

Building evidence for conservation globally

Journal of Threatened TAXA

Open Access

10.11609/jott.2025.17.11.27787-28010

www.threatenedtaxa.org

26 November 2025 (Online & Print)

17 (11): 27787-28010

ISSN 0974-7907 (Online)

ISSN 0974-7893 (Print)

Publisher

Wildlife Information Liaison Development Societywww.wild.zooreach.org

Host

Zoo Outreach Organizationwww.zooreach.org

Srivari Illam, No. 61, Karthik Nagar, 10th Street, Saravanampatti, Coimbatore, Tamil Nadu 641035, India
Registered Office: 3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore, Tamil Nadu 641006, India
Ph: +91 9385339863 | www.threatenedtaxa.org
Email: sanjay@threatenedtaxa.org

EDITORS

Founder & Chief Editor

Dr. Sanjay Molur

Wildlife Information Liaison Development (WILD) Society & Zoo Outreach Organization (ZOO), Coimbatore, Tamil Nadu 641006, India

Assistant Editor

Dr. Chaithra Shree J., WILD/ZOO, Coimbatore, Tamil Nadu 641006, India

Managing Editor

Mr. B. Ravichandran, WILD/ZOO, Coimbatore, Tamil Nadu 641006, India

Associate Editors

Dr. Mandar Paingankar, Government Science College Gadchiroli, Maharashtra 442605, India**Dr. Ulrike Streicher**, Wildlife Veterinarian, Eugene, Oregon, USA**Ms. Priyanka Iyer**, ZOO/WILD, Coimbatore, Tamil Nadu 641006, India

Board of Editors

Dr. Russel Mittermeier

Executive Vice Chair, Conservation International, Arlington, Virginia 22202, USA

Prof. Mewa Singh Ph.D., FASc, FNA, FNAsc, FNAPsy

Ramanna Fellow and Life-Long Distinguished Professor, Biopsychology Laboratory, and Institute of Excellence, University of Mysore, Mysuru, Karnataka 570006, India; Honorary Professor, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore; and Adjunct Professor, National Institute of Advanced Studies, Bangalore

Stephen D. Nash

Scientific Illustrator, Conservation International, Dept. of Anatomical Sciences, Health Sciences Center, T-8, Room 045, Stony Brook University, Stony Brook, NY 11794-8081, USA

Dr. Fred Pluthero

Toronto, Canada

Dr. Priya Davidar

Sigur Nature Trust, Chadapatti, Mavinhalla PO, Nilgiris, Tamil Nadu 643223, India

Dr. John Fellowes

Honorary Assistant Professor, The Kadoorie Institute, 8/F, T.T. Tsui Building, The University of Hong Kong, Pokfulam Road, Hong Kong

Prof. Dr. Mirco Solé

Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Vice-coordenador do Programa de Pós-Graduação em Zoologia, Rodovia Ilhéus/Itabuna, Km 16 (45662-000) Salobrinho, Ilhéus - Bahia - Brasil

Dr. Rajeev Raghavan

Professor of Taxonomy, Kerala University of Fisheries & Ocean Studies, Kochi, Kerala, India

