SEASONAL DIVERSITY OF BUTTERFLIES AND THEIR LARVAL FOOD PLANTS IN THE SURROUNDINGS OF UPPER NEORA VALLEY NATIONAL PARK, A SUB-TROPICAL BROAD LEAVED HILL FOREST IN THE EASTERN HIMALAYAN LANDSCAPE, WEST BENGAL, INDIA

Panchali Sengupta¹, Kamal Kumar Banerjee² & Narayan Ghorai³

^{1,3} Department of Zoology, West Bengal State University, Berunanpukaria, Malikapur, Barasat, District-24 Parganas (North), Kolkata, West Bengal 700126, India

² Department of Zoology, Bidhannagar College, EB Block, Sector-1, Salt Lake City, Kolkata, West Bengal 700064, India ¹ panchali_17sg@yahoo.com, ² forestkkb@gmail.com, ³ nghorai@gmail.com (corresponding author)

Abstract: Seasonal butterfly diversity in the adjacent areas of the upper Neora Valley National Park, a part of the Himalayan landscape, was studied. The available larval host plant resources present within, as well as in the adjoining areas of transect were identified. A total of 4163 butterflies representing 161 species belonging to five families were recorded during this study. One-hundred-and-forty-three species of plants belonging to 44 families served as the larval food plants of butterflies. The maximum number of butterfly species and maximum number of individuals were sampled during the monsoons. The monsoons with least skewed rank abundance curve of species distribution, was also marked by maximum species diversity and maximum species evenness. This was probably due to the abundant distribution of luxurious vegetation that served as food plants for the larval stages of butterflies. Nymphalidae was the most dominant family with 43.48% of the total number of species. Autumn followed by the monsoon was associated with high species richness probably due to the abundance of vegetation that provides foliage to its larval stages.

Keywords: Autumn, Butterfly diversity, Himalayan landscape, larval food plant, monsoon, Neora Valley National Park, Nymphalidae, rank abundance curve, species evenness, species richness.

DOI: http://dx.doi.org/10.11609/JoTT.o3446.5327-42 | ZooBank: urn:lsid:zoobank.org:pub:748950A3-E4AA-4865-ABC7-DAF294C33BEE

Editor: B.A. Daniel, Zoo Outreach Organization, Coimbatore, India.

Date of publication: 26 January 2014 (online & print)

Manuscript details: Ms # o3446 | Received 19 December 2012 | Final received 09 October 2013 | Finally accepted 03 December 2013

Citation: Sengupta, P., K.K. Banerjee & N. Ghorai (2014). Seasonal diversity of butterflies and their larval food plants in the surroundings of upper Neora Valley National Park, a sub-tropical broad leaved hill forest in the eastern Himalayan landscape, West Bengal, India. *Journal of Threatened Taxa* 6(1): 5327–5342; http:// dx.doi.org/10.11609/JoTT.o3446.5327-42

Copyright: © Sengupta et al. 2014. Creative Commons Attribution 3.0 Unported License. JoTT allows unrestricted use of this article in any medium, reproduction and distribution by providing adequate credit to the authors and the source of publication.

Funding: Self funded.

Competing Interest: The authors declare no competing interests.

Authors Contribution: PS was involved in the sampling, identification of studied species; statistical analysis of recorded data, manuscript preparation and site management. KKB was involved in data interpretation, literature survey and framing up of research questions. NG was engaged in the sampling, identification of studied species; statistical analysis of recorded data, data interpretation, framing up of questions and hypothesis along with manuscript preparation.

Author Details: PANCHALI SENGUPTA is a PhD student of the Department of Zoology, WBSU, Barasat, West Bengal. She is currently involved in the study of insectplant interaction with special reference to ants and butterflies. KAMAL KUMAR BANERJEE is Associate Professor, Department of Zoology, Bidhanagar College, Kolkata. His field of interest involves wildlife biology and ecology. NARAYAN GHORAI is Associate Professor, Department of Zoology, West Bengal State University, Barasat, West Bengal. His research interest involves insect-plant interaction, wildlife biology and behavioral ecology.

Acknowledgements: The authors are thankful to the Head, Department of Zoology, West Bengal State University, West Bengal, India for his constant encouragement and support during the entire study period. Authors would like to extend their gratitude to Professor Gour Maiti, Department of Botany, Kalyani University, West Bengal, India for his assistance in the identification of all the plant based resources. The guidance and efforts of Ram Kumar Chettri, forest guide, Gorumara National Park is also acknowledged by the authors. The authors would like to extend their sincere thanks to Siraj-ul-Haq, Dhruba Manta, Somnath Mandal and all the forest personnel of NVNP for their cooperation and help.

ISSN

Online 0974–7907 Print 0974–7893

OPEN ACCESS

INTRODUCTION

Studies in India (Kunte 1997; Padhye et al. 2006; Bhusal & Khanal 2008) have established a relationship between butterfly species richness, density and diversity with respect to seasonality. For instance, tropical butterflies have been shown to be sensitive to seasonal changes in rainfall (Barby 1995; Hill et al. 2003). Wynter-Blyth (1957) documented 835 species from the eastern Himalaya in sharp contrast to only 415 species from the western Himalaya. The lowland forests of Bhutan harbour a rich and unique diversity of butterflies with maximum number of species recorded during spring and minimum number during the monsoons (Singh 2012). Saikia et al. (2010), during their study on 109 species from Rani-Garbhanga Reserve Forests recorded seasonality of butterflies with differences in the butterfly abundances as well defined dry and wet season forms due to distinct plant phenological state in different seasons of the year. Although a list of butterflies from the Darjeeling District of West Bengal (Maude 1949) is available, studies on the butterflies inhabiting the rich and diverse Himalayan landscape of Neora Valley National Park (NVNP) are lacking. NVNP is located at the trijunction of West Bengal, Sikkim (India) and Bhutan on the north and northeast. *Rechila danda*, the highest point of this National Park is situated at 3,170m (Mallick 2010). Therefore, work was carried out to document diversity of butterflies in different seasons from the fringe regions of the upper range of NVNP. The diversity and seasonality of butterflies probably reflect the phenophases of their host plants (Kunte 1997). Therefore an attempt was also made to record the larval food plants of butterfly species.

MATERIALS AND METHODS

The present study was conducted in the adjacent areas of the upper range of the NVNP (26°52′-27°7′N & 88°45′-88°55′E) located in the Kalimpong sub-division of the Darjeeling District, West Bengal, India (Fig. 1). It was notified as a protected area in April 1986 and was gazetted in December 1992. The park authorities divided Neora Valley into two ranges, namely the upper range with its headquarters at Lava, serving as its western entry point

Figure 1. A - Map of Neora Valley National Park; B - Map of India showing the location of West Bengal; C - Map showing Kalimpong subdivision of Darjeeling District of West Bengal.

and the lower range with its headquarters situated at Samsing, the park's eastern entry point (Mallick 2010).

The phytogeography of NVNP includes subtropical broad leaved hill forest, montane wet temperate forest along with subtropical pine forest (Champion & Seth 1968). Rodgers et al. (2002) placed NVNP in the biogeographic zone 2. The park has a wide altitudinal range varying from183m in the plains to 3,200m in the hills (Mallick 2012). The climatic condition varies between tropical/subtropical in its lower range to temperate in its upper range (Mallick 2010). The forest structure at the study site was mostly undisturbed. The surrounding terraces had cultivated fields of forest adjoining dwellers.

Four trail-cum-trekking routes (total length: 16km) (Table 1) were selected as study sites (i.e., NVNP-1, NVNP-2, NVNP-3 and NVNP-4) (Table 1). The survey was conducted between June 2011 and May 2012, following the Pollard-Walk Method (Pollard 1977) at eight randomly selected line transects (approximately 500m length and 8m breadth) located in each of the study sites. Butterflies were observed twice a day, (06:00–13:00 hr in the morning and 14:00–17:00 hr in the afternoon) by walking at a constant pace at each transect. Less time was devoted for sampling in the afternoon due to reduced butterfly activity at that time of the day. Separate days were devoted to sample each transect in each study site weekly for a month with the help of two trained field assistants. The sampling procedure was repeated at an interval of 30 days. As far as possible, surveys were conducted on sunny days with less than 30% cloud cover, as butterfly activity is suppressed on windy or cloudy days (Weiss et al. 1988). The sampling days missed due to inclement weather conditions were recorded.

The butterflies were observed (using Bushnell binoculars) and photographed occasionally (using Nikon COOLPIX-P90) for subsequent identification from literature (Evans 1932; Wynter-Blyth 1957; Haribal 1992; Kunte 2000; Kehimkar 2008) and reference collection at Zoological Survey of India. For better interpretation of collected data the year was divided into five seasons (viz., Spring: March; Summer: April–May; Monsoon: June–September; Autumn: October–November; Winter: December–February). The division of seasons was based on the variation of rate of precipitation and temperature. Larval host plants were recorded in each transect and also identified from the adjoining areas of transect. These plants were identified from published literature (Cowan & Cowan 1979; Polunin & Stainton 2005; Maity & Maiti 2007; Das et al. 2008) along with assistance from plant taxonomists. Meteorological data (i.e., temperature, precipitation) were collected during the study period.

The diversity of butterfly species across seasons was calculated using Shannon index of diversity given by the equation, $H'=\Sigma pi$ (In pi), where, pi=ni/N; ni is the number of individuals of ith species and N=Σni. The Shannon index, which combines the number of species within a site with the relative abundance of each species (Shannon 1948; Magurran 1988) was determined using vegan package of "R". Margalef's species richness was used to compare the species richness across seasons. This index was calculated using equation R=(S-1)/In N, where S is the number of species and N is the number of individuals (Magurran 1988). Evenness of species reveals how their relative abundance is distributed in a particular site or sample (Pielou 1969; Magurran 1988). This index is given by the equation, E=H'/In S, where H' is the Shannon index of diversity and S is the number of species. Rank abundance diagram was plotted to represent the distribution pattern of species abundances across each season during the study period (Whittaker 1965). Month-wise variation in the number of species sampled during the study period was represented graphically.

