Journal of Threatened Taxa | www.threatenedtaxa.org | 26 November 2018 | 10(13): 12726–12737

 

 

Morphological variations in marine pufferfish and porcupinefish (Teleostei: Tetraodontiformes) from Tamil Nadu, southeastern coast of India

 

K. Kaleshkumar 1 , R. Rajaram 2 , P. Purushothaman 3  & G. Arun 4

 

1,2,4  DNA Barcoding & Marine Genomics Laboratory, Department of Marine Science, School of Marine Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620024, India

3 Crustacean Fisheries Division, Central Marine Fisheries Research Institute (CMFRI), Ernakulam North P.O., P.B. No. 1603, Cochin, Kerala 682018, India

1 kaleshvasanth@gmail.com, 2 drrajaram69@rediffmail.com (corresponding author), 3 purushothgene@gmail.com, 4 arun.biotek@gmail.com

 

 

 

doi: https://doi.org/10.11609/jott.4028.10.13.12726-12737   |  ZooBank:  urn:lsid:zoobank.org:pub:F298E529-54E9-4E53-B9D8-1AA092C79359

 

Editor: Keiichi Matsuura, National Museum of Nature and Science, Tokyo, Japan       Date of publication: 26 November 2018 (online & print)

 

Manuscript details: Ms # 4028 | Received 24 January 2018 | Final received 11 September 2018 | Finally accepted 26 October 2018

 

Citation: Kaleshkumar, K., R. Rajaram, P. Purushothaman & G. Arun (2018). Morphological variations in marine pufferfish and porcupinefish (Teleostei: Tetraodontiformes) from Tamil Nadu, southeastern coast of India. Journal of Threatened Taxa 10(13): 12726–12737; https://doi.org/10.11609/jott.4028.10.13.12726–-12737

 

Copyright: © Kaleshkumar et al. 2018. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use of this article in any medium, reproduction and distribution by providing adequate credit to the authors and the source of publication.

 

Funding: This work was partly funded (man power) by University Grants Commissions/ Rajiv Gandhi National Fellowship (UGC/RGNF), New Delhi, Government of India (F1-17.1/2016-17/RGNF-2015-17-SC-TAM-19298/ SA-III Website).

 

Competing interests: The authors declare no competing interests.

 

For Tamil abstract see end of this article.

 

Author Details: Mr. K. Kaleshkumar is a PhD research scholar in the Department of Marine Science, whose interest include diversity, distribution, traditional and molecular taxonomy and nutritional evaluation of marine pufferfishes. Currently working on distribution, molecular taxonomy and biomedical applications of marine pufferfishes from Tamil Nadu, south-eastern coast of India. He has seven years of experience in marine pufferfishes.  Dr. R. Rajaram is an Assistant Professor in the Department of Marine Science of Bharathidasan University and his research interest include the ichthyotaxonomy, marine natural products and pollution of marine organisms especially fishes. Mr. P. Purushothaman is a PhD research scholar in crustacean fisheries division, whose interest includes marine diversity and evolutionary relationships using novel molecular tools. Mr. G. Arun is currently a PhD research scholar, whose interest include taxonomy and ecology of marine hydrozoans. He is experienced in Island ecosystem health assessment, coral transplantation, SCUBA diving, and coastal survey.

 

Author Contribution: KK & RR conceived & designed the experiments and analyzed the data; KK performed the sample collections; PP & GA associated the experiments; PP, GA, KK & RR wrote the paper.

 

Acknowledgements: The authors would like to thank the authorities of Bharathidasan University for the facilities provided.  Authors also thank the University Grants Commission/ Rajiv Gandhi National Fellowship (UGC/RGNF), New Delhi, Government of India, for financial assistance.

 

 

 

Abstract: In the present study, morphological variations in 14 species of two families, Tetraodontidae and Diodontidae, were examined for individuals collected from five different centres in Tamil Nadu in the southeastern coast of India.  Twenty-seven morphological measurements and four meristic characters were taken and used for multivariate analyses such as discriminant function analysis (DFA) & MANOVA.  DFA revealed that the first two functions accounted for more than 75% variation between the species.  Negative allometric values were observed on head length (HL), orbital length (OL), pupil diameter (PD), interorbital length (IOL), pectoral-fin length (PEL), caudal peduncle depth (CPD), dorsal to pectoral fin distance (DPFD), caudal peduncle length (CPL) and post-pectoral-fin length (POPFL) measurements.  Also, MANOVA supported the DFA results.  Additions, allometric relationships, and meristic variations were observed for most of these species.   Moreover, this is the first attempt to describe a greater number of morphological features of the species belonging to the order Tetraodontiformes.

 

Keywords: Allometry, Diodontidae, discriminant function analysis, MANOVA, meristics, morphometric variation, porcupinefish, pufferfish, Tetradontidae, trash fish.

 

 

 

INTRODUCTION

 

Geographic variation in morphometry has been used to discriminate local forms of fish for over a century (Cadrin 2000).  Phenotypic diversities exist in morphological variations within and among populations (Jeffares et al. 2015) and they may be one of the ways to determine the origin of divergence and speciation (Kerschbaumer et al. 2014). Morphometric analysis reveals the differences in body shape between different individuals to discriminate populations of the same species (Hirsch et al. 2013), which can help for the conservation of biodiversity, management of fishery resources, and identification & discrimination of species.

Both pufferfish and porcupinefish belong to the order Tetraodontiformes.  Tetraodontidae, the family to which pufferfish belong to which includes 27 genera with 184 species, and which is considered the most important family in this orderthat 27 (Matsuura 2015).  Porcupinefish of the family Diodontidae includes 19 species of six genera (Nelson et al. 2016).  Some members of the pufferfish and porcupinefish have commercial value in the food industry and in the aquarium trade (Fiedler 1991). The indeterminate consistency of body and loose skin are the great taxonomic features in genera such as Arothron, Chelonodon, Lagocephalus, Takifugu, and Torquigener.  Many species have not been studied taxonomically in detail by using morphological and meristic characters to classify them into appropriate groups (Randall 1985).  The detailed counts and measurements were provided for freshwater pufferfish of Tetraodon by Dekkers (1975), marine pufferfish of Canthigaster by Allen & Randall (1977), Lagocephalus by Matsuura (2010) & Matsuura et al. (2011), and Torquigener by Hardy (1982a,b, 1983a,b, 1984a,b).

Despite the value and availability of genetic, physiological, behavioral, and ecological data for such studies, systematic ichthyologists continue to depend heavily on morphology for taxonomic characters.  Commonly, fish are classified based on the shapes, sizes, pigmentation patterns, disposition of fins, and other external features (Strauss & Bond 1990).  Pufferfish have been fatally consumed mainly in Japan, China, and Taiwancausing death (Bragdeeswaran & Therasa 2010; Arakawa et al. 2010; Monaliza & Samsur 2011).  A few members of pufferfish are considered as serious hazards to consumers since they contain strong marine toxins that can be lethal to humans.  Therefore, misidentification of the species is a major issue in the trade market and clear identifications of pufferfish are a prime need to solve this problem.

Among the different fish products, fresh and dried pufferfish are an important source of animal protein in Tamil Nadu.  The preservation process starts when it is harvested and becomes complete when it reaches the consumer’s table.  According to Immaculate et al. (2015), paralysis resulting from ingestion of pufferfish was reported from southeastern Asia.  This kind of study, however, has not been carried out on the Indian species.  The improper handling and misidentification of this species can be adverse to human health.  Recently, increasing availability and utilization of pufferfish in Tamil Nadu coast has caused health problems to the consumers.  The current study deals with understanding the morphological variations of pufferfish and porcupinefish.