English Editors**Mrs. Mira Bhojwani**, Pune, India**Dr. Fred Pluthero**, Toronto, Canada**Copy Editors****Ms. Usha Madgunki**, Zooreach, Coimbatore, India**Ms. Trisa Bhattacharjee**, Zooreach. Coimbatore, India**Ms. Paloma Noronha**, Daman & Diu, India**Web Development****Mrs. Latha G. Ravikumar**, ZOO/WILD, Coimbatore, India**Typesetting****Mrs. Radhika**, Zooreach, Coimbatore, India**Mrs. Geetha**, Zooreach, Coimbatore India**Fundraising/Communications****Mrs. Payal B. Molur**, Coimbatore, India**Subject Editors 2021–2023****Fungi****Dr. B. Shivaraju**, Bengaluru, Karnataka, India**Dr. R.K. Verma**, Tropical Forest Research Institute, Jabalpur, India**Dr. Vatsavaya S. Raju**, Kakatiya University, Warangal, Andhra Pradesh, India**Dr. M. Krishnappa**, Jnana Sahyadri, Kuvenpu University, Shimoga, Karnataka, India**Dr. K.R. Sridhar**, Mangalore University, Mangalagangotri, Mangalore, Karnataka, India**Dr. Gunjan Biswas**, Vidyasagar University, Midnapore, West Bengal, India**Dr. Kiran Ramchandra Ranadive**, Annaheb Magar Mahavidyalaya, Maharashtra, India**Plants****Dr. G.P. Sinha**, Botanical Survey of India, Allahabad, India**Dr. N.P. Balakrishnan**, Ret. Joint Director, BSI, Coimbatore, India**Dr. Shonil Bhagwat**, Open University and University of Oxford, UK**Prof. D.J. Bhat**, Retd. Professor, Goa University, Goa, India**Dr. Ferdinand Boero**, Università del Salento, Lecce, Italy**Dr. Dale R. Calder**, Royal Ontario Museum, Toronto, Ontario, Canada**Dr. Cleofas Cervancia**, Univ. of Philippines Los Baños College Laguna, Philippines**Dr. F.B. Vincent Florens**, University of Mauritius, Mauritius**Dr. Merlin Franco**, Curtin University, Malaysia**Dr. V. Irudayaraj**, St. Xavier's College, Palayamkottai, Tamil Nadu, India**Dr. B.S. Kholia**, Botanical Survey of India, Gangtok, Sikkim, India**Dr. Pankaj Kumar**, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, USA**Dr. V. Sampath Kumar**, Botanical Survey of India, Howrah, West Bengal, India**Dr. A.J. Solomon Raju**, Andhra University, Visakhapatnam, India**Dr. Vijayasankar Raman**, University of Mississippi, USA**Dr. B. Ravi Prasad Rao**, Sri Krishnadevaraya University, Anantapur, India**Dr. K. Ravikumar**, FRLHT, Bengaluru, Karnataka, India**Dr. Aparna Watve**, Pune, Maharashtra, India**Dr. Qiang Liu**, Xishuangbanna Tropical Botanical Garden, Yunnan, China**Dr. Noor Azhar Mohamed Shazili**, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia**Dr. M.K. Vasudeva Rao**, Shiv Ranjan Housing Society, Pune, Maharashtra, India**Prof. A.J. Solomon Raju**, Andhra University, Visakhapatnam, India**Dr. Manda Datar**, Agharkar Research Institute, Pune, Maharashtra, India**Dr. M.K. Janarthanam**, Goa University, Goa, India**Dr. K. Karthigeyan**, Botanical Survey of India, India**Dr. Errol Vela**, University of Montpellier, Montpellier, France**Dr. P. Lakshminarasiham**, Botanical Survey of India, Howrah, India**Dr. Larry R. Noblick**, Montgomery Botanical Center, Miami, USA**Dr. K. Haridasan**, Pallavur, Palakkad District, Kerala, India**Dr. Analinda Manila-Fajard**, University of the Philippines Los Banos, Laguna, Philippines**Dr. P.A. Siru**, Central University of Kerala, Kasaragod, Kerala, India**Dr. Afroz Alam**, Banasthali Vidyapith (accredited A grade by NAAC), Rajasthan, India**Dr. K.P. Rajesh**, Zamorin's Guruvayurappan College, GA College PO, Kozhikode, Kerala, India**Dr. David E. Boufford**, Harvard University Herbaria, Cambridge, MA 02138-2020, USA**Dr. Ritesh Kumar Choudhary**, Agharkar Research Institute, Pune, Maharashtra, India**Dr. A.G. Pandurangan**, Thiruvananthapuram, Kerala, India**Dr. Navendu Page**, Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India**Dr. Kannan C.S. Warrier**, Institute of Forest Genetics and Tree Breeding, Tamil Nadu, India**Invertebrates****Dr. R.K. Avasthi**, Rohtak University, Haryana, India**Dr. D.B. Bastawade**, Maharashtra, India**Dr. Partha Pratim Bhattacharjee**, Tripura University, Suryamaninagar, India**Dr. Kailash Chandra**, Zoological Survey of India, Jabalpur, Madhya Pradesh, India**Dr. Ansie Dippenaar-Schoeman**, University of Pretoria, Queenswood, South Africa**Dr. Rory Dow**, National Museum of natural History Naturalis, The Netherlands**Dr. Brian Fisher**, California Academy of Sciences, USA**Dr. Richard Gallon**, Ilandudno, North Wales, LL30 1UP**Dr. Hemant V. Ghate**, Modern College, Pune, India**Dr. M. Monwar Hossain**, Jahangirnagar University, Dhaka, BangladeshFor Focus, Scope, Aims, and Policies, visit https://threatenedtaxa.org/index.php/JoTT/aims_scopeFor Article Submission Guidelines, visit <https://threatenedtaxa.org/index.php/JoTT/about/submissions>For Policies against Scientific Misconduct, visit https://threatenedtaxa.org/index.php/JoTT/policies_various