RESULTS

One-hundred-and-sixty-one species of butterflies belonging to five families (i.e., Nymphalidae: 43.48%,

Table 1. Detail parameters of sampling site

Study site	Geographical position	Average altitude	Location	Length of trails surveyed	Forest type
NVNP-1	27º05'N & 88º42'E	2,358m	Lava-Chaudapheri	2km	Quercus-Lithocarpus-Arundinaria forest type
NVNP-2	27º07'N & 88º43'E	2,538m	Chaudapheri-Alubari	5km	Lauraceous forest type
NVNP-3	27º04'N & 88º42'E	2,050m	Doley Camp in the mountain ridges of Pankhasari 2 block	7km	Magnolia-Michelia as forest type
NVNP-4	27º05'N & 88º43'E	2,958m	Alubari-Jorepokhri	2km	Rocky forest floor covered with thick litter

Lycaenidae: 27.95%, Hesperiidae: 11.18%, Pieridae: 9.32% and Papilionidae: 8.07%) were observed at different sites during the entire study period (Table 2).

During summer (April–May), the temperature varied from 3–6 °C (min.) to 20–21 °C (max.) and a precipitation of 95.2–239 mm was recorded, while the monsoon months (June-September) had a temperature of 7–8 °C (min.) and 22–23 °C (max.), with a maximum precipitation of 589–620 mm. 1–4 °C (min.) and 20–22 °C (max.) temperature was recorded during autumn (October–November), with a precipitation between 16.4–30.0 mm. Winter (December–February) temperatures ranged from minus 3–1 °C (min.) to 18 °C (max.), while 4.2–10.9 mm of precipitation was recorded. Spring (March) had a minimum temperature of 2 °C and maximum temperature of 20 °C with a precipitation of 20mm (Table 3).

As November to February was marked by a number of foggy days (Table 4), sampling was carried out mostly on sunny days. July had the maximum number of rainy days (Table 4). Thus, a total of 192 days of sampling was carried out during the entire study period, each day devoted to two transects studied in the study site (Table 4).

The number of butterfly species and the total number of individuals recorded is shown in Table 5. The maximum number of butterfly species (158) and the maximum number of individuals (2480) was recorded during the monsoons. Shannon index of diversity (H'=4.968) along with the evenness index of species distribution (E=0.981) also exhibited highest values during this season (Table 5) as compared to summer (H'=4.819; E=0.974), autumn (H'=4.714; E=0.961), spring (H'=4.282; E=0.914) and winter (H'=3.872;

E=0.811). The season wise species richness values are recorded in Table 5. Species richness showed maximum values during autumn (21.78), summer (21.58) followed by monsoon (20.09) (Table 5). Additionally, the rank abundance curve plotted to represent the distribution pattern of butterfly species, was least skewed during the monsoons, as supported by highest values of Shannon diversity and Evenness index during this season (Fig. 2). In contrast, winter was associated with a most highly skewed species abundance relationship as evident by lowest values of Shannon diversity and Evenness index (Fig. 2). However, rank abundance curve showed intermediate skewness in case of summer, autumn and spring. The curve representing the month-wise change in the number of species showed an increasing trend from March, through April, and reached its peak in June due to increased number of species with the approaching monsoon. This curve was almost steady throughout this season, and formed a second shorter peak during September–October followed by a decrease in the number during late autumn and winter gradually (Fig. 3).

A total of 143 species of plants belonging to 44 families were recorded as the larval host plants of the butterflies (Table 6). An overwhelming number of butterfly larvae fed on dicotyledons rather than on monocots. The only two groups associated with the monocotyledons were Satyrinae subfamily of Nymphalidae and Hesperiinae subfamily of Hesperiidae butterflies. Nymphalidae utilized 25 plant families and thereby exhibited highest host plant diversity (number of plant families used per butterfly family) in this study site (Table 6). Larvae of Satyrinae mostly preferred plants of Poaceae. Plants of Urticaceae supported a large population of *Acraea* sp.

Species rank

Figure 2. Rank-Abundance of butterflies in relation to seasonal variation. The y-axis shows the relative abundance of species (plotted using log₁₀ scale) while the x-axis ranks each species in order from most to least abundant.

Table 2. Seasonal signings of buttering species recorded in the surroundings of the upper range of webra valley wational ra	Table 2	. Seasonal sightings of b	outterfly species	recorded in the s	surroundings of the	upper range of	Neora Valley National Pa
---	---------	---------------------------	-------------------	-------------------	---------------------	----------------	--------------------------

					Seasonal sig	htings		
	Common name	Scientific name	l (pi)	II (pi)	III (pi)	IV (pi)	V (pi)	т
	Family: Nymphalidae Subfamily: Satyrinae							
1	Common TreeBrown	Lethe rohria (Fabricius)	3 (0.0068)	7 (0.0106)	18 (0.0072)	4 (0.0085)	0 (0.00)	32
2	Banded TreeBrown	Lethe confusa Aurivillius	3 (0.0068)	5 (0.0076)	21 (0.0085)	4 (0.0085)	1 (0.0085)	34
3	Common Red Forester	Lethe mekara (Moore)	0 (0.00)	0 (0.00)	12 (0.0048)	2 (0.0043)	0 (0.00)	14
4	Common Forester	Lethe insana (Kollar)	3 (0.0068)	7 (0.0106)	25 (0.010)	5 (0.0107)	0 (0.00)	40
5	Brown Forester	Lethe serbonis (Hewitson)	0 (0.00)	0 (0.00)	22 (0.0089)	2 (0.0043)	0 (0.00)	24
6	Blue Forester	Lethe scanda (Moore)	1 (0.0023)	0 (0.00)	12 (0.0048)	0 (0.00)	0 (0.00)	13
7	Bamboo Forester	Lethe kansa (Moore)	1 (0.0023)	4 (0.0061)	19 (0.0077)	3 (0.0064)	0 (0.00)	27
8	Pale Forester	Lethe latiaris Hewitson	0 (0.00)	3 (0.0046)	15 (0.0060)	1 (0.0021)	0 (0.00)	19
9	Rusty Forester	Lethe bhairava (Moore)	0 (0.00)	1 (0.0015)	14 (0.0056)	4 (0.0085)	1 (0.0085)	20
10	Straight banded TreeBrown	Lethe verma (Kollar)	0 (0.00)	6 (0.0091)	20 (0.0081)	6 (0.0128)	0 (0.00)	32
11	Yellow Woodbrown	Lethe nicetas (Hewitson)	0 (0.00)	7 (0.0106)	8 (0.0032)	0 (0.00)	0 (0.00)	15
12	Large Goldenfork	Lethe goalpara (Moore)	0 (0.00)	0 (0.00)	19 (0.0077)	1 (0.0021)	0 (0.00)	20
13	Liliacfork	Lethe sura (Doubleday)	0 (0.00)	1 (0.0015)	12 (0.0048)	2 (0.0043)	1 (0.0085)	16
14	Small Silverfork	Zophoessa jalaurida De Niceville	3 (0.0068)	3 (0.0046)	14 (0.0056)	3 (0.0064)	2 (0.0169)	25
15	Dusky Labyrinth	Neope yama (Moore)	0 (0.00)	6 (0.0091)	17 (0.0068)	0 (0.00)	0 (0.00)	23
16	Veined Labyrinth	Neope pulaha (Moore)	0 (0.00)	5 (0.0076)	31 (0.0125)	0 (0.00)	0 (0.00)	36
17	Lilacine Bushbrown	Mycalesis francisca (Stoll)	1 (0.0023)	5 (0.0076)	34 (0.0137)	3 (0.0064)	0 (0.00)	43
18	Chinese Bushbrown	Mycalesis gotama Moore	1 (0.0023)	2 (0.0030)	8 (0.0032)	1 (0.0021)	0 (0.00)	12
19	Wood Mason's Bushbrown	<i>Mycalesis suaveolens</i> Wood- Mason & de Nicéville	0 (0.00)	4 (0.0061)	7 (0.0028)	0 (0.00)	0 (0.00)	11
20	Common Satyr	Aulocera swaha (Kollar)	0 (0.00)	5 (0.0076)	20 (0.0081)	1 (0.0021)	0 (0.00)	26
21	Great Satyr	Aulocera padma (Kollar)	0 (0.00)	3 (0.0046)	20 (0.0081)	1 (0.0021)	0 (0.00)	24
22	Ringed Argus	Callerebia ananda (Moore)	0 (0.00)	2 (0.0030)	14 (0.0056)	1 (0.0021)	0 (0.00)	17
23	Pallid Argus	Callerebia scanda (Kollar)	0 (0.00)	0 (0.00)	22 (0.0089)	1 (0.0021)	0 (0.00)	23
24	Large Threering	Ypthima nareda (Kollar)	2 (0.0045)	5 (0.0076)	12 (0.0048)	2 (0.0043)	0 (0.00)	21
25	Himalayan Fivering	<i>Ypthima sakra</i> Moore	2 (0.0045)	6 (0.0091)	20 (0.0081)	7 (0.0149)	3 (0.0254)	38
	Subfamily: Heliconiinae							
26	Yellow Coster	Acraea issoria (Hübner)	3 (0.0068)	5 (0.0076)	22 (0.0089)	5 (0.0107)	1 (0.0085)	36
27	Large Silverstripe	Childrena childreni (Gray)	0 (0.00)	5 (0.0076)	21 (0.0085)	5 (0.0107)	0 (0.00)	31
28	Indian Fritillary	Argyreus hyperbius (Linnaeus)	2 (0.0045)	4 (0.0061)	19 (0.0077)	5 (0.0107)	2 (0.0169)	32
29	Queen of Spain Fritillary	Issoria lathonia (Linnaeus)	2 (0.0045)	5 (0.0076)	19 (0.0077)	6 (0.0128)	1 (0.0085)	33