 

 

MATERIALS AND METHODS

 

Study area description

The specimens of pufferfish and porcupinefish were collected from five major fish landing centres such as Royapuram (Station I) (13.1240N & 80.2970E), Cuddalore (Station II) (11.7160N & 79.7750E), Nagapattinam (Station III) (10.7550N & 79.8490E), Mandapam (Station IV) (9.2760N & 79.1510E), and Kanyakumari (Station V) (8.07810N & 77.5510E) located along the Tamil Nadu coast of southeastern India (Fig. 1).  The specimens were caught by large fishing boats and small fibre boats with gill nets and trawl nets gear; trawl nets were the main method for collecting pufferfish and porcupinefish.

 

Sample collection and preservation

The sample collections were carried out for a period of two years from August 2014 to July 2016 by regular visits to the landing centres at monthly intervals.  Fourteen species belonging to the families Tetraodontidae and Diodontidae were collected from trash items at all fish landing centres (Image 1).  Collected specimens were transported to the laboratory in fresh conditions and stored at -20oC until further analysis.  The collected specimens were then thawed at room temperature and weighed.  The specimens were identified to species level by referring to standard fishery identification manuals and publications (Fraser-Brunner 1943; Allen & Randall 1977; Leis 1978, 1984; Fischer & Bianchi 1984; Hardy 1982a, b, 1983a, b, 1984a, b; Smith 1958, 1986; Smith & Heemstra 1986; Matsuura 1994, 2002, 2010, 2014; Matsuura et al. 2011; Allen & Erdmann 2012; Randall et al. 2012).

 

Morphometric features

Morphological measurements were made months after fixation in 10% formalin and were taken to the nearest 0.1mm with a dial caliper.  In this study, 10 specimens were taken from each species for morphometric and meristic analyses (Table 1).  Methods for morphological measurements and fin-ray counts primarily followed Dekkers (1975) and Hubbs & Lagler (1958) with some additional measurements (Fig. 2): standard length (SL), snout length (SNL), mouth gape length (MGL), head length (HL), orbital length (OL), pupil diameter (PD), interorbital length (IOL), pre-nasal length (PRNL), inter nasal length (INL), dorsal-fin base length (DFBL), dorsal-fin length (DFL), pectoral-fin base length (PFBL), pectoral-fin length (PEL), anal-fin base length (AFBL), anal-fin length (AFL), pre-dorsal-fin length (PRDFL), pre-pectoral fin length (PRPFL), pre-anal fin length (PRAFL), post-dorsal-fin length (PODFL), post-pectoral-fin length (POPFL), post-anal-fin length (POAFL), caudal peduncle length (CPL), caudal peduncle depth (CPD), snout to anus distance (SNAD), dorsal to pectoral fin distance (DPFD), dorsal to anus  distance (DAD), and depth of body (LDB).

 

Data analysis

All statistical analyses were performed using the statistical software (SAS 2014).  The allometric relationship of all the characters with standard length was estimated using linear regression model and the significance of the allometric coefficient (b) was fixed (b=1: isometry, b>1: negative allometry, b<1: positive allometry).

For multivariate analysis, to remove the effect of size from the data, all the morphometric measurements were transformed to size-independent shape variables using an allometric method as suggested by Reist (1985).

Mtrans  =  logM - β (log SL - log SL mean)

where Mtrans is the truss measurement after transformation, M is the original truss measurement, SL is the overall mean standard length of a species, and β is the slope regressions of the log M against log SL.  Correlation coefficients were observed between each pair of variables before and after the size effect removal;, the values of which were expected to decrease ,  after the size effect removal (Murta 2000).   Multivariate analysis used in this study consisted of discriminant function analysis (DFA).  DFA was run to test the effectiveness of variables in predicting different groups of species (Tomovic & Dzukic 2003; Loy et al. 2007).  Finally, multivariate analysis of variance (MANOVA) was performed to see the significant differences between the species. 

 

 

 

 

RESULTS

 

Morphometric data is provided for the 11 species from six genera (Arothron, Lagocephalus, Takifugu, Canthigaster, Torquigener & Chelonodon) of Tetraodontidae and three species from three genera (Chilomycterus, Diodon & Cyclichthys) of Diodontidae in Table 1 & Image 1.  The meristic differences for all the species of both the families are represented in Table 2. The relationship between all morphometric characters and SL has been described and represented in Table 3a, b.

 

Morphometric data of Arothron & Lagocephalus

In the present study, four species of Arothron, A. hispidus, A. immaculatus, A. reticularis & A. stellatus, and three species of Lagocephalus, L. guentheri, L. sceleratus & L. lunaris, were investigated by multivariate analyses and exhibited species variation.  The results of DFA indicate that the first two components cumulatively explained 85.4% of the total morphometric variation.  Some of the morphometric variables (HL, OL, PD, PD, IOL, PEL, CPD & SNAD) loaded heavily on DF, which explained 67.7% of the entire differences and few variables from DF2 (DPFD, CPL, POPFL & PRAFL) with 17.7% (Table 4 & Fig. 3).  Additionally, MANOVA analysis also supported and followed the taxonomic status of these species (Table 5).  Lower morphometric differences were observed between A. hispidus & A. stellatus and high differences were noticed in A. reticularis to other species of Arothron group; L. sceleratus & L. lunaris showed less variation in Lagocephalus group (Fig. 3).

 

Morphometric variations of Tetraodontidae & Diodontidae        The first two DF showed a cumulative value (77.7%) of the total morphological variations on the family of Tetraodontidae (Table 6).  Moreover, all the loadings on DF1 (50.0 %) showed negative allometry.  DF2 described 27.7% of the total variance with negative allometric growth and the characters MGL, HL, PRAFL, PRNL, CPD, SNAD, DPFD, DAD & DB were loaded heavily. Bivariate plot of DF1 and DF2 scores revealed the separation of Lagocephalus & Canthigaster and close relationship between Arothron, Takifugu, Torquigener & Chelonodon (Fig. 4).  Also, significant results were observed in MANOVA too (Table 7 & Fig. 4).

Two DF were extracted from the family Diodontidae, exhibiting 95% of the total morphological variation.  Probably all the characters show negative allometry and a few characters were noticed heavy loading on DF1 & DF2 (SNL, INL, DFBL, AFBL, POPFL, POAFL, LCPL, CPD & SNAD) (Table 8).  Finally, the morphometric characters are showed the ability to discriminate the species in families of Tetraodontidae & Diodontidae. The detailed discriminate function was represented in Table 9 & Fig. 5.

 

 

Table 1. Morphometric characters of marine Pufferfish & Porcupinefish from southeastern India.