continued on the back inside cover

Cover: A male Scarlet Skimmer perching on vegetation by the banks of a waterbody. Ink and watercolour illustration by Ananditha Pascal.

Conservation significance of Yelakundli Sacred Grove: a relic population of the endemic dipterocarp *Vateria indica* L.

G. Ramachandra Rao

Centre for Urban Ecology, Biodiversity, Evolution & Climate Change (CUBEC), JAIN (Deemed-to-be-University), 319, 25th Main Road, KR Layout, JP Nagar Phase 6, Bengaluru, Karnataka 560078, India.
ramachandra.rao@jainuniversity.ac.in

Abstract: Yelakundli Sacred Grove, a 4 ha evergreen forest patch in Shivamogga District, Karnataka State, India, harbours a rare and exceptionally large population of the endemic dipterocarp tree *Vateria indica*. A single transect revealed 122 mature individuals of this species, whereas it was virtually absent outside the grove. The grove's unique characteristics, including 100% evergreeness, 87% tree endemism, and a thick leaf litter layer, support the dominance of *Vateria indica* and other climax tree species, such as *Mesua ferrea*. The absence of fire and the non-removal of leaf litter have contributed to the grove's ecological integrity. In contrast, intensive litter collection and forest fires in other forest patches have altered soil properties, impaired seedling establishment, and shifted species composition. Yelakundli sacred grove's conservation significance lies in its role as a biodiversity heritage site, providing a window into the evolutionary history of tropical forests. Its protection by the local community, driven by cultural and religious beliefs, has ensured the persistence of this relic population, highlighting the importance of community-driven conservation efforts.

Keywords: Biodiversity heritage site, community-driven conservation, evergreen forest, flowering plant, sacred grove, Western Ghats.