	C	Colombilia norma	Seasonal sightings					
	Common name		I (pi)	II (pi)	III (pi)	IV (pi)	V (pi)	т
	Subfamily: Limenitinae							
30	Green Commodore	Sumalia daraxa (Doubleday)	0 (0.00)	4 (0.0061)	18 (0.0072)	2 (0.0043)	0 (0.00)	24
31	White Commodore	Parasarpa dudu (Doubleday)	0 (0.00)	7 (0.0106)	20 (0.0081)	4 (0.0085)	0 (0.00)	31
32	Bicolour Commodore	Parasarpa zayla (Doubleday)	0 (0.00)	0 (0.00)	19 (0.0077)	2 (0.0043)	0 (0.00)	21
33	Commodore	Auzakia danava (Moore)	0 (0.00)	6 (0.0091)	21 (0.0085)	1 (0.0021)	0 (0.00)	28
34	Common Sergeant	Athyma perius (Linnaeus)	2 (0.0045)	4 (0.0061)	21 (0.0085)	4 (0.0085)	3 (0.0254)	34
35	Himalayan Sergeant	Athyma opalina (Kollar)	2 (0.0045)	6 (0.0091)	20 (0.0081)	3 (0.0064)	0 (0.00)	31
36	Chestnut Streaked Sailer	Neptis jumbah Moore	0 (0.00)	0 (0.00)	20 (0.0081)	6 (0.0128)	0 (0.00)	26
37	Studded Sergeant	Athyma asura Moore	0 (0.00)	0 (0.00)	7 (0.0028)	0 (0.00)	0 (0.00)	7
38	Orange Staff Sergeant	Athyma cama Moore	1 (0.0023)	4 (0.0061)	19 (0.0077)	5 (0.0107)	1 (0.0085)	30
39	Yerbury's Sailer	Neptis yerburyi Butler	3 (0.0068)	5 (0.0076)	19 (0.0077)	3 (0.0064)	0 (0.00)	30
40	Common Sailer	Neptis hylas (Linnaeus)	0 (0.00)	0 (0.00)	14 (0.0056)	6 (0.0128)	0 (0.00)	20
41	Yellow Sailer	Neptis ananta Moore	2 (0.0045)	4 (0.0061)	18 (0.0072)	3 (0.0064)	2 (0.0169)	29
42	Common Baron	Euthalia aconthea (Cramer)	1 (0.0023)	3 (0.0046)	12 (0.0048)	3 (0.0064)	2 (0.0169)	21
43	Gaudy Baron	Euthalia lubentina (Cramer)	0 (0.00)	4 (0.0061)	16 (0.0064)	2 (0.0043)	0 (0.00)	22
44	Green Duke	Euthalia sahadeva (Moore)	0 (0.00)	0 (0.00)	10 (0.0040)	2 (0.0043)	0 (0.00)	12
45	Grey Count	Tanaecia lepidea (Butler)	1 (0.0023)	6 (0.0091)	19 (0.0077)	4 (0.0085)	3 (0.0254)	33
	Subfamily: Cyrestinae		((,		
46	Common Map	Cyrestis thyodamas Boisduval	2 (0.0045)	5 (0.0076)	19 (0.0077)	5 (0.0107)	2 (0.0169)	33
47	Tabby	Pseudergolis wedah (Kollar)	0 (0.00)	5 (0.0076)	17 (0.0068)	5 (0.0107)	2 (0.0169)	29
	Subfamily: Biblidinae							
48	Common Castor	Ariadne merione (Cramer)	2 (0.0045)	3 (0.0046)	15 (0.0060)	3 (0.0064)	2 (0.0169)	25
49	Angled Castor	Ariadne ariadne (Linnaeus)	3 (0.0068)	2 (0.0030)	16 (0.0064)	2 (0.0043)	1 (0.0085)	24
	Subfamily: Apaturinae							
50	Indian Purple Emperor	Apatura ambica Kollar	2 (0.0045)	5 (0.0076)	15 (0.0060)	2 (0.0043)	1 (0.0085)	25
51	Sordid Emperor	Apatura sordida Moore	0 (0.00)	5 (0.0076)	19 (0.0077)	5 (0.0107)	0 (0.00)	29
52	Golden Emperor	Dilipa morgiana (Westwood)	1 (0.0023)	2 (0.0030)	9 (0.0036)	0 (0.00)	0 (0.00)	12
53	Circe	Hestina nama (Doubleday)	4 (0.0091)	6 (0.0091)	28 (0.0113)	8 (0.0170)	2 (0.0169)	48
	Subfamily: Nymphalinae							
54	Mongol	Araschnia prorsoides (Blanchard)	0 (0.00)	0 (0.00)	11 (0.0044)	2 (0.0043)	0 (0.00)	13
55	Blue Tailed Jester	Symbrenthia niphanda Moore	1 (0.0023)	2 (0.0030)	9 (0.0036)	1 (0.0021)	0 (0.00)	13
56	Himalayan Jester	Symbrenthia hypselis (Godart)	1 (0.0023)	5 (0.0076)	13 (0.0052)	2 (0.0043)	1 (0.0085)	22
57	Common Jester	Symbrenthia hippoclus (Cramer)	2 (0.0045)	4 (0.0061)	15 (0.0060)	3 (0.0064)	2 (0.0169)	26
58	Indian Red Admiral	Vanessa indica (Herbst)	4 (0.0091)	8 (0.0122)	24 (0.0097)	7 (0.0149)	2 (0.0169)	45

			Seasonal sightings					
	Common name	Scientific name	I (pi)	II (pi)	III (pi)	IV (pi)	V (pi)	т
59	Painted Lady	Vanessa cardui (Linnaeus)	3 (0.0068)	5 (0.0076)	20 (0.0081)	7 (0.0149)	2 (0.0169)	37
60	Indian Tortoise Shell	Aglais cashmiriensis (Kollar)	14 (0.0319)	3 (0.0046)	33 (0.0133)	8 (0.0170)	1 (0.0085)	59
61	Blue Admiral	Kaniska canace (Linnaeus)	1 (0.0023)	3 (0.0046)	14 (0.0056)	3 (0.0064)	1 (0.0085)	22
62	Danaid Eggfly	Hypolimnas misippus (Linnaeus)	2 (0.0045)	3 (0.0046)	15 (0.0060)	4 (0.0085)	2 (0.0169)	26
63	Orange Oakleaf	Kallima inachus (Boisduval)	0 (0.00)	4 (0.0061)	13 (0.0052)	3 (0.0064)	2 (0.0169)	22
64	Scare Blue Oakleaf	Kallima alompra Moore	0 (0.00)	0 (0.00)	14 (0.0056)	5 (0.0107)	0 (0.00)	19
	Subfamily: Libytheinae							
65	Common Beak	Libythea lepita Moore	3 (0.0068)	4 (0.0061)	16 (0.0064)	0 (0.00)	0 (0.00)	23
66	Club Beak	Libythea myrrha Godart	2 (0.0045)	5 (0.0076)	18 (0.0072)	2 (0.0043)	0 (0.00)	27
67	White Spotted Beak	Libythea narina rohini Marshall	0 (0.00)	4 (0.0061)	13 (0.0052)	0 (0.00)	0 (0.00)	17
	Subfamily: Danainae							
68	Double-banded Crow	Euploea sylvester (Fabricius)	11 (0.0250)	12 (0.0183)	0 (0.00)	0 (0.00)	0 (0.00)	23
69	Striped blue Crow	Euploea mulciber (Cramer)	5 (0.0114)	8 (0.0122)	26 (0.0105)	8 (0.0170)	2 (0.0169)	49
70	Common Crow	Euploea core (Cramer)	7 (0.0159)	8 (0.0122)	30 (0.0121)	8 (0.0170)	3 (0.0254)	56
	Family: Lycaenidae Subfamily: Curetinae							
71	Bright Sunbeam	Curetis bulis (Westwood)	6 (0.0137)	0 (0.00)	22 (0.0089)	4 (0.0085)	0 (0.00)	32
	Subfamily: Theclinae							
72	Powdered Green Hairstreak	<i>Neozephyrus zoa</i> (de Nicéville)	0 (0.00)	0 (0.00)	10 (0.0040)	0 (0.00)	0 (0.00)	10
73	Metallic Green Hairstreak	Neozephyrus duma (Hewitson)	0 (0.00)	4 (0.0061)	12 (0.0048)	0 (0.00)	0 (0.00)	16
74	Indian Oakblue	Arhopala atrax (Hewitson)	4 (0.0091)	5 (0.0076)	20 (0.0081)	0 (0.00)	7 (0.0593)	36
75	Powdered Oakblue	Arhopala bazalus (Hewitson)	0 (0.00)	10 (0.0152)	5 (0.0020)	13 (0.0277)	0 (0.00)	28
76	Silverstreak Blue	Iraota timoleon (Stoll)	5 (0.0114)	7 (0.0106)	19 (0.0077)	0 (0.00)	0 (0.00)	31
77	Truncate Imperial	<i>Cheritrella truncipennis</i> de Nicéville	0 (0.00)	3 (0.0046)	4 (0.0016)	8 (0.0170)	0 (0.00)	15
78	Double Tufted Royal	Dacalana vidura (Horsfield)	1 (0.0023)	1 (0.0015)	10 (0.0040)	0 (0.00)	0 (0.00)	12
79	Tufted White Royal	Pratapa deva (Moore)	2 (0.0045)	0 (0.00)	5 (0.0020)	2 (0.0043)	0 (0.00)	9
80	Plains Blue Royal	Tajuria jehana Moore	1 (0.0023)	1 (0.0015)	7 (0.0028)	1 (0.0021)	0 (0.00)	10
81	Banded Royal	Rachana jalindra Horsfield	2 (0.0045)	6 (0.0091)	15 (0.0060)	2 (0.0043)	0 (0.00)	25
82	Bi-Spot Royal	Ancema ctesia (Hewitson)	0 (0.00)	2 (0.0030)	18 (0.0072)	1 (0.0021)	0 (0.00)	21
83	Common Guava Blue	Deudorix isocrates (Fabricius)	1 (0.0023)	3 (0.0046)	11 (0.0044)	2 (0.0043)	0 (0.00)	17
84	Cornelian	Deudorix epijarbas (Moore)	3 (0.0068)	2 (0.0030)	19 (0.0077)	5 (0.0107)	3 (0.0254)	32
85	Slate Flash	Rapala manea (Hewitson)	3 (0.0068)	3 (0.0046)	18 (0.0072)	3 (0.0064)	2 (0.0169)	29
86	Long-Banded Silverline	Spindasis lohita (Horsfield)	1 (0.0023)	2 (0.0030)	19 (0.0077)	1 (0.0021)	0 (0.00)	23
87	Silver-Grey Silverline	Spindasis nipalicus (Moore)	0 (0.00)	3 (0.0046)	17 (0.0068)	1 (0.0021)	0 (0.00)	21