 

 

Pufferfish

Porcupinefish

 

Code

A. immaculatus

A. reticularis

A.

hispidus

A.

stellatus

L.

guentheri

L. sceleratus

L.

lunaris

T.

oblongus

T. brevipinnis

C.

patoca

C.

 solandri

D. holocanthus

C. orbicularis

C. reticulatus

SL

14.81±5.49

11.38±8.79

17.71±4.88

25.65±5.18

19.34±1.57

10.85±1.56

10.68±1.96

16.57±4.94

8.15±2.10

12.57±3.04

7.68±2.79

13.57±1.60

14.00±2.29

31.00±9.66

SNL

2.10±0.69

2.03±1.53

3.09±0.85

3.34±0.80

3.18±2.11

1.67±0.47

1.65±0.65

2.19±0.57

1.33±0.48

2.16±0.56

1.28±0.61

1.47±0.35

1.33±0.21

5.23±1.79

MGL

1.79±0.60

1.88±0.81

1.58±0.57

3.46±0.68

1.99±0.98

1.05±0.34

1.05±0.47

1.85±0.62

0.51±0.18

1.79±0.51

0.52±0.22

1.30±0.70

1.73±0.81

3.37±1.10

HL

4.57±2.03

4.25±2.50

4.88±1.34

9.92±2.29

4.96±2.11

2.49±0.38

2.45±0.52

4.31±1.64

1.89±0.63

4.40±1.21

1.80±0.80

4.30±0.61

4.40±0.70

9.03±2.59

OL

1.07±0.37

0.97±0.22

0.88±0.32

2.02±0.46

1.90±0.55

1.44±0.40

1.43±0.54

0.97±0.19

0.89±0.40

1.09±0.30

0.88±0.51

1.37±0.45

1.17±0.25

2.17±0.81

PD

0.83±0.25

0.75±0.18

0.71±0.30

1.14±0.33

1.11±0.36

1.14±0.41

1.18±0.54

0.76±0.10

0.61±0.25

0.84±0.13

0.60±0.32

0.87±0.21

0.77±0.06

1.30±0.53

IOL

2.55±1.02

2.40±1.74

2.42±0.67

4.59±1.35

2.75±1.50

1.60±0.58

1.53±0.79

3.17±1.24

1.42±0.54

2.32±0.48

1.34±0.64

3.13±0.21

3.50±0.72

4.80±1.39

PRNL

1.73±0.65

1.48±0.82

2.11±0.78

3.02±0.69

2.06±1.50

1.38±0.46

1.35±0.65

1.70±0.77

3.59±1.02

2.08±0.49

3.34±1.38

1.33±0.21

1.43±0.35

3.87±1.03

INL

1.37±0.54

1.25±0.77

1.27±0.58

2.16±0.55

2.09±1.00

1.05±0.43

1.08±0.64

1.65±0.71

0.74±0.21

1.64±0.47

0.74±0.27

1.77±0.71

1.40±0.46

2.93±1.07

DFBL

1.23±0.64

1.22±0.88

1.20±0.57

2.78±0.93

1.95±1.22

1.12±0.52

1.13±0.75

1.69±0.65

0.51±0.18

1.05±0.22

0.50±0.21

1.37±0.40

1.17±0.15

3.37±1.31

DFL

2.42±0.85

1.35±1.23

2.73±0.64

3.54±0.90

2.98±1.76

1.97±0.65

1.90±0.88

2.86±0.87

1.58±0.44

1.62±0.51

1.50±0.57

2.03±0.23

2.07±0.29

4.90±1.85

PFBL

1.61±0.83

1.45±0.89

1.64±0.72

3.29±0.78

1.80±1.00

1.36±0.52

1.33±0.74

1.48±0.58

0.72±0.23

1.15±0.38

0.72±0.29

1.87±0.23

1.93±0.31

3.37±0.76

PEL

2.12±0.71

1.52±1.12

2.16±0.66

3.13±0.66

3.24±1.41

2.48±0.69

2.35±0.94

2.61±0.58

1.35±0.69

1.71±0.51

1.32±0.81

2.40±0.50

2.67±0.68

4.27±1.70

AFBL

0.99±0.58

1.12±0.84

1.16±0.68

2.18±0.49

1.70±0.80

0.98±0.51

1.03±0.79

1.71±0.38

0.69±0.42

0.97±0.32

0.54±0.22

1.50±0.66

1.17±0.40

2.53±0.55

AFL

2.09±0.90

1.32±0.93

2.12±0.72

3.34±0.82

3.29±1.80

1.43±0.49

1.45±0.72

2.69±0.50

1.17±0.54

1.60±0.41

1.14±0.65

2.07±0.31

2.03±0.25

4.37±1.87

PRDFL

21.32±5.57

6.98±0.98

13.33±3.62

17.42±2.62

13.29±6.99

8.49±1.59

8.45±2.19

12.51±2.85

5.14±2.96

10.82±2.17

5.78±3.03

11.00±0.95

11.50±1.35

21.20±5.94

PRPFL

4.78±1.15

5.40±1.21

6.47±1.92

6.84±2.33

6.53±4.41

4.61±0.82

4.60±1.22

5.90±1.36

3.08±0.63

5.35±1.62

2.96±0.82

5.47±0.55

5.47±0.55

10.43±4.83

PRAFL

10.45±3.45

7.31±2.04

14.46±3.59

17.95±3.59

13.26±7.63

7.89±1.57

8.00±2.35

12.86±3.04

5.38±2.29

10.98±2.43

5.76±2.68

12.07±0.97

12.80±1.75

21.53±4.80

PODFL

4.84±2.21

3.73±3.40

4.15±1.43

12.77±3.49

6.64±4.03

4.36±1.12

4.28±1.63

5.75±3.69

2.71±0.79

3.22±0.71

2.54±1.03

2.97±0.21

3.23±0.67

11.83±5.40

POPFL

10.21±4.06

5.260±7.75

12.61±4.55

22.99±4.53

13.03±6.98

8.55±2.10

8.50±2.92

13.55±4.20

5.37±1.40

9.94±2.24

5.04±1.87

8.50±0.89

8.50±0.89

23.30±5.48

POAFL

3.81±2.05

2.65±3.03

3.66±1.21

8.29±3.15

6.03±3.34

4.13±1.09

4.15±1.65

6.97±2.32

3.57±1.16

3.95±0.70

3.40±1.54

2.67±0.71

2.30±0.46

9.17±4.01

CPL

3.38±1.06

1.81±2.21

3.25±1.34

6.52±1.63

5.67±2.85

3.47±0.66

3.53±0.99

2.76±0.91

1.65±0.59

3.28±0.55

1.56±0.76

2.63±0.68

2.23±0.15

6.97±2.40

CPD

2.28±0.91

2.30±1.47

2.32±0.90

4.72±1.37

1.76±0.72

1.01±0.43

1.05±0.64

2.30±0.80

0.72±0.24

1.98±0.43

0.68±0.29

1.43±0.85

1.10±0.30

3.83±1.10

SNAD

11.41±2.31

7.729±2.39

14.63±1.92

21.91±2.84

12.24±6.27

7.08±1.46

7.10±2.02

12.49±4.02

6.04±1.14

10.24±2.03

5.64±1.52

11.20±0.80

11.63±1.10

21.93±4.72

DPFD

6.34±2.59

5.0±4.05

7.19±1.80

12.84±3.72

7.29±4.41

4.49±0.93

4.48±1.28

7.77±2.10

3.85±0.68

6.41±1.26

3.70±0.90

6.93±0.83

7.20±1.06

14.43±4.71

DAD

4.18±2.34

3.85±3.77

4.92±1.16

9.84±2.79

4.40±1.93

1.51±0.62

1.58±0.92

4.30±1.75

1.52±0.47

3.96±0.84

1.42±0.60

3.27±0.50

3.53±0.64

8.80±2.61

DB

5.40±2.72

5.02±3.15

6.41±0.92

11.92±2.55

5.53±2.60

3.06±0.97

3.08±1.35

5.30±2.06

2.11±0.54

4.94±0.85

1.98±0.72

4.93±0.25

5.37±0.99

11.07±3.20

 

 

 

 

 

 

Table 2. Meristic difference of marine Pufferfish & Porcupinefish from southeastern India.

