttatus* (Insecta: Odonata) as model organism from the Gangetic riparian zone

– Krishit De, S. Zeehan Ali, Niladri Dasgupta, Virendra Prasad Uniyal, Jeyaraj Antony Johnson & Syed Ainul Hussain, Pp. 16962–16970

Butterfly species richness and diversity in rural and urban areas of Sirajganj, Bangladesh

– Sheikh Muhammad Shaburul Imam, Amit Kumar Neogi, M. Ziaur Rahman & M. Sabbir Hasan, Pp. 16971–16978

Chroococcalean blue green algae from the paddy fields of Satara District, Maharashtra, India

– Sharada Jagannath Ghadage & Vaneeta Chandrashekhar Karande, Pp. 16979–16992

Short Communications

Avifaunal diversity along the riverine habitats of Papikonda National Park, Andhra Pradesh, India

– Paromita Ray, Giridhar Malla, Upma Manral, J.A. Johnson & K. Sivakumar, Pp. 16993–16999

Medetomidine may cause heart murmur in Cougars and Jaguars: case report

– Thiago Cavalheri Luczinski, Gediendorf Ribeiro de Araújo, Matheus Folgearini Silveira, Murillo Daparé Kirnew, Roberto Andres Navarrete, Jorge Aparecido Salomão-Jr, Letícia Alecho Requena, Jairo Antonio Melo dos Santos, Marcell Hideki Koshiyama, Cristiane Schilbach Pizzutto & Pedro Nacib Jorge-Neto, Pp. 17000–17002

Description of a new species of *Omyomymar* Schauff from India with a key to Oriental species and first report of *Palaeoneura markhoddlei* Triapitsyn (Hymenoptera: Mymaridae) from the Indian subcontinent

– H. Sankararaman & S. Manickavasagam, Pp. 17003–17008

Incursion of the killer sponge *Terpios hoshinota* Rützler & Muzik, 1993 on the coral reefs of the Lakshadweep archipelago, Arabian Sea

– Rocktim Ramen Das, Chemmencheri Ramakrishnan Sreeraj, Gopi Mohan, Kottarakkaran Rajendran Abhilash, Vijay Kumar Deepak Samuel, Purvaja Ramachandran & Ramesh Ramachandran, Pp. 17009–17013

Member

Contribution to the macromycetes of West Bengal, India: 63–68

– Rituparna Saha, Debal Ray, Anirban Roy & Krishnendu Acharya, Pp. 17014–17023

Notes

A rare camera trap record of the Hispid Hare *Caprolagus hispidus* from Dudhwa Tiger Reserve, Terai Arc Landscape, India

– Sankarshan Rastogi, Ram Kumar Raj & Bridesh Kumar Chauhan, Pp. 17024–17027

First distributional record of the Lesser Adjutant *Leptoptilos javanicus* Horsfield, 1821 (Ciconiiformes: Ciconiidae) from Sindhuli District, Nepal

– Badri Baral, Sudeep Bhandari, Saroj Koirala, Parashuram Bhandari, Ganesh Magar, Dipak Raj Basnet, Jeevan Rai & Hem Sagar Baral, Pp. 17028–17031

First record of African Sailfin Flying Fish *Parexocoetus mento* (Valenciennes, 1847) (Beloniformes: Exocoetidae), from the waters off Andaman Islands, India

– Y. Gladston, S.M. Ajina, J. Praveenraj, R. Kiruba-Sankar, K.K. Bineesh & S. Dam Roy, Pp. 17032–17035

A first distribution record of the Indian Peacock Softshell Turtle *Nilssonia hurum* (Gray, 1830) (Reptilia: Testudines: Trionychidae) from Mizoram, India

– Gospel Zothanmawia Hmar, Lalbiakzuala, Lalmuansanga, Dadina Zote, Vanlalhruaia, Hmar Betlu Ramengmawii, Kulendra Chandra Das & Hmar Tlawnme Lalremsanga, Pp. 17036–17040

A frog that eats foam: predation on the nest of *Polypedates* sp. (Rhacophoridae) by *Euphlyctis* sp. (Dicroglossidae)

– Pranoy Kishore Borah, Avrajjal Ghosh, Bikash Sahoo & Aniruddha Datta-Roy, Pp. 17041–17044

New distribution record of two endemic plant species, *Euphorbia kadapensis* Sarojin. & R.R.V. Raju (Euphorbiaceae) and *Lepidagathis keralensis* Madhus. & N.P. Singh (Acanthaceae), for Karnataka, India

– P. Raja, N. Dhatchanamoorthy, S. Soosairaj & P. Jansirani, Pp. 17045–17048

Cirsium wallichii DC. (Asteraceae): a key nectar source of butterflies

– Bitupan Boruah, Amit Kumar & Abhijit Das, Pp. 17049–17056

Hypecoum pendulum L. (Papaveraceae: Ranunculales): a new record for the flora of Haryana, India

– Naina Palria, Nidhan Singh & Bhoo Dev Vashistha, Pp. 17057–17059

Addendum

Erratum and addenda to the article 'A history of primatology in India'

– Mewa Singh, Mridula Singh, Honnavalli N. Kumara, Dilip Chetry & Santanu Mahato, Pp. 17060–17062

Publisher & Host