			Seasonal sightings					
	Common name	Scientific name	l (pi)	II (pi)	III (pi)	IV (pi)	V (pi)	т
	Subfamily: Lycaeninae							
88	Common Copper	Lycaena phlaeas (Linnaeus)	4 (0.0091)	6 (0.0091)	21 (0.0085)	2 (0.0043)	0 (0.00)	33
89	Golden Sapphire	Heliophorus brahma Moore	5 (0.0114)	14 (0.0213)	10 (0.0040)	6 (0.0128)	0 (0.00)	35
90	Purple Sapphire	Heliophorus epicles Godart	4 (0.0091)	6 (0.0091)	23 (0.0093)	7 (0.0149)	0 (0.00)	40
91	Powdery Green Sapphire	Heliophorus tamu (Kollar)	0 (0.00)	2 (0.0030)	11 (0.0044)	1 (0.0021)	0 (0.00)	14
	Subfamily: Polyommatinae							
92	Zebra Blue	Leptotes plinius Fabricius	2 (0.0045)	4 (0.0061)	15 (0.0060)	2 (0.0043)	1 (0.0085)	24
93	Large 4-lineblue	<i>Nacaduba pactolus</i> (C. & R. Felder)	0 (0.00)	0 (0.00)	18 (0.0072)	2 (0.0043)	0 (0.00)	20
94	Transparent 6-lineblue	Nacaduba kurava (Moore)	0 (0.00)	1 (0.0015)	18 (0.0072)	1 (0.0021)	0 (0.00)	20
95	Common lineblue	Prosotas nora (C. Felder)	4 (0.0091)	5 (0.0076)	19 (0.0077)	4 (0.0085)	1 (0.0085)	33
96	Forget me not	Catochrysops strabo (Fabricius)	7 (0.0159)	0 (0.00)	15 (0.0060)	2 (0.0043)	0 (0.00)	24
97	Dark Cerulean	Jamides bochus (Stoll)	4 (0.0091)	6 (0.0091)	30 (0.0121)	8 (0.0170)	2 (0.0169)	50
98	Pea blue	Lampides boeticus (Linnaeus)	14 (0.0319)	6 (0.0091)	3 (0.0012)	2 (0.0043)	3 (0.0254)	28
99	Dark Grass Blue	Zizeeria karsandra (Moore)	15 (0.0342)	5 (0.0076)	7 (0.0028)	2 (0.0043)	3 (0.0254)	32
100	Pale Grass Blue	Pseudozizeeria maha (Kollar)	18 (0.0410)	10 (0.0152)	14 (0.0056)	8 (0.0170)	6 (0.0508)	56
101	Lesser Grass Blue	Zizina otis (Fabricius)	8 (0.0182)	7 (0.0106)	10 (0.0040)	3 (0.0064)	3 (0.0254)	31
102	Grass jewel	Freyeria trochylus Freyer	6 (0.0137)	3 (0.0046)	7 (0.0028)	1 (0.0021)	1 (0.0085)	18
103	Tiny Grass Blue	Zizula hylax (Fabricius)	7 (0.0159)	1 (0.0015)	14 (0.0056)	1 (0.0021)	0 (0.00)	23
104	African Babul Blue	<i>Azanus jesous</i> (Guerin- Ménéville)	5 (0.0114)	2 (0.0030)	15 (0.0060)	1 (0.0021)	1 (0.0085)	24
105	Bright Babul Blue	Azanus ubaldus (Stoll)	5 (0.0114)	3 (0.0046)	13 (0.0052)	2 (0.0043)	2 (0.0169)	25
106	Indian Cupid	Everes lacturnus (Godart)	1 (0.0023)	6 (0.0091)	7 (0.0028)	1 (0.0021)	0 (0.00)	15
107	Gram Blue	Euchrysops cnejus (Fabricius)	0 (0.00)	2 (0.0030)	15 (0.0060)	4 (0.0085)	0 (0.00)	21
108	Lime Blue	Chilades lajus (Stoll)	2 (0.0045)	4 (0.0061)	15 (0.0060)	5 (0.0107)	1 (0.0085)	27
	Subfamily: Riodininae							
109	Dark Judy	Abisara fylla (Westwood)	2 (0.0045)	4 (0.0061)	16 (0.0064)	3 (0.0064)	0 (0.00)	25
110	Orange Punch	Dodona egeon (Westwood)	1 (0.0023)	6 (0.0091)	15 (0.0060)	5 (0.0107)	2 (0.0169)	29
111	Striped Punch	Dodona adonira Hewitson	0 (0.00)	3 (0.0046)	16 (0.0064)	3 (0.0064)	0 (0.00)	22
112	Lesser Punch	Dodona dipoea Hewitson	14 (0.0319)	8 (0.0122)	5 (0.0020)	3 (0.0064)	3 (0.0254)	33
113	Tailed Punch	Dodona eugenes Bates	3 (0.0068)	6 (0.0091)	18 (0.0072)	1 (0.0021)	1 (0.0085)	29
114	Mixed Punch	Dodona ouida Hewitson	0 (0.00)	6 (0.0091)	17 (0.0068)	5 (0.0107)	1 (0.0085)	29
115	Punchinello	Zemeros flegyas (Cramer)	2 (0.0045)	6 (0.0091)	17 (0.0068)	3 (0.0064)	1 (0.0085)	29
	Family: Pieridae Subfamily: Coliadinae							
116	Small Grass Yellow	Eurema brigitta (Cramer)	10 (0.0228)	4 (0.0061)	8 (0.0032)	3 (0.0064)	0 (0.00)	25

C		Scientific name	Seasonal sightings						
	Common name	Scientific name	l (pi)	II (pi)	III (pi)	IV (pi)	V (pi)	т	
117	Common GrassYellow	Eurema hecabe (Linnaeus)	16 (0.0364)	7 (0.0106)	20 (0.0081)	6 (0.0128)	0 (0.00)	49	
118	Common Brimstone	Gonepteryx rhamni (Linnaeus)	2 (0.0045)	6 (0.0091)	18 (0.0072)	2 (0.0043)	0 (0.00)	28	
119	Plain Sulphur	Dercas lycorias (Doubleday)	0 (0.00)	0 (0.00)	16 (0.0064)	3 (0.0064)	0 (0.00)	19	
120	Mottled Emigrant	Catopsilia pyranthe(Linnaeus)	3 (0.0068)	2 (0.0030)	13 (0.0052)	2 (0.0043)	0 (0.00)	20	
121	Common Emigrant	Catopsilia pomona (Fabricius)	12 (0.0273)	6 (0.0091)	32 (0.0129)	4 (0.0085)	2 (0.0169)	56	
122	Pale Clouded Yellow	Colias erate (Esper)	17 (0.0387)	10 (0.0152)	8 (0.0032)	3 (0.0064)	2 (0.0169)	40	
123	Dark Clouded Yellow	Colias fieldii Ménétriés	15 (0.0342)	11 (0.0167)	9 (0.0036)	3 (0.0064)	2 (0.0169)	40	
	Subfamily: Pierinae								
124	Plain Puffin	Appias indra (Moore)	2 (0.0045)	8 (0.0122)	0 (0.00)	0 (0.00)	2 (0.0169)	12	
125	Large Cabbage White	Pieris brassicae (Linnaeus)	12 (0.0273)	2 (0.0030)	26 (0.0105)	2 (0.0043)	0 (0.00)	42	
126	Indian Cabbage White	Pieris canidia (Sparrman)	13 (0.0296)	3 (0.0046)	23 (0.0093)	3 (0.0064)	0 (0.00)	42	
127	Red-Base Jezebel	Delias pasithoe (Linnaeus)	11 (0.0250)	0 (0.00)	12 (0.0048)	0 (0.00)	8 (0.0678)	31	
128	Great Blackvein	Aporia agathon (Gray)	1 (0.0023)	3 (0.0046)	8 (0.0032)	0 (0.00)	0 (0.00)	12	
129	Hill Jezebel	Delias belladonna (Fabricius)	0 (0.00)	2 (0.0030)	6 (0.0024)	3 (0.0064)	0 (0.00)	11	
130	Pale Jezebel	Delias sanaca (Moore)	2 (0.0045)	4 (0.0061)	8 (0.0032)	0 (0.00)	0 (0.00)	14	
	Family: Hesperiidae Subfamily: Coeliadinae								
131	Common Banded Awl	Hasora chromus (Cramer)	0 (0.00)	6 (0.0091)	18 (0.0072)	5 (0.0107)	0 (0.00)	29	
132	Brown Awl	Badamia exclamationis (Fabricius)	0 (0.00)	1 (0.0015)	12 (0.0048)	9 (0.0192)	0 (0.00)	22	
133	Indian Awkling	Choaspes benjaminii (Guerin- Meneville)	1 (0.0023)	4 (0.0061)	13 (0.0052)	2 (0.0043)	0 (0.00)	20	
	Subfamily: Pyrginae								
134	Common Spotted Flat	Celaenorrhinus leucocera (Kollar)	1 (0.0023)	7 (0.0106)	19 (0.0077)	2 (0.0043)	0 (0.00)	29	
135	Common Small Flat	Sarangesa dasahara Moore	4 (0.0091)	6 (0.0091)	18 (0.0072)	2 (0.0043)	1 (0.0085)	31	
136	Water Snow Flat	Tagiades litigiosa Möschler	2 (0.0045)	2 (0.0030)	9 (0.0036)	1 (0.0021)	0 (0.00)	14	
137	Chestnut Angle	Odontoptilum angulata (C. & R. Felder)	2 (0.0045)	5 (0.0076)	13 (0.0052)	6 (0.0128)	0 (0.00)	26	
	Subfamily: Hesperiinae								
138	Straight Swift	Parnara guttatus (Bremer & Grey)	1 (0.0023)	9 (0.0137)	18 (0.0072)	1 (0.0021)	0 (0.00)	29	
139	Bevan's Swift	Pseudoborbo bevani (Moore)	1 (0.0023)	4 (0.0061)	20 (0.0081)	4 (0.0085)	0 (0.00)	29	
140	Yellow Spot Swift	Polytremis eltola (Hewitson)	1 (0.0023)	4 (0.0061)	18 (0.0072)	2 (0.0043)	0 (0.00)	25	
141	Small Branded Swift	Pelopidas mathias (Fabricius)	2 (0.0045)	4 (0.0061)	17 (0.0068)	3 (0.0064)	0 (0.00)	26	
142	Blank Swift	Caltoris kumara (Moore)	1 (0.0023)	3 (0.0046)	20 (0.0081)	5 (0.0107)	1 (0.0085)	30	
143	Dark Palm Dart	Telicota ancilla (Herrich- Schäffer)	3 (0.0068)	3 (0.0046)	19 (0.0077)	7 (0.0149)	0 (0.00)	32	
144	Restricted Demon	Notocrypta curvifascia (C. & R. Felder)	3 (0.0068)	3 (0.0046)	17 (0.0068)	4 (0.0085)	0 (0.00)	27	
145	Spotted Demon	Notocrypta feisthameli (Boisduval)	2 (0.0045)	3 (0.0046)	14 (0.0056)	2 (0.0043)	0 (0.00)	21	