 

Species

Meristic characters

PFR

DFR

CFR

AFR

Pufferfish (Family: Tetradontidae)

Arothron immaculatus

21–22

13–14

14–15

12–13

A. reticularis

14–15

10–11

10–11

10–11

A. hispidus

16

11

9

8

A. stellatus

20

12

9

11

Lagocephalus guentheri

21–22

13–14

14–15

12–13

L. sceleratus

15–16

10

11–12

12

L. lunaris

15–16

10

11–12

12

Takifugu oblongus

16–17

12

12

11–12

Torquigenerbrevipinnis

17–18

9–10

7–8

7–8

Chelonodon patoca

15–16

10–11

10–11

10

Canthigaster solandri

17–18

9–10

7–9

7–9

Porcupinefish (Family: Diodontidae)

Diodon holocanthus

21–22

9–11

8–9

13–14

Cyclichthys orbicularis

21–22

10

9–10

12

Chilomycterus reticulates

19–20

12–13

11

10–11

 

 

 

 

 

 

Table 3a. The relationship between all the characters and standard length of Tetradontidae from southeastern India, P<0.01.

 

Characters

A. hispidus

A. immaculatus

A. reticulatus

A.  stellatus

L. guentheri

L. sceleratus

b

a

r2

b

a

r2

b

a

r2

b

a

r2

b

a

r2

b

a

r2

SNL

0.97

0.20

0.96

0.80

0.22

0.87

1.40

0.06

0.89

1.20

0.07

0.96

1.00

0.15

0.91

1.20

0.74

0.58

MGL

1.20

0.05

0.91

1.00

0.12

0.94

5.50

0.50

0.88

0.90

0.25

0.95

1.00

0.11

0.91

2.10

0.61

0.82

HL

0.94

0.33

0.96

0.90

0.37

0.90

0.80

0.55

0.99

1.10

0.27

0.95

0.74

0.61

0.84

0.90

0.27

0.85

OL

1.30

0.01

0.86

0.70

0.14

0.53

0.40

0.37

0.82

1.10

0.05

0.91

0.50

0.45

0.94

1.70

0.02

0.86

PD

1.50

0.01

0.81

0.80

0.10

0.84

0.40

0.27

0.80

1.10

0.02

0.02

0.50

0.27

0.78

1.50

0.03

0.56

IOL

1.00

0.15

0.97

1.00

0.15

0.90

0.90

0.25

0.98

1.40

0.04

0.87

1.00

0.15

0.93

2.60

0.00

0.91

PRNL

1.40

0.03

0.94

1.00

0.10

0.79

0.80

0.22

0.94

1.10

0.07

0.93

1.20

0.05

0.93

2.20

0.01

0.86

INL

1.80

0.01

0.89

1.20

0.05

0.79

0.90

0.14

0.91

1.20

0.03

0.91

0.72

0.25

0.91

2.40

0.00

0.71

DFBL

1.90

0.00

0.92

1.10

0.06

0.60

0.60

0.30

0.34

1.60

0.01

0.96

1.60

0.07

0.95

2.80

0.00

0.71

DFL

0.80

0.27

0.96

1.00

0.15

0.88

0.70

0.30

0.33

1.10

0.08

0.87

0.91

0.20

0.35

2.20

0.01

0.87

PFBL

1.80

0.01

0.87

1.40

0.04

0.93

0.80

0.18

0.98

1.10

0.07

0.09

1.03

0.09

0.94

2.60

0.00

0.70

PEL

1.00

0.11

0.94

0.70

0.33

0.66

0.90

0.33

0.96

1.00

0.10

0.97

0.69

0.45

0.91

1.90

0.03

0.86

AFBL

2.61

0.00

0.94

1.40

0.02

0.50

0.90

0.12

0.78

1.10

0.06

0.95

0.85

0.15

0.94

3.30

0.00

0.80

AFL

1.00

0.10

0.95

1.20

0.07

0.82

1.00

0.12

0.98

1.20

0.06

0.94

0.94

0.20

0.91

1.90

0.01

0.84

PRDFL

0.95

0.22

0.98

1.30

0.37

0.30

1.30

0.25

0.48

0.70

0.55

0.95

0.85

0.90

0.95

1.90

0.55

0.88

PRPFL

1.10

0.27

0.92

0.70

0.74

0.96

0.10

0.25

0.40

1.60

0.03

0.98

1.14

0.22

0.97

1.00

0.41

0.88

PRAFL

0.88

1.14

0.99

0.80

0.74

0.96

4.40

0.45

0.46

0.10

0.74

0.98

1.00

0.61

0.98

1.20

0.45

0.84

PODFL

1.30

0.09

0.96

1.10

0.22

0.89

1.10

0.27

0.57

1.30

0.15

0.98

1.04

0.31

0.89

1.70

0.07

0.90

POPFL

1.30

0.27

0.99

1.00

0.61

0.99

1.30

0.20

0.07

0.10

0.90

0.98

1.03

0.64

0.96

1.50

0.20

0.90

POAFL

1.20

0.09

0.94

1.30

0.11

0.85

1.00

0.22

0.50

1.90

0.02

0.99

0.89

0.42

0.84

1.60

0.08

0.95

CPL

1.50

0.03

0.96

0.80

0.41

0.98

1.20

0.10

0.94

1.10

0.15

0.96

0.92

0.37

0.83

1.00

0.30

0.95

CPD

1.20

0.06

0.96

1.00

0.14

0.97

0.90

0.27

0.90

1.40

0.05

0.97

0.71

0.25

0.62

2.60

0.00

0.82

SNAD

0.42

0.25

0.94

0.40

0.33

0.85

0.50

0.45

0.95

0.60

0.41

0.98

0.93

0.79

0.95

1.30

0.27

0.93

DPFD

0.82

2.61

0.91

0.80

0.74

0.83

0.90

0.50

0.89

1.40

0.14

0.98

0.95

0.50

0.95

1.30

0.27

0.92

DAD

0.80

0.50

0.96

1.10

0.18

0.93

1.10

0.25

0.98

1.40

0.09

0.93

0.81

0.43

0.83

2.40

0.00

0.83

DB

0.40

1.58

0.97

1.20

0.20

0.94

0.90

0.61

0.99

1.00

0.41

0.95

0.79

0.56

0.80

2.00

0.03

0.85

 

 

Table 3b. The relationship between all the characters and standard length of Tetradontidae from southeastern India, P<0.01.