Kannada: ಯಲ್ಪಂಚಿ ದೇವರಕಾಡು, ಕನಾಡರದ ಕೆವಳೊ ಜೀಬ್ಯಾಲ್ಯುಡುವ ಚ ಹೆರ್ಲ್ ಎಪ್ಲಿಕ್ಯಾಂಟ್ ಹರಿಂಧರ ಕಾಡು. ಇಲ್ಲಿ ಅಪರೋಪದ ಸ್ಥಿರ್ಯ ದಿಕ್ಕಿನ್ನೇರ್ಲೋರ್ವ್ ಹೆರ್ಲ್ ದೆಪ್ ಹೆರ್ಲಿಯಾ ಇಂಡಿಕ್ ನಾಬ್ಲೂಕ್ ಮರಗಳನ್ನು ಅಲ್ಲಿರುವ ಸಂಖ್ಯೆಯಲ್ಲಿ ಹುಂದಿದೆ. ಒಂದೇ ಚೆರ್ನ್-ಸ್ಟ್ರೋನ್ ಲ್ಯಾಪ್ ಜಾತಿಯ ೧೨೨ ಹೆರ್ಲಿಯಾ ಇಂಡಿಕ್ ಮರಗಳು ದಾಖಲಾಗಿದ್ದು, ದೇವರಕಾಡಿನ ಹುರಿಗ್ ಆಗಿ ಮರಗಳು ಬಹುತೇಕ ಕಾಂಗಿನ್ನುವುದಿದ್ದು. ಈ ದೇವರಕಾಡಿನ ವಿಕಿಪ್ಲೇಟ್‌ಗಳಾದ ೧೦೦% ಹೆರ್ಲ್ ಕಾಡು, ೪೭% ಸ್ಥಿರ್ಯ ಜಾತಿಯ ಮರಗಳು, ಮತ್ತು ಮುಂದುವರ್ತಿ ಹೆರ್ಲ್ ಕಾಂಗಿನ್ ಸಿಗ್ಸರ್ ದಾರ್ಗೆಲ್‌ಗಳ ಹಿಡುವ ಹೆರ್ಲಿಯಾ ಇಂಡಿಕ್ ಮತ್ತು ಮನುಷ್ಯಾದಿಯ (ನಾರ್ಗೆಲೆಸಿ) ಮುಂತಾದ ಮರ ವ್ಯಾಪಕಗೆ ಹೆಚ್ಚಿನ ಸಂಖ್ಯೆಗೆ ಕಾರಣವಾಗಿದೆ. ಕಾಡಿನ್ನೀರ್ಲಿನ ಬಂಡಿಯ ಅನುಷ್ಠಾತಿ ಮತ್ತು ದಾರ್ಗೆಲ್‌ಗಳ ಸಂಗ್ರಹಕ್ಕಿರುವುದು ದೇವರಕಾಡಿನ ಪರಿಸರ ಸಮರ್ಪಳಣವನ್ನು ರಾಮ್ಯಾಲ್ಕ್ಯಾಲ್ ಸಂಕ್ಷಾರದಿಂದಿರುತ್ತದೆ. ಇತರ್ ಕಾಡು ಪ್ರದೇಶಗಳಲ್ಲಿ, ದಾರ್ಗೆಲ್‌ಗಳ ತೆಲ್ಪು ಸಂಗ್ರಹಕ್ಕಿರುವುದು ಕಾಡಾಗ್ರಿಗ್‌ಗಳ ಪರಿಣಾಮವಾಗಿ ಮುಂದುವರ್ತಿ ಸಿಗ್ಸರ್ ಲ್ಯಾಪ್‌ಗಳು ಬದಲಾಗಿದ್ದು, ಮರಗಳ ವಿಜ್ಞಾನ ನಿರ್ಮಾಣದ ಅಂಗೀಕಾರಿಂದಿರುತ್ತದೆ ಮತ್ತು ದಾರ್ಗೆಲ್ ಹೆರ್ಲ್ ದೆಪ್ ಸಂಯೋಜನೆ ಬದಲಾಗಿದೆ. ಮಲ್ಲಂಗ್ಲಿ ದೇವರಕಾಡು ಜೀವ ವ್ಯವಸ್ಥೆ ಪರಿಂದರೆ ತಾಜಾಗ್ರಿ ಉಪಾಖಾನಕ್ಕಾಗಿ ವ್ಯಾಪಕವಾಗಿ ಉತ್ಪನ್ನ ಕಾರ್ಯಕ್ರಮ ಮತ್ತು ಸಂಕ್ಷಾರದಿನಲ್ಲಿ ಪರಿಣಾಮವಾಗಿದೆ. ಸ್ಥಿರ್ಯ ಜನ ಸಮುದಾಯ ಧಾರ್ಮಿಕ ಕಾಸ್ ನಾಂಸ್‌ತ್ರಕ ನಂಬಿಗೆಂದರಿ, ಆಗಿಲ್ಲಿರುವ ಹೆರ್ಲಿಯಾ ಇಂಡಿಕ್ ಮರಗಳ ಹೆರ್ಲ್ ದೆಪ್ ಕಾಡು ಇಂಡಿನ್ ಲಾಳಿದ್ಲೊಂದಿರುವುದು ವಿಶೇಷವಾಗಿದೆ.