				Seasonal sightings						
	Common name	Scientific name	l (pi)	II (pi)	III (pi)	IV (pi)	V (pi)	т		
146	Veined Scrub Hopper	Aeromachus stigmatus (Moore)	6 (0.0137)	5 (0.0076)	20 (0.0081)	2 (0.0043)	0 (0.00)	33		
147	Indian Ace	Halpe homolea (Hewitson)	0 (0.00)	10 (0.0152)	6 (0.0024)	6 (0.0128)	0 (0.00)	22		
148	Moore's Ace	Halpe porus (Mabille)	0 (0.00)	2 (0.0030)	13 (0.0052)	5 (0.0107)	0 (0.00)	20		
	Family: Papilionidae Subfamily: Zerynthinae									
149	Bhutan Glory	Bhutanitis lidderdalei Atkinson	0 (0.00)	1 (0.0015)	8 (0.0032)	1 (0.0021)	0 (0.00)	10		
	Subfamily: Papilioninae									
150	Kaiser-I-Hind	Teinopalpus imperialis Hope	0 (0.00)	3 (0.0046)	7 (0.0028)	0 (0.00)	0 (0.00)	10		
151	Common Bluebottle	Graphium sarpedon (Linnaeus)	3 (0.0068)	6 (0.0091)	16 (0.0064)	4 (0.0085)	0 (0.00)	29		
152	Sixbar Swordtail	Graphium eurous (Leech)	2 (0.0045)	5 (0.0076)	1 (0.0004)	0 (0.00)	2 (0.0169)	10		
153	Yellow Gorgon	Meandrusa payeni (Boisduval)	0 (0.00)	0 (0.00)	10 (0.0040)	0 (0.00)	3 (0.0254)	13		
154	Tawny Mime	Chilasa agestor (Gray)	2 (0.0045)	6 (0.0091)	3 (0.0012)	0 (0.00)	0 (0.00)	11		
155	Blue Striped Mime	Chilasa slateri (Hewitson)	4 (0.0091)	4 (0.0061)	0 (0.00)	0 (0.00)	0 (0.00)	8		
156	Red Helen	Papilio helenus Linnaeus	4 (0.0091)	8 (0.0122)	28 (0.0113)	8 (0.0170)	0 (0.00)	48		
157	Common Peacock	Papilio polyctor Boisduval	2 (0.0045)	6 (0.0091)	19 (0.0077)	2 (0.0043)	0 (0.00)	29		
158	Blue Peacock	Papilio acturus Westwood	3 (0.0068)	5 (0.0076)	15 (0.0060)	0 (0.00)	0 (0.00)	23		
159	Krishna Peacock	Papilio krishna Moore	0 (0.00)	5 (0.0076)	4 (0.0016)	0 (0.00)	0 (0.00)	9		
160	Common Windmill	Atrophaneura polyeuctes (Doubleday)	1 (0.0023)	3 (0.0046)	17 (0.0068)	2 (0.0043)	0 (0.00)	23		
161	Great Windmill	Atrophaneura dasarada (Moore)	1 (0.0023)	2 (0.0030)	14 (0.0056)	1 (0.0021)	0 (0.00)	18		

I - Spring; II - Summer; III - Monsoon; IV - Autumn; V - Winter; T - Total; pi - relative abundance of species

Table 3. Meteorological data of the study site during study period

Manatha Vaan	Temperat	ure (in⁰C)*	Painfall (in mm) *	
wonths year	Min.	Max.	Kaintali (in mm) *	
January 2012	1	15	5.1	
February 2012	1	18	10.9	
March 2012	2	20	20.0	
April 2012	3	20	95.2	
May 2012	6	21	239.0	
June 2011	8	22	620	
July 2011	10	20	1070	
August 2011	9	22	644.6	
September 2011	7	23	589.0	
October 2011	4	22	30.0	
November 2011	1	20	16.4	
December 2011	-3	18	4.2	

*Source: Indian Meteorological Department, Govt. of India

(Heliconiinae subfamily), Araschnia sp, Symbrenthia sp., Vanessa sp. and Aglais sp. (Nymphalinae subfamily), while Euploea larvae predominantly depended on Moraceae plants. Lycaenidae showed the second highest host plant diversity and utilized 20 plant families as their larval resource (Table 6). Fabaceae, Ericaceae, Myricaceae and Loranthaceae were the major food plants of larval lycaenids. A total of six families encompassing 20 species were recorded as the host plants of Pieridae butterflies. While Coliadinae fed predominantly on plants of Fabales, Pierinae butterflies chose Brassicales and mistletoes as their larval resource (Table 6). 28 species of plants belonging to 13 families served as food plants for larvae of Hesperiinae, Pyrignae and Coeliadinae. Although Hesperiinae larvae fed on Poaceae and Pyrignae utilized Acanthaceae, Coeliadinae butterflies used plants of families Combretaceae, Moraceae, Euphorbiaceae, Sabiaceae (Table 6). Four plant families were used by the Papilionidae butterflies

Month/Year	Number of foggy/Cloudy /rainy days	Number of sampling days (Dates devoted to sampling at each study site per month)	Remarks
January 2012	13 (foggy)	16 (1-3 at NVNP-1, 4 at NVNP-1); (6-9 at NVNP-2); (12-15 at NVNP-3) and (20-23 at NVNP-4)	
February 2012	7 (foggy)	16 (1-4 at NVNP-1); (5 at NVNP-2, 8-10 at NVNP-2); (12-14 at NVNP-3, 15 at NVNP-3); 20-23 at NVNP-4)	
March 2012	1 (cloudy)	16 (1-4 at NVNP-1); (8-11 at NVNP-2); (15-17 at NVNP-3, 19 at NVNP-3);(20-22 at NVNP-4, 25 at NVNP-4)	
April 2012	1 (cloudy)	16 (1-3 at NVNP-1, 5 at NVNP-1); (6-8 at NVNP-2, 10 at NVNP-2); (12-15 at NVNP-3); (20 at NVNP-4, 25-27 at NVNP-4)	Two transects were sampled per day at each study site with the help of two trained field assistants and different dates were
May 2012	3 (cloudy)	16 (3-6 at NVNP-1); (8 at NVNP-2, 10-12 at NVNP-2); (15-17 at NVNP-3, 20 at NVNP-3); 23- 26 at NVNP-4)	
June 2011	4 (rainy)	16 (2-5 at NVNP-1); (8-10 at NVNP-2, 14 at NVNP-2); (16-19 at NVNP-3); (25-28 at NVNP-4)	
July 2011	14 (rainy)	16 (1,2, 4,5 at NVNP-1); (6-8 and 14 at NVNP-2); (18-20 and 22 at NVNP-3); (24-26 and 29 at NVNP-4)	
August 2011	5 (rainy)	16 (3-6 at NVNP-1);(12-14 and 16 at NVNP-2); (20-23 at NVNP-3); (26-28 and 31 at NVNP-4)	dedicated to study
September 2011	3 (cloudy)	16 (2-4 and 7 at NVNP-1); (10-13 at NVNP-2); (15-17 and 20 at NVNP-3); (26-28 and 30 at NVNP-4)	
October 2011	0	16 (3-5 and 8 at NVNP-1); (11-14 at NVNP-2); (18-21 at NVNP-3); (25-28 at NVNP-4)	
November 2011	3 (foggy)	16(1-4 at NVNP-1); (7-9 and 11 at NVNP-2); (15-18 at NVNP-3); (22-25 at NVNP-4)	
December 2011	7 (foggy)	16 (2,3,8,9 at NVNP-1); (14-16 and 18 at NVNP-2); (21-23 and 25 at NVNP-3); (28-31 at NVNP-4)	

Table 4. Detail schedule of Sampling Design

Table 5. Seasonal variation in species abundance, diversity index, evenness index and richness index of studied butterfly species

Season	Number of Species	Number of individuals	Shannon Diversity index	Evenness index	Margalef's Species Richness index
Spring	108	439	4.282	0.914	17.59
Summer	141	657	4.819	0.974	21.58
Monsoon	158	2480	4.968	0.981	20.09
Autumn	135	469	4.714	0.961	21.78
Winter	57	118	3.872	0.811	11.74

as their larval resources. Lauraceae and Rutaceae were their predominant larval food plants (Table 6).