 

Characters

L. lunaris

T. oblongus

C. solandri

T. brevipinnis

C. patoca

b

a

r2

b

a

r2

b

a

r2

b

a

r2

b

a

r2

SNL

1.40

0.05

0.91

0.80

0.20

0.93

1.30

0.08

0.75

1.10

0.11

0.91

1.30

0.07

0.90

MGL

1.20

0.45

0.70

0.80

0.18

0.49

1.20

0.04

0.76

0.70

0.12

0.80

1.60

0.03

0.89

HL

0.80

0.33

0.88

1.20

0.14

0.91

1.20

0.15

0.95

1.40

0.30

0.96

0.70

0.67

0.92

OL

0.60

0.17

0.62

0.60

0.20

0.36

1.50

0.04

0.08

1.00

0.45

0.30

1.30

0.05

0.74

PD

0.60

0.74

0.71

0.40

0.27

0.67

0.90

0.08

0.25

0.50

0.07

0.93

0.80

0.11

0.95

IOL

0.50

0.74

0.78

1.30

0.07

0.97

1.30

0.08

0.90

0.50

0.25

0.93

1.30

0.07

0.93

PRNL

1.20

0.67

0.97

1.50

0.02

0.98

1.00

0.41

0.90

0.50

0.61

0.04

1.30

0.07

0.94

INL

0.40

0.15

0.63

1.30

0.04

0.95

0.70

0.15

0.67

1.10

0.50

0.44

1.70

0.02

0.89

DFBL

0.90

0.14

0.88

1.40

0.03

0.93

1.10

0.05

0.74

0.80

0.09

0.20

1.70

0.01

0.75

DFL

1.00

0.30

0.98

0.90

0.20

0.95

0.80

0.50

0.68

0.80

0.12

0.55

2.40

0.00

0.09

PFBL

0.70

0.33

0.98

1.20

0.04

0.95

0.70

0.14

0.55

0.90

0.45

0.99

2.00

0.01

0.87

PEL

0.70

0.22

0.85

0.70

0.33

0.93

1.90

0.02

0.08

0.90

0.14

0.99

1.80

0.02

0.89

AFBL

0.70

0.18

0.89

0.60

0.27

0.93

0.00

0.00

0.00

0.50

0.33

0.20

1.40

0.05

0.90

AFL

0.90

0.74

0.57

0.40

0.90

0.32

1.70

0.03

0.85

0.80

0.25

0.90

1.20

0.07

0.91

PRDFL

0.80

0.67

0.93

0.70

0.61

0.94

2.20

0.04

0.52

0.90

0.22

0.45

0.70

0.61

0.77

PRPFL

0.80

0.55

0.97

0.80

0.67

0.99

0.70

0.67

0.94

1.00

0.95

0.95

2.30

0.01

0.79

PRAFL

0.70

0.06

0.85

0.80

0.67

0.96

1.50

0.20

0.73

1.00

0.33

0.94

0.70

0.67

0.83

PODFL

1.50

0.50

0.97

2.10

0.01

0.90

1.10

0.25

0.95

0.70

0.67

0.90

1.40

0.50

0.89

POPFL

1.10

0.06

0.92

0.10

0.90

0.93

1.00

0.61

0.96

1.00

0.50

0.90

0.60

0.82

0.89

POAFL

1.40

0.12

0.94

1.10

0.30

0.98

1.30

0.20

0.96

0.50

0.61

0.53

0.50

0.94

0.88

CPL

1.20

0.07

0.92

0.10

0.14

0.97

1.30

0.09

0.96

0.60

0.97

0.92

0.80

0.45

0.95

CPD

1.20

0.09

0.95

1.10

0.09

0.96

0.50

0.20

0.14

0.80

0.25

0.97

1.30

0.07

0.86

SNAD

0.70

0.67

0.84

0.10

0.74

0.91

0.60

0.74

0.91

0.80

0.82

0.99

0.60

0.50

0.90

DPFD

0.90

0.67

0.93

0.80

0.74

0.93

0.60

0.99

0.95

0.80

0.74

0.84

0.70

0.82

0.86

DAD

0.90

0.20

0.92

1.30

0.11

0.97

1.20

0.12

0.94

0.80

0.50

0.93

1.20

0.18

0.80

DB

0.90

0.50

0.84

1.10

0.18

0.92

0.50

0.74

0.67

0.70

0.67

0.91

0.70

0.82

0.87

 

 

 

Table 4. Discriminant function analysis for Arothron & Lagocephalus — loading scores on the discriminant functions DF1 & DF2 and discriminatory power of morphometric characters Wilks’ lambda (λ), F value & significance.

 

Variables

DF1

DF2

Wilks' lambda (λ)

F

Sig.

SNL

0.27767

-0.3457

0.577

6.604

0.005

MGL

0.51096

0.0186

0.718

3.527

0.000

HL

0.77027

0.19445

0.452

10.904

0.000

OL

-0.6579

0.19833

0.310

20.011

0.000

PD

-0.6266

-0.0158

0.489

9.403

0.032

IOL

0.48809

0.0053

0.781

2.522

0.000

PRNL

0.26549

0.12757

0.569

6.822

0.006

INL

-0.0079

-0.054

0.725

3.408

0.002

DFBL

0.05109

0.01338

0.684

4.155

0.001

DFL

0.03562

0.1024

0.679

4.262

0.017

PFBL

0.19747

0.16577

0.758

2.870

0.001

PEL

-0.7066

0.15675

0.666

4.515

0.009

AFBL

-0.0343

0.01229

0.738

3.195

0.004

AFL

0.10437

0.25586

0.710

3.679

0.000

PRDFL

0.09368

0.27503

0.600

5.993

0.014

PRPFL

-0.1662

-0.2831

0.751

2.984

0.217

PRAFL

0.38933

0.47538

0.862

1.439

0.000

PODFL

-0.0339

0.52274

0.518

8.373

0.000

POPFL

0.15219

0.66339

0.514

8.494

0.000

POAFL

-0.3403

0.41338

0.538

7.715

0.001

CPL

-0.4434

0.54312

0.653

4.791

0.000

CPD

0.74421

0.03476

0.577

6.607

0.000

SNAD

0.72037

0.52557

0.300

21.015

0.000

DPFD

0.50859

0.3704

0.295

21.483

0.000

DAD

0.83338

0.0651

0.489

9.387

0.000

DB

0.75468

0.16647

0.281

23.006

0.000

 

 

Table 5. MANOVA for Arothron & Lagocephalus from southeastern India.

 

 

Multivariate Tests

Value

F

Hypothesis df

Error df

Sig.

Pillai's trace

4.944

4.846

174.000

180.000

.000

Wilks' lambda

.000

16.781

174.000

155.572

.000

Hotelling's trace

322.406

43.235

174.000

140.000

.000

Roy's largest root

196.515

203.291a

29.000

30.000

.000

 

 

Table 6. Discriminant function analysis for Tetraodontidae  — loading scores on the discriminant functions DF1 & DF2 and discriminatory power of morphometric characters Wilks’ lambda (λ), F value & significance.

 

 

Variables

DF1

DF2

Wilks' Lambda (λ)

F

Sig

SNL

-0.1301

0.19393

0.703

7.170

0.000

MGL

-0.4734

0.57841

0.773

4.982

0.000

HL

-0.2756

0.62793

0.489

17.800

0.000

OL

-0.1108

-0.5693

0.631

9.926

0.000

PD

-0.2476

-0.3415

0.818

3.778

0.004

IOL

-0.0282

0.486

0.744

5.851

0.000

PRNL

0.83839

-0.1381

0.717

6.697

0.000

INL

-0.1863

0.16984

0.743

5.889

0.000

DFBL

-0.4264

0.12681

0.799

4.276

0.002

DFL

-0.0065

-0.1592

0.720

6.619

0.000

PFBL

-0.366

0.14915

0.791

4.482

0.001

PEL

-0.4736

-0.3898

0.688

7.695

0.000

AFBL

-0.1924

-0.0013

0.699

7.326

0.000

AFL

-0.2902

0.04044

0.837

3.316

0.009

PRDFL

-0.3733

0.23676

0.775

4.924

0.001

PRPFL

-0.1618

0.09356

0.715

6.775

0.000

PRAFL

-0.3715

0.4519

0.757

5.465

0.000

PODFL

-0.2557

-0.1268

0.649

9.188

0.000

POPFL

-0.3095

0.25291

0.810

3.978

0.003

POAFL

0.06503

-0.2177

0.762

5.296

0.000

CPL

-0.4437

-0.2509

0.888

2.138

0.069

CPD

-0.3471

0.71149

0.708

7.027

0.000

SNAD

-0.1138

0.61576

0.776

4.919

0.001

DPFD

-0.0543

0.50741

0.614

10.699

0.000

DAD

-0.1211

0.70674

0.727

6.370

0.000

DB

-0.2455

0.6481

0.545

14.184

0.000

 

 

Table 7. MANOVA for Tetraodontidae from southeastern India.

 

 

Multivariate tTests

Value

F

Hypothesis df

Error df

Sig.

Pillai's trace

7.394

5.870

290.000

600.000

.000

Wilks' lambda

.000

14.274

290.000

510.032

.000

Hotelling's trace

151.242

25.659

290.000

492.000

.000

Roy's largest root

44.754

92.595a

29.000

60.000

.000

 

 

 

Table 8. Discriminant function analysis for Diodontidae   loading scores on the discriminant functions DF1 & DF2 and discriminatory power of morphometric characters Wilks’ lambda (λ), F value & significance.

 

Variables

DF1

DF2

Wilks' lambda (λ)

F

Sig..

SNL

-0.073

-0.483*

0.652

2.942

0.095

MGL

-.160*

-0.155

0.407

8.026

0.007

HL

-0.204

-0.340*

0.289

13.506

0.001

OL

-0.1

-0.331*

0.598

3.690

0.059

PD

-0.092

-0.275*

0.642

3.063

0.088

IOL

-.209*

-0.109

0.287

13.637

0.001

PRNL

-0.187

-0.392*

0.705

2.300

0.146

INL

-0.079

-0.479*

0.354

10.059

0.003

DFBL

-0.196

-0.509*

0.292

13.320

0.001

DFL

-0.164

-0.395*

0.553

4.443

0.039

PFBL

-0.194

-0.306*

0.221

19.356

0.000

PEL

-.194*

-0.13

0.512

5.249

0.025

AFBL

-0.145

-0.456*

0.337

10.813

0.003

AFL

-0.175

-0.290*

0.478

6.015

0.017

PRDFL

-0.147

-0.179*

0.527

4.940

0.029

PRPFL

-0.057

-0.366*

0.344

10.487

0.003

PRAFL

-0.183

-0.205*

0.386

8.751

0.005

PODFL

-0.298

-0.396*

0.654

2.910

0.097

POPFL

-0.195

-0.448*

0.432

7.235

0.010

POAFL

-0.167

-0.504*

0.779

1.565

0.252

CPL

-0.166

-0.511*

0.473

6.122

0.016

CPD

-0.362

-0.529*

0.454

6.618

0.013

SNAD

-0.239

-0.388*

0.268

15.011

0.001

DPFD

-0.273

-0.381*

0.327

11.317

0.002

DAD

-0.24

-0.356*

0.326

11.356

0.002

DB

-0.286

-0.323*

0.261

15.605

0.001

 

 

 

Table 9. MANOVA for Diodontidae from southeastern India.

 

 

Multivariate tTests

Value

F

Hypothesis df

Error df

Sig..

Pillai's trace

1.670

1.013

20.000

4.000

.563

Wilks' lambda

.000

4.447b

20.000

2.000

.199

Hotelling's trace

679.540

.000

20.000

.000

.000

Roy's largest root

677.494

135.499c

10.000

2.000

.007

 

 

 

 

DISCUSSION

 

In the present study, the family Tetraodontidae (Lagocephalus guentheri, L. sceleratus, L. lunaris, Arothron immaculatus, A. reticularis, A. hispidus, A. stellatus, Chelonodon patoca, Torquigener brevipinnis, Canthigaster solandri & Takifugu oblongus) and Diodontidae (Diodon holocanthus, Cyclichthys orbicularis & Chilomycterus reticulates) were classified based on phenotypic appearance, and morphometric characters were adopted to identify the pufferfish and porcupinefish from the Indian coast.  Also, those morphometric characters showed >70% of variation in the morphology.  Similarly, Meng & Stocker (1984), Murta (2000) & Simon et al. (2010) noticed that the morphometric discriminant functions effectively classified individuals in fish species.  Moreover, the same results were obtained by Mwita (2015).  Additionally, these morphometric methods were more popular to reveal the stock differences in fisheries sectors.

The positive and negative values of allometric functions were able to show the taxonomic importance of the intra- and inter-species of the morphology (Meyer 1990; Mekkawy et al. 2002).  Similarly, DF results confirmed that specific size and body shapes of various measurements are the determining taxonomic factors in morphometric identification.  DF2 relating to the shape of the head regions of the fish separated the species of Arothron & Lagocephalus and genera of Tetraodontidae except for Torquigener.  DF1 & DF2 more clearly separated Cyclichthys from Chilomycterus.  The individuals of Diodon were not separated clearly, showing the close relationship to Chilomycterus.  Also, Torquigener showed a close relationship to Arothron — these two members’ results led us to reinvestigate the taxonomic status with molecular studies.

Previously, body shape and colouration characters were frequently used as distinguishing characters of these species. The present study has uncovered some morphological variation between the two closely related families, using multivariate techniques as reported in other marine fish (Pierce et al. 1994; Tudela 1999; Bolles & Begg 2000; Aktas et al. 2006; Mekkawy et al. 2011). This study demonstrates that Tetraodontidae from the southwestern Indian coastal waters are different from one another in morphometric characters.  Statistical classifications using multivariate discriminant analyses were best for identification of the species of Tetraodontidae while morphometric characters provided comparatively less evidence of differentiation in Diodontidae.

Overall, morphological studies have been valid methods to identify the differences and to find out the relationship between different species and genera of pufferfish and porcupinefish.  Also, these analyses will help to produce a better understanding of evolutionary studies with molecular markers.

 

 

REFERENCES  

 

Aktas, M., T. Cemal & A. Bozkurt (2006). Taxonomic description of three shrimp species (Melicertus kerathurus, Metapenaeus monoceros, Penaeus semisulcatus) using multivariate morphometric analyses. Journal of Animal and Veterinary Advances 5(3): 172–175.

Allen, G.R. & J.E. Randall (1977). Review of the Sharpnose Pufferfish (Subfamily: Canthigasterinae) of the Indo-Pacific. Records of the Australian Museum 30: 475–517.

Allen, G. R. & M. V. Erdmann (2012). Reef Fishes of the East Indies: Tropical Reef Research. Perth, Australia. Vol. I-III, 1097–1099pp.

Anonymous (1798). Review of Tome I of ‘Histoire naturelle des poissons’ by Lacepède (1798). Allgemeine Literatur-Zeitung 3 (287): Spalten (columns) 673-680.

Arakawa, O., D.F. Hwang, S. Taniyama & T. Takatani (2010). Toxins of pufferfish that cause human intoxications. Coastal Environmental and Ecosystem Issues of the East China Sea: 227–244. http://hdl.handle.net/10069/23514.

Bloch, M. E. (1785). Auslandische Fische. Berlin, 95, 1801.

Bloch, M.E. & J.G. Schneider. (1801). M.E. Blochii, Systema Ichthyologiae iconibus ex illustratum. Post obitum auctoris opus inchoatum absolvit, correxit, interpolavit Jo. Gottlob Schneider, Saxo. Berolini. Sumtibus Austoris Impressum et Bibliopolio Sanderiano Commissum. i-lx, 584 pp. Berlin.