DISCUSSION

Among the butterflies of the Himalayan region, 80% are recorded as forest species of which 60% occur below 3000m elevation (Uniyal & Mathur 1998). The

Table 6. List of larval host plants of butterfly species

Larval host plant of butterfly species	Habit	Butterfly species
Family: Poaceae Arundinaria aristata Gamble	Shrub	4,7,9,10,17, 13,12,15,148
Arundinaria maling Gamble	Shrub	8,5,6,4,3,11,19,13,14 ,16,112,113,147,148
Cymbopogon nardus (L.) Rendle	Herb	141,22,24
Imperata cylindrica (L.) Rauschel	Herb	1,143,139,141
Paspalum scrobiculatum (L.)	Herb	139
Isachne albens Trin.	Herb	18
(*ri) Saccharum arundinaceum Retz.	Herb	138,143
(*ro) Saccharum narenga Hack.	Herb	138,140,139
(*ri) Saccharum spontaneum L.	Herb	143,139,140
Setaria palmifolia (K.D. Koenig) Stapf	Herb	18
Setaria glauca L.	Herb	18
<i>Poa annua</i> Linn.	Herb	142,146,2,20,21
Eleusine indica (L.) Gaertn.	Herb	22
Cynodon dactylon (L.) Pers.	Herb	23
Digiteria ciliaris (Retz.)Koeler	Herb	23,25
Family: Amaranthaceae (*ro) Amaranthus spinosus L.	Herb	99
Family: Euphorbiaceae (*ri) Antidesma acidum Retz.	Tree	85
Drypetes assamica Pax & K. Hoffm.	Tree	124
Ricinus communis L.	Shrub	131,48,49
Glochidion acuminatum Muell.	Tree	34
Glochidion nubigenum Hk. f.	Tree	38
Family: Myrsinaceae (*ri) Ardisia solanacea Roxb.	Shrub	94
Maesa chisia Don.	Shrub	110,114,109,111,115
(*v) Maesa indica Wall.	Shrub	115
Family: Acanthaceae	Under	62 124 125
(*ro) Eranthemum pulchellum	sinub	02,134,135
Andrews	Shrub	134,64
Strobilanthes capitatus T. And.	Under shrub	63,64,100,103,134
(*e) Strobilanthes roseus Ness	Under Shrub	134,100,103
Strobilanthes thomsoni T. And.	Under shrub	64,103,100
Family: Berberidaceae Berberis aristata DC.	Shrub	35
Berberis nepaulensis DC.	Tree	35,128
Mahonia napaulensis DC.	Shrub	35
Family: Bombaceae	-	26.427
(*ri-i) Bombax ceiba L. Family: Fabaceae	Iree	36,137
(*w-I) Abrus precatorius L.	Climber	71
Bauhinia variegata Linn.	Tree	121
(*ro) Bauhinia vahlii Wright & Arn.	Lianas	121
Bauhinia wallichii J.F. Macbride	Lianas	121
(*v) Butea minor Buch Ham. Ex Baker	Shrub	98,107
(*ro) Cassia alata L.	Shrub	116,120,121

Sengupta et al.	

Larval host plant of butterfly species	Habit	Butterfly species
(*ro) Cassia sophera Linn.	Herb	116,120,121
(*w) Cassia tora Linn.	Herb	116,120,121,117
Crotalaria albida Heyne.	Herb	97,98
(*w) Crotalaria mucronata Desv.	Herb	98,97
Crotalaria ferrugineum Benth.	Herb	98,97
(*ri) Dalberaia sissoo Roxb.	Tree	36.40.119
Dalbergia stipulaceae Roxb.	Lianas	40,119,36
Trifolium repens L.	Herb	122,123,106,96
Indigofera sp L.	Shrub	102,106,92,123
(*w-I) Desmodium triflorum (L.) DC.	Herb	106,96
Lathyrus sativus L.	Herb	101
(*ri) Entada rheedii Spreng.	Lianas	93
	-	116,107,105,104,85,
(*e)Acacia gageana Craib	Iree	117
(*e)Acacia pennata (L.) Willd.	Tree	107,116,95,104,105, 117
Family: Lauraceae Cinnamomum bejolghota	Tree	77,154
Cinnamomum tamala Nees & Eberm	Tree	77 154
Litsea citrata Blume	Тгее	155
Litsea elongata Wall	Тгее	155
(*v) Litsea monopetala (Roxb.)	-	155
Persoon	Tree	153
(*v) Litsea polyantha Juss.	Tree	153
Persea odoratissima (Nees) Kosterm	Tree	152,154,151
Family: Verbenaceae (*c) Clerodendrum indicum (L.) Kuntze	Shrub	87
Family: Combretaceae (*ri) Combretum decandrum Roxb.	Lianas	132
(*p)Terminalia alata Heyne ex Roth.	Tree	75
(*e)Terminalia belerica Roxb.	Tree	132
Family: Dioscoreaceae	Usek	126 61 96
Family: Elaeocarpaceae	Herb	130,01,80
Elæocarpus lanceæfolius Roxb.	Tree	36,40
Family: Sapindaceae Aesculus sp L.	Tree	84
(*e) Sapindus sp L.	Tree	84
Family: Moraceae <i>Ficus cunia</i> Ham.	Tree	132,76,69
Ficus semicordata BuchHam. Ex Smith	Tree	68,69,46
(*ri)Ficus virens L.	Tree	76,68,70,132
(*ri)Ficus drupacea Thunberg	Climber	46,69,70
(*e) Streblus asper Lour.	Tree	42,43
Family: Tiliaceae Grewia eriocarpa Drumm.	Tree	65
(*e) Grewia sapida Roxb.	Tree	65,40
Family: Apocyanaceae Holarrhena pubescens	Tree	70
(Buch Ham)Wall. Ex DC.		
(*e) Ichnocarpus frutescens Br.	Climber	68,69,70

Larval host plant of butterfly species	Habit	Butterfly species
Family: Asclepiadaceae Hoya parasitica Wall.	Epiphyte	68
Hoya longifolia Wall.	Epiphyte	68
Family:Melastomataceae Melastoma malabathricum L.	Shrub	45
Family: Sabiaceae <i>Sabia campanulata</i> Wall.	Shrub	133
Family: Oxalidaceae	Herh	100 102
Family: Arecaceae (*ri) Calamus erectus Roxb.	Climber	143
Family: Polygonaceae Polygonum orientale L.	Herb	90
Polygonum nepalense Meisn.	Herb	88,89,90,91
Rumex nepalensis Sprengel	Shrub	88,89,90,91
Family: Salicaceae Populus glauca Haines	Tree	30
Populus gamblei Dode.	Tree	30
(*ri) Salix tetrasperma Roxb.	Tree	30
Salix salwinensis Hand Mazz.	Tree	30
Family: Portulaceae Portulaca oleracea L.	Herb	62
Family: Urticaceae Pouzolzia hirta (Blume ex Hassk)	Herb	26
Pouzolzia zeylanica (L.) Benn	Herb	26
Urtica dioica L.	Shrub	58,55,60,54
Urtica parviflora Roxb.	Shrub	60,54
Boehmeria glomerulifera Miq.	Shrub	58
Boehmeria diffusa Wedd.	Herb	58,59
Boehmeria penduliflora Weddell ex D.G. Long	Shrub	58
<i>Debregeasia longifolia</i> (Burm.f.) Wedd.	Shrub	47,56,57
Elatostema hookerianum Weddell	Herb	56
<i>Elatostema sessile</i> J.R.Forst.& G. Forst.	Herb	56
Girardinia heterophylla Decne.	Shrub	55,59
Family: Malvaceae Urena lobata Linn.	Herb	137
Family: Asteraceae Artemisia vulgaris Linn.	Herb	59
Gnaphalium affine D.Don	Herb	59
Family: Fagaceae Quercus glauca Thunb.	Tree	44
Quercus lamellosa Smith	Tree	74
Family: Smilaceae Smilax ferox Wallich ex Kunth	Climber	61,136
<i>Smilax zeylanica</i> Linn.	Climber	136,61
Family: Rubiaceae Catunaregam sp Wall.	Shrub	83

Larval host plant of butterfly species	Habit	Butterfly species
Randia sikkimensis Hk.f.	Tree	37
Family: Brassicaceae Rorippa indica (L.) Hiern	Herb	126
(*c)Brassica juncea (L.) Czern.	Herb	125,126
Family: Violaceae Viola diffusa Ging.	Herb	27,28,29
Viola serpens Wall.	Herb	27,28
Family: Anacardiaceae Rhus succedanea Linn.	Tree	42
Family: Ericaceae Rhododendron arboreum Smith	Tree	72,73
Rhododendron decipiens Lacaita	Tree	73,72
Rhododendron falconeri Hook.f.	Tree	73
Rhododendron grande Wright	Tree	72
Rhododendron hodgsoni Hook.f.	Tree	73,72
Family: Caprifoliaceae Lonicera macrantha DC.	Climber	31
Lonicera glabrata Wallich.	Climber	32,33
Family: Zingiberaceae (*e) Curcuma aromatica Salisb.	Herb	144,145
Kaempferia rotunda Linn.	Herb	144
Hedychium acuminatum Roscoe	Herb	145
Costus speciosus (J. Konig) Sm.	Herb	144
Family:Vacciniaceae Vaccinium retusum (Griffith) Hook. f. ex C.B. Clarke	Shrub	118
Vaccinium serratum Wright	Epiphyte	118
Family: Loranthaceae Viscum sp Linn.	Shrub	82
Scurrula elata (Edgew.) Danser	Shrub	79,43,129,130
Dendrophthoe falcate Mart.	Shrub	78,79,80,81,87,127, 129,130
Family:Ulmaceae Ulmus sp L.	Tree	50,52
Celtis sp L.	Tree	39,41,51,53
(*ro)Celtis cinnamomea Laidl.	Tree	67,66
Celtis tetrandra Roxb	Tree	67
Family: Dipterocarpaceae (*p) Shorea robusta Gærtn	Tree	74
Family: Aristolochiaceae Aristolochia griffithii Hook. F. & Thoms. Ex Duchartre	Climber	160,161,149
Family: Rutaceae Zanthoxylum acanthopodium DC.	Shrub	159,156,158,108
Zanthoxylum armatum DC.	Climber	157,158
Evodia fraxinifolia Hk. f.	Tree	159,156
Family: Magnoliaceae Magnolia campbellii Hook. f. & Thoms.	Tree	150
Michelia doltsopa Buch Ham. ex DC.	Tree	152

Names of the butterflies are expressed as codes on the basis of their serial numbers as mentioned in Table 2, where:

*ri - species indentified from the riverine habitat adjoining regions of transect; *ro - species indentified from roadsides adjoining transect; *e - species identified form the forest edges adjoining transect; *c - species cultivated in regions adjoining transect; *p - species planted in regions adjoining transect; *w - species identified from the deep valleys or gorges adjoining transect; *ri-I - species indentified from the riverine habitat (status-introduced) adjoining regions of transect; *w-I - species identified from wasteland (status-introduced) adjoining regions of transect; *w-I - species identified from wasteland (status-introduced) adjoining regions of transect; *w-I - species identified from wasteland (status-introduced) adjoining regions of transect; *w-I - species identified from wasteland (status-introduced) adjoining transect.

upper range of the NVNP is recognised as the last virgin wilderness in West Bengal (UNESCO World Heritage Centre 2009; Mallick 2010). Such a pristine habitat of tropical to temperate broad leaved forest along with dense undergrowth provides suitable resources for the butterflies. The tropical monsoon climate of this region with little temperature fluctuation between seasons but with huge differences in rainfall, support the abundance of herbs and shrubs as predominant larval host plants of Hesperidae, Pieridae, Nymphalidae and Lycaenidae butterflies as observed in this study. Nymphalidae, the dominant family as in any other tropical region, had well built butterflies with large wingspan that helped them to obtain resource from all habitats (Majumdar et al. 2012).

Wynter-Blyth (1957) identified two periods (March-April and October) as peak season of butterfly abundance in India. Kunte (1997) threw light on the abundance and species diversity of butterflies based on seasonality in four tropical habitats in Northern Western Ghats. Butterfly diversity at local or regional scales is closely related to their host plant density (Gutierrez & Mendez 1995; Cowley et al. 2001). A Rank-Abundance curve with steep gradient indicated low evenness (Magurran 2004) and low species diversity (Kunte 2008), in contrast to a curve with shallow gradient which represented high evenness (Magurran 2004) along with high species diversity (Kunte 2008). A similar trend is evident in the present study (Fig. 2). Maximum species diversity along with highest species evenness as observed during the monsoons could be correlated with the abundant distribution of luxurious vegetation which was said to be in suitable phenophase to support the growth of the larval stages of these butterflies. The monsoons were also associated with a greater abundance of species that had occurred in low frequency during summer (Atluri et al. 2011). Pöyry et al. (2009), stressed the importance of local habitat quality to explain species richness. Higher values of species richness as observed during autumn, summer and monsoon could be indicative of the presence of specific butterfly larval host plants during this season. This pattern is consistent with that of Wynter-Blyth (1957), Kunte (1997) and Padhye et al. (2006). Month wise fluctuation in the sampling size of butterflies could be attributed to the distinct changes from the wet season (May–October) to the dry season (November-April) forms (Emmel & Leck 1970; Saikia et al. 2010) in butterflies. Along with a distinct surge in butterfly distribution as observed during the monsoons (Atluri et al. 2011), butterflies are said to form peaks at transition periods between the wet season and the dry season (Emmel & Leck 1970).

The higher host plant diversity seen amongst the Nymphalid and Lycaenid butterflies in this zone of the National Park are probably due to the greater host plant diversity as previously reported from amongst the South East Asian Nymphalidae and Lycaenidae (Fiedler 1998). The preference for Poaceae hosts observed among Satyrinae larvae in this and other studies (Wynter-Blyth 1957; Haribal 1992; Munguira et al. 1997; Peñal & Wahlberg 2008) are significant. Himalayan distribution of the Heliconiinae subfamily of butterflies (Uniyal 2007; Borang et al. 2008; Singh 2009) also supported their presence in this study site. Occurrence of Glochidion sp., a common tree of the middle to upper Himalayan region along with Lonicera sp. (Cowan & Cowan 1979), a shrubby climber, probably sustained the larval population of Athyma sp. and Parasarpa sp respectively. The relationship between Euthalia lubentina- Moraceae, E.aconthea- Moraceae and Anarcardiaceae and E. sahadeva with Fagaceae threw light on the difference in the food plant preference by Euthalia butterflies (Wynter-Blyth 1957; Kehimkar 2008). Ulmus sp. and Celtis sp. (Ulmaceae) which constitute the essential part of the broad leaved forest of higher elevations (Maity & Maiti 2007) supported the larval population of Apatura sp and Hestina sp of butterflies. Wide scale distribution of Urtica sp., Debreagesia sp., Girardiana sp., Boehmeria sp. and Elatostemma sp. (Urticaceae) (Cowan & Cowan 1979; Maity & Maiti 2007) sustained the larval population of Symbrenthia hypselis, S. hippoclus, S. niphanda, Vanessa indica, V. cardui, Araschnia prorsoides and Aglais cashmiriensis (Nymphalinae subfamily) (Wynter-Blyth 1957; Haribal 1992; Kehimkar 2008). The association between Grewia sp. Libythea lepita, Celtis tetrandra, L. narina and C. cinnamomea with both L. myrrha and L. narina also stressed the importance of specific food plants for the butterflies (Haribal 1992; Kehimkar 2008). Daninae butterflies fed on Apocyanaceae, Asclepiadaceae and Moraceae, all plants possessing a milky fluid (Erhlick & Raven 1964).

According to the Singh & Pandey (2004) model, Lycaenidae, should represent 29.5% of the total number of species sampled in northeastern India. Although being the second most (27.95%) abundant family in this study site, Lycaenidae still appears to be slightly under represented in this study, which points towards the need for further investigation. The larvae of *Heliophorus* sp. and *Lycaena phlaeas* fed largely on the *Polygonum* sp. and *Rumex nepalensis*, respectively, throughout its range in the Himalayan region (Uniyal 2007; Borang et al. 2008; Singh 2009). Myrisinae (*Ardisinia solanacea*) served as larval resource of *Nacaduba kurava* (Polyommatinae

subfamily). Besides this, legume feeding was prevalent amongst other Polyommatinae larvae (Wynter-Bylth 1957; Haribal 1992; Kehimkar 2008). Among Riodininae, *Dodona adonira, D. eugenes* and *Zemeros flegyas* were the butterfly species of northeastern India (Borang et al. 2008). Other Himalayan species, *Abisara fylla D.egeon* and *D.ouida* (Uniyal & Mathur 1998) were also associated with *Maesa chisia* plants. *D. dipoea* was reported due to the distribution of its host plant, *Arundinaria maling* which formed an important part of this forest habitat. Overhanging parasitic flora along with *Rhododendron* sp served as the food plants of a majority of Theclinae subfamily of lycaenid larvae (Wynter-Blyth 1957; Kehimkar 2008).

Besides association of *Gonepteryx rhamni* with *Vaccinium* sp., Fabales were decidedly the most important food plant of other Coliadinae butterflies (Ehrlich & Raven 1964). The extensive cultivation of *Brassica juncea* in the adjoining areas of the National Park may be the supportive larval host plant of *Pieris* butterflies. *Pieris* larvae are known to detoxify and eliminate, rather than sequester, the degradation products of glucosinolates (present in Brassicales) (Müller et al. 2003).

The marked reduction in the abundance of Hesperiidae in this study in accordance to that previously stated by the Singh & Pandey (2004) model for northeastern Indian hesperids, probably generates an urgent need for their further study in similar areas.

The association between black-bodied papilionids with Rutaceae and red-bodied papilionids with Aristolochiaceae were similar to observations made on Assam papilionidae (Barua et al. 2004). While Lauraceae - Magnoliaceae served as the food resource for *Graphium* eurous and Chilasa slateri larvae, Meandrusa payeni, Chilasa agestor and Graphium sarpedon depended solely on Lauraceae to sustain their larval population (Wynter-Blyth 1957; Haribal 1992). A report on the occurrence of Kaiser-I-Hind Teinopalpus imperialis, from Darjeeling District (Kehimkar 2008) also confirms their record in this study. Species such as Bhutanitis lidderdalei and Teinopalpus imperialis were strictly seasonal and found on wing between April-November. Such a seasonal trend could be attributed to synchrony with phenology of their food plants (Spitzer 1983).