Bolles, K.L. & G.A. Begg (2000). Distinction between Silver Hake (Merluccius bilinearis) stocks in US waters of the northwest Atlantic based on whole otolith morphometrics. Fishery Bulletin 98(3): 451–462.

Bragadeeswaran, S. & D. Therasa (2010). Biomedical and pharmacological potential of tetrodotoxin-producing bacteria isolated from the marine pufferfish Arothron hispidus (Muller, 1841). The Journal of Venomous Animals and Toxins including Tropical Diseases 16(3): 421–431;

Cadrin, S.X. (2000). Advances in morphometric identification of fishery stocks. Reviews in Fish Biology and Fisheries 10(1): 91–112; https://doi.org/10.1023%2FA%3A1008939104413.

Dekkers, W. J. (1975). Review of the Asiatic freshwater puffers of the genus Tetraodon Linnaeus, 1758 (Pisces, Tetraodontiformes, Tetraodontidae). Bijdragen tot de Dierkunde 45(1): 87-142.

Ferrito, V., M.C. Mannino, A.M. Pappalardo & C. Tigano (2007). Morphological variation among populations of Aphanius fasciatus Nardo, 1827 (Teleostei, Cyprinodontidae) from the Mediterranean. Journal of Fish Biology 70(1): 1–20; https://doi.org/10.1111/j.1095-8649.2006.01192.x

Fiedler, K. (1991). On the task, the measures and the mood in research on affect and social cognition. Emotion and social judgments, 83-104.

Fischer, W. & G. Bianchi, (1984). FAO species identification sheets for fishery purposes: Western Indian Ocean (Fishing Area 51). v. 1: Introductory material. Bony fishes, families: Acanthuridae to Clupeidae.-v. 2: Bony fishes, families: Congiopodidae to Lophotidae.-v. 3: families: Lutjanidae to Scaridae.-v. 4: families: Scatophagidae to Trichiuridae.-v. 5: Bony fishes, families: Triglidae to Zeidae. Chimaeras. Sharks. Lobsters. Shrimps and prawns. Sea turtles. v. 6: Alphabetical index of scientific names and vernacular names.

Fraser-Brunner, A. (1943). Note on the plectognath fishes — VIII. The classification of the suborder Tetraodontoidea, with a synopsis of the genera. Annals & Magazine of Natural History 11(10): 1–18.

Gmelin J.F. (1789). Pisces. In: Caroli a Linné, Systema Naturae per regna tria naturae, secundum classes, ordines, genera, species; cum characteribus, differentiis, synonymis, locis. Editio decimo tertia, aucta, reformata (Gmelin J.F., ed.), pp. 1126-1516. Lipsiae: Georg. Emanuel Beer.

Hamilton, B. (1822). An Account of Fishes found in the River Ganges and its Branches. Archibad Constable & Company, Edinburgh, 405pp.

Hardy, G.S. (1982a). Two new generic names for some Australian pufferfishes (Tetraodontiformes: Tetraodontidae), with species’ redescriptions and osteological comparisons. Australian Journal of Zoology 21: 1–26.

Hardy, G.S. (1982b). First Pacific records of Pelagocephalus marki Heemstra & Smith (Tetraodontiformes: Tetraodontidae), and first male specimen of the genus. New Zealand Journal of Zoology 9: 377–380.

Hardy, G.S. (1983a). Revision of Australian species of Torquigener Whitley (Tetraodontiformes: Tetraodontidae), and two new generic names for Australian puffer fishes. Journal of the Royal Society of New Zealand 13: 1–48.

Hardy, G.S. (1983b). The status of Torquigener hypselogeneion (Bleeker) (Tetraodontiformes: Tetraodontidae) and some related species, including a new species from Hawaii. Pacific Science 37: 65–74.

Hardy, G.S. (1984a). Tylerius, a new generic name for the Indo-Pacific pufferfish, Spheroides spinosissimus Regan, 1908 (Tetraodontiformes: Tetraodontidae) and comparisons with Amblyrhynchotes (Bibron) Dume´ril. Bulletin of Marine Science 35: 32–37.

Hardy, G.S. (1984b). Redescription of the pufferfish Torquigener brevipinnis (Regan) (Tetraodontiformes: Tetraodontidae), with description of a new species of Torquigener from Indonesia. Pacific Science 38: 127–133.

Hirsch, P.E., R. Eckmann, C. Oppelt & J. Behrmann-Godel (2013). Phenotypic and genetic divergence within a single whitefish form-detecting the potential for future divergence. Evolutionary applications 6(8): 1119–1132; https://doi.org/10.1111/eva.12087

Hubbs, C.L. & K.F. Lagler (1958). Fishes of the Great Lakes Region, University of Michigan Press, Ann Arbor. 213 pp.

Immaculate, J.S.K., K. Saritha, G. Hermina & P. Jamila (2015). Quality assessment of fresh and dried pufferfish (Lagocephalus lunaris) obtained from Tuticorin, south east coast of India. World Journal of Fish and Marine Sciences 7(4): 268–277.

Jeffares, D.C., C. Rallis, A. Rieux, D. Speed, M. Převorovský, T. Mourier & R. Pracana (2015). The genomic and phenotypic diversity of Schizosaccharomyces pombe. Nature genetics 47(3): 235–241; https://doi.org/10.1038/ng.3215

Kerschbaumer, M., P. Mitteroecker & C. Sturmbauer (2014). Evolution of body shape in sympatric versus non-sympatric Tropheus populations of Lake Tanganyika. Heredity 112(2): 89–98; https:// doi.org/10.1038/hdy.2013.78

Leis, J.M. (1978). Systematics and zeegeography of the porcupinefishes (Diodon, Diodontidae, Tetraodontiformes), with comments on egg and larval development. Fishery Bulletin 76: 535–567.

Leis, J.M. (1984). Tetraodontiformes: relationships. In: Moser HG, Richards WJ, Cohen DM, Fahay MP, Kendall Jr AW, Richardson SL (eds) Ontogeny and systematics of fishes. Am Soc Ichthyol Herpetol Spec Publ 1, pp 459-463.

Linnaeus, C.  (1758). Systema Naturae, 10th ed. Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Tomus I. Editio decima, reformata. Holmiae.

Loy, A., P. Genov, M. Galfo, M.G. Jacobone & A.V. Taglianti (2007). Cranial morphometrics of the Apennine brown bear (Urdus arctos marsicanus) and preliminary notes on the relationships with other southern European populations. Italian Journal of Zoology 75 (1): 67–75; https://doi.org/10.1080/11250000701689857

Matsuura, K. (2000). Tetraodontiformes. In: Randall JE, Lim KKP (eds) A checklist of the fishes of the South China Sea. Raffles Bulletin of Zoology 8: 647-649.

Matsuura, K. (1984). Tetraodontiformes. In: Masuda H, Amaoka K, Araga C, Uyeno T, Yoshino T (1984) The fishes of the Japanese Archipelago. Tokai University Press, Tokyo, pp 356-366, pls 321-334, 370.

Matsuura, K. (1994). Arothron caeruleopunctatus, a new puffer from the Indo-West Pacific. Japanese journal of Ichthyology 41: 29–33.