REFERENCES

Atluri, J.B., K.C. Rao, D.S. Deepika & M. Bhupathirayalu (2011). Butterfly Species Richness and Seasonality in the *Anacardium* Plantation. *The Bioscan* 6(2): 249–254.

- Barby, M.F. (1995). Seasonal changes in the relative abundance and spatial distribution of Australian lowland tropical Satyrinae butterflies. Australian Journal of Zoology 43: 209–229.
- Barua, K.K., D. Kakati & J. Kalita (2004). Present status of swallowtail butterflies in Garbhanga Reserve Forest, Assam, India. Zoos' Print Journal 19(4): 1439–1441; http://dx.doi.org/10.11609/JoTT. ZPJ.1000.1439-41
- Bhusal, D.R. & B. Khanal (2008). Seasonal and altitudinal variation of butterflies in Eastern Siwalik of Nepal. *Journal of Natural History Museum* 23: 82–87.
- Borang, A., B.B. Bhatt, M. Tamuk, A. Borkotoki & J. Kalita (2008). Butterflies of Dihang Biosphere Reserve of Arunachal Pradesh, eastern Himalayas, India. *Bulletin of Arunachal Forest Research* 24: 41–53.
- Champion, H.G. & S.K. Seth (1968). A Revised survey of The Forest Types of India. Government of India Press, New Delhi, xxvii+404pp.
- Cowan, A. & J.M. Cowan (1979). The Trees of Northern Bengal Including Shrubs, Woody Climber, Bamboos, Palms and Tree Ferns. Naaz Offset Press, Delhi, 178pp.
- Cowley, M.J.R., C.D. Thomas, R.J. Wilson, J.L. Leon-Córtes, D. Gutiérrez & C.R. Bulman (2001). The density and distribution of British butterflies. II. An assessment of mechanisms. *Journal of Animal Ecology* 70: 426–441. http://dx.doi.org/10.1046/j.1365-2656.2001.00509.x
- Das, A.P., R.B. Bhujel & D. Lama (2008). Plant Resources in the Protected Areas and Proposed Corridors of Darjeeling, India, pp. 56–79. In: Chettri, N., B. Shakya & E. Sharma (eds.). *Biodiversity Conservation in the Kangchenjunga Landscape*. Hill Side Press (P.) Ltd., Kathmandu, 171pp.
- Ehrlich, P.R. & P.H. Raven (1964). Butterflies and plants: a study in coevolution. Evolution 18: 586–608.
- Emmel, T.C. & C.F. Leck (1970). Seasonal changes in organisation of tropical rainforest butterfly populations in Panama. *Journal of Research on the Lepidoptera* 8(4): 133–152.
- Evans, J.H. (1932). Identification of Indian Butterflies. Bombay Natural History Society, Mumbai, 454pp.
- Fiedler, K. (1998). Diet breadth and host plant diversity of tropical vs temperate-zone herbivores: South-East Asian and West Palaearctic butterflies as a case study. *Ecological Entomology* 23(3): 285-297.
- Gutierrez, D. & R. Mendez (1995). Phenology of butterflies in a mountain area in northern Iberian Peninsula. *Ecography* 18: 209– 216.
- Haribal, M. (1992). The Butterflies of Sikkim Himalaya and Their Natural History, Sikkim. Sikkim Natural Conservation Foundation, 217pp.
- Hill, J.H., K.C. Hamer, M.M. Dawood, J. Tagah & V.K Chey (2003). Rainfall but not selective logging effect changes in abundance of a tropical forest butterfly in Sabah. Borneo. *Journal of Tropical Ecology* 19: 35-42; http://dx.doi.org/10.1017/S0266467403003055
- Kehimkar, I. (2008). *The Book of Indian Butterflies*. Bombay Natural History Society, Oxford University Press, xvi+497pp.
- Kunte, K. (1997). Seasonal patterns in butterfly abundance and species diversity in four tropical habitats in northern Western Ghats. *Journal* of Bioscience 22(5): 593–603.
- Kunte, K. (2000). Butterflies of Peninsular India. Indian Academy of Sciences, Bangalore, University Press, Hyderabad, 254pp.
- Kunte, K. (2008). Competition and species diversity: removal of dominant species increases diversity in Costa Rican butterfly communities. *Oikos* 117: 69–76. http://dx.doi.org/10.1111/ i.2007.0030-1299.16125.x
- Magurran, A.E. (1988). Ecological Diversity and its Measurements. University Press, Cambridge, 192pp.
- Magurran, A.E. (2004). Measuring Biological Diversity. Blackwell Publishing Company, 256pp.
- Maity, D. & G.G. Maiti (2007). The Wild Flowers of Kanchenjunga Biosphere Reserve, Sikkim. Naya Udyog, Kolkata, 174pp.
- Majumdar, J., R. Lodh & B.K. Agarwala (2012). Variation in butterfly diversity and unique species richness along different habitats in Trishna Wildlife Sanctuary, Tripura, northeast India. *Check List* 8(3):

432-436.

- Mallick, J.K. (2010). Status of Red Panda Ailurus fulgens in Neora Valley National Park, Darjeeling District, West Bengal, India. Small Carnivore Conservation 43: 30–36.
- Mallick, J.K. (2012). Mammals of Kalimpong Hills, Darjeeling District, West Bengal, India. *Journal of Threatened Taxa* 4(12): 3103–3136; http://dx.doi.org/10.11609/JoTT.o2418.3103-36
- Maude, E.W. (1949). List of butterflies caught in Darjeeling district between 1700 and 4400ft. Parts I, II, III, and IV. Journal of Bengal Natural History Society 23: 86–92; 199–122; 24: 31–34; 58–59.
- Müller, C., N. Agerbirk & C.E. Olsen (2003). Lack of sequestration of host plant glucosinolates in *Pieris rapae* and *P. brassicae. Chemoecology* 13: 47–54; http://dx.doi.org/10.1007/s000490300005
- Munguira, M.L., E. García-Barros & J. Martin (1997). Plantas nutricias de los licénidos y satirinos españoles (Lepiodptera: Lycaenidae y Nymphalidae). Buletin Asociación española Entomologia 21: 29–53.
- Padhye, A.D., N. Dahanukar, M. Paingankar, M. Deshpande & D. Deshpande (2006). Season and landscape wise distribution of butterflies in Tamhini, north-western Ghats. India. *Zoos' Print Journal* 21(3): 2175–2181; http://dx.doi.org/10.11609/JoTT. ZPJ.1142.2175-8
- Peñal, C. & N. Wahlberg (2008). Prehistorical climate change increased diversification of a group of butterflies. *Biology Letters* 4(3): 274– 278; http://dx.doi.org/10.1098/rsbl.2008.0062
- Pielou, E.C. (1969). An Introduction to Mathematical Ecology. John Wiley, New York, 286pp.
- Pollard, E. (1977). A method for assessing changes in the abundance of butterflies. *Biological Conservation* 12: 115–134.
- Polunin, O. & A. Stainton (2005). Flowers of the Himalaya. Seventh Impression. Oxford University Press, New Delhi, xxx+580pp.
- Pöyry, J., J. Paukkunen, J. Heliölä & M. Kuussaari (2009). Relative contributions of local and regional factors to species richness and total density of butterflies and moths in semi-natural grasslands. *Oecologia* 160(3): 577–587; http://dx.doi.org/10.1007/s00442-009-1328-7
- Rodgers, W.A., H.S. Panwar & V.B. Mathur (2002). Wildlife Protected Area Network in India: A Review (Executive summary). Wildlife Institute of India, Dehradun, 44pp.

- Saikia, M.K., J. Kalita & P.K. Saikia (2010). Seasonality of Nymphalid butterflies in Rani-Garbhanga Reserve Forest, Assam, India. *NeBIO* 1(4): 10–21.
- Shannon, C.E. (1948). A mathematical theory of communication. Bell System Technical Journal 27: 379–423 & 623–656; http://cm.belllabs.cpm/cm/ms/what/shannonday/ paper.html
- Singh, A.P. & R. Pandey (2004). A model for estimating butterfly species richness of areas across the Indian subcontinent: species proportion of family papilionidae as an indicator. *Journal of the Bombay Natural History Society* 101: 79–89.
- Singh, A.P. (2009). Butterflies of Kedarnath Musk Deer Reserve, Garhwal Himalaya, India. Journal of Threatened Taxa 1(1): 37–48; http://dx.doi.org/10.11609/JoTT.o1873.37-48
- Singh, A.P. (2012). Lowland forest butterflies of the Sankosh River catchment, Bhutan. *Journal of Threatened Taxa* 4(12): 3085–3102; http://dx.doi.org/10.11609/JoTT.o2625.3085-102
- Spitzer, K. (1983). Seasonality of the butterfly fauna in Southeastern Vietnam (Papilionoidea). Journal of Research on the Lepidoptera 22(2): 126–130.
- UNESCO World Heritage Centre (2009). Neora Valley National Park. http://whc.unesco.org/en/tentativelists/5447. Downloaded on 29 July 2009.
- Uniyal, V.P. (2007). Butterflies in the Great Himalayan Conservation Landscape in Himachal Pradesh, western Himalaya. *Entomon* 32(2): 119–127.
- Uniyal, V.P. & P.K. Mathur (1998). Diversity of butterflies in the Great Himalayan National Park, western Himalaya. *Indian Journal of Forestry* 21(2): 150–155.
- Weiss, S.B., D.D. Murphy & R.R. White (1988). Sun, slope and butterflies: topographic determinants of habitat quality for Euphydryas editha. Ecology 69: 1486–1496.
- Whittaker, R.H. (1965). Dominance and Diversity in Land Plant Communities: Numerical relations of species express the importance of competition in community function and evolution. *Science* 147 (3655): 250–260.
- Wynter-Blyth, M.A. (1957). Butterflies of the Indian Region. Bombay Natural History Society, Bombay, 523pp.