Matsuura, K. (1999). Taxonomic review of the puffers of the genus Arothron (Tetraodontiformes: Tetraodontidae) with a key to genera of the Indo-West Pacific puffers. Proceedings of 9th Joint Sem Mar Fish Sci: 125–140.

Matsuura, K. (2002). A review of two morphologically similar puffers, Chelonodon laticeps and C. patoca. National Museum of Nature and Science Monographs 22:173-178.

Matsuura, K. (2010). Lagocephalus wheeleri Abe, Tabeta & Kitahama, 1984, a junior synonym of Tetrodon spadiceus Richardson, 1845 (Actinopterygii, Tetraodontiformes, Tetraodontidae). Bulletin of the National Museum of Nature and Science, Series B: 46: 39–46.

Matsuura, K. (2014). A new pufferfish of the genus Torquigener that builds ‘‘mystery circles’’ on sandy bottoms in the Ryukyu Islands, Japan (Actinopterygii: Tetraodontiformes: Tetraodontidae) Ichthyological Researc 62: 72–113; https://doi.org/10.1007/s10228-014-0428-5

Matsuura, K. (2015). Taxonomy and systematic of tetraodontiform fishes: a review focusing primarily on progress in the period from 1980 to 2014. Ichthyological Research 62: 72–113; https://doi.org/10.1007/s10228-014-0444-5.

Matsuura, K., Golani, D. & S.V. Bogorodsky (2011). The first record of Lagocephalus guentheri Miranda Ribeiro, 1915 from the Red Sea with notes on previous records of L. lunaris (Actinopterygii, Tetraodontiformes, Tetraodontidae). Bulletin of the National Museum of Natural History, Series A 37(3): 163–169.

Mekkawy, I.A. & A.S. Mohammad (2011). Morphometrics and meristics of the three Epinepheline species: Cephalopholis argus (Bloch & Schneider, 1801), Cephalopholis miniata (Forsskal, 1775) and Variola louti (Forsskal, 1775) from the Red Sea, Egypt. Journal of Biological Sciences 11(1): 10–21; 10.3923/jbs.2011.10.21.

Mekkawy, I.A.A., S.A. Saber, S.M.A Shehata & A.G.M. Osman (2002). Morphometrics and meristics of four fish species of genus Epinephelus (Family Seranidae) from the Red Sea, Egypt. Bulletin of Faculty of Science Assiut University 31(1–E): 21–41.

Meng, H.J. & M. Stocker (1984). An evaluation of morphometrics and meristics for stock separation of Pacific herring (Clupea harengus pallasi). Canadian Journal of Fisheries and Aquatic Sciences 41(3): 414–422; https://doi.org/10.1139/f84-049

Meyer, A. (1990). Morphometrics and allometry in the trophically polymorphic cichlid fish, Cichlasoma citrinellum: alternative adaptations and ontogenetic changes in shape. Journal of Zoology 221(2): 237–260; https://doi.org/10.1111/j.1469-7998.1990.tb03994.x

Miranda Ribeiro A de (1913-15). Fauna brasiliense. Peixes. Tomo V. Museu Nacional, Rio de Janeiro.

Monaliza, M.D. & M. Samsur (2011). Toxicity and Toxin Properties Study of puffer fish collected from Sabah Waters. Health and Environment Journal 2(1): 14–17.

Murta, A.G. (2000). Morphological variation of horse mackerel (Trachurus trachurus) in the Iberian and north African Atlantic: implications for stock identification. ICES Journal of Marine Science 57: 1240–1248; https://doi.org/10.1006/jmsc.2000.0810

Mwita, C.J. (2015).  Morphometric relationships among the clariid fishes of the Lake Victoria Basin, Tanzania. Open Journal of Marine Science 5(1): 26–32; https://doi.org/10.4236/ojms.2015.51003

Nelson, J.S., T.C. Grande & M.V.H. Wilson (2016). Fishes of the World. Fifth Edition. John Wiley & Sons, Inc., Hoboken, New Jersey: [i]-xli, 1-707; https://doi.org/10.1002/9781119174844

Pierce, G.J., L.C. Hastie, A. Guerra, R.S. Thorpe, F.G. Howard & P.R. Boyle (1994). Morphometric variation in Loligo forbesi and Loligo vulgaris: regional, seasonal, sex, maturity and worker differences. Fisheries Research 21(1–2): 127–148.

Randall, J.E. (1985). On the validity of the tetraodontid fish Arothron manilensis (Proce). Japanese Journal of Ichthyology 32(3): 347–354.

Randall, J.E., S.V. Bogorodsky & J.M. Rose (2012). Colour variation of the puffer Arothron hispidus (Linnaeus) and comparison with A. reticularis (Bloch & Schneider). International Journal of Aquatic Biology 18(1): 41–55.

Regan, C.T. (1903). On the classification of the fishes of the suborder Plectognathi; with notes and description of new species from specimens in the British Museum Collection. Proceedings of Zoological Society of London 1902(2): 284–303.

Reist, J.D. (1985). An empirical evaluation of several univariate methods that adjust for size variation in morphometric data. Canadian Journal of Zoology 63: 1429–1439.

Richardson (1845). Richardson J (1845) Ichthyology.—Part 3. In: Hinds RB (ed) The zoology of the voyage of H.M.S. Sulphur, under the command of Captain Sir Edward Belcher, R.N., C.B., F.R.G.S., etc., during the years 1836-42, No. 10. Smith, Elder & Co, London, pp 71–98, pls 55–64

SAS (2014). SAS User’s Guide, Statistics. SAS Institute, Inc., Cary, NC.

Simon, K.D., Y. Bakar, A. Samat, C.C. Zaidi, A. Aziz & A.G. Mazlan (2010). Population growth, trophic level, and reproductive biology of two congeneric archer fishes (Toxotes chatareus Hamilton, 1822 and Toxotes jaculatrix Pallas, 1767) inhabiting Malaysian coastal waters. Journal of Zhejiang University SCIENCE B 10(12): 902–911; https://doi.org/10.1631/jzus.B0920173

Slábová, M. & D. Frynta (2007). Morphometric variation in nearly unstudied populations of the most studied mammal: the non-commensa house mouse (Musmusculus domesticus) in the near east and northern Africa. Zoologischer Anzeiger 246(2): 91–101; https://doi.org/10.1016/j.jcz.2007.02.003

Smith, J.L.B. (1958). Tetraodont fishes from from south and east Africa. Annals & Magazine of Natural History, Series 13 1: 156–160.

Smith, M.M. (1986). Family No. 267: Tetraodontidae. In: Smith MM, Heemstra PC (eds) Smiths’ sea fishes. Macmillan South Africa, Johannesburg, pp 894-903, pls 139-140, 142-145.

Smith, M.M. & P.C. Heemstra (1986). Family No. 263: Balistidae. In: Smith MM, Heemstra PC (eds) Smiths’ sea fishes. Macmillan South Africa, Johannesburg, pp 876-882, pls 136-139.

Strauss, R.E. & C.E. Bond (1990). Taxonomic methods: morphology. Methods for fish biology. American Fisheries Society, Bethesda, Maryland, 109-140.

Tomovic, L. & G. Dzukic (2003). Geographic variability and taxonomy of the nose horned viper, Vipera ammodytes (L. 1758), in the central and eastern parts of the Balkans: a multivariate study. Amphibia-reptilia 24: 359–377.

Tudela, S. (1999). Morphological variability in a Mediterranean, genetically homogeneous population of the European anchovy, Engraulis encrasicolus. Fisheries Research 42(3): 229–243.