Editor: A.J. Solomon Raju, Andhra University, Visakhapatnam, India.

Date of publication: 26 November 2025 (online & print)

Citation: Rao, G.R. (2025). Conservation significance of Yelakundli Sacred Grove: a relic population of the endemic dipterocarp *Vateria indica* L.. *Journal of Threatened Taxa* 17(11): 27954–27959. <https://doi.org/10.11609/jott.10140.17.11.27954-27959>

Copyright: © Rao 2025. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: None.

Competing interests: The author declares no competing interests.

Author details: DR. G. RAMACHANDRA RAO has extensive experience as field biologists and in research on plant taxonomy, diversity, ecology, evolution, and conservation of Western Ghats flora.

Acknowledgements: I extend my heartfelt gratitude to the people of Yelakundli Sacred Grove for sharing their valuable insights and knowledge. I also appreciate the assistance provided by the officers and forest officials from the Karnataka Forest Department. I am deeply indebted to Dr. T.V. Ramachandra and Dr. M.D. Subash Chandran, CES, IISc, for their unwavering support and encouragement. I also thank Mr. Vishnu D and Mr. Srikanth Naik for their technical and field assistance. Special thanks are due to Dr. Chetan Nag, deputy director, CUBEC, JAIN (Deemed-to-be-University), for his timely help and valuable suggestions. I also appreciate the various forms of assistance provided by Ph.D. scholars, Mr. Gagan Kini, Mr. Ganesh N, and Ms. D Bindu Madhavi from CUBEC, JAIN (Deemed-to-be-University). Finally, I am grateful to the anonymous reviewers for their insightful comments and suggestions.

CENTRE FOR URBAN ECOLOGY,
BIO-DIVERSITY, EVOLUTION
AND CLIMATE CHANGE

INTRODUCTION

Western Ghats represent one of the best non-equatorial tropical forests and are also considered one of the 36 biodiversity hotspots of the world (Nayar 1996; Myers et al. 2000; Conservation International 2025). These ancient landscapes have nurtured the evolution of several primitive plant families, notably Myristicaceae and Dipterocarpaceae, with the latter forming the dominant canopy component of primary lowland forests (Meijer 1973). The discovery of fossilized ambers (a hardened resin) of dipterocarp origin from the Cambay shale of Gujarat in Western India indicates the antiquity of the family to be over 50 million years ago (Rust et al. 2010). Yelakundli Sacred Grove (Yelakundli SG) of Sagara Taluk, Karnataka, is one such dipterocarp forest patch dominated by the endemic tree *Vateria indica* L., surrounded by paddy fields and other human landscapes. How did such an ancient forest patch survive despite climatic adversities and human disturbances? The answer lies in the genesis of sacred groves. Sacred groves are segments of landscape containing trees and other forms of life and geographical features that are delimited and protected by human societies, believing that preserving such a patch of vegetation in a relatively undisturbed state is necessary for expressing one's relation to nature. So, these remain as isolated patches of forests in the midst of agricultural landscapes (Hughes & Chandran 1998). It is one such sacred grove that escaped human pressures due to its sanctity. Gadgil & Berkes (1991) attributed the traditional practice of most human societies in providing complete protection to certain biological communities by setting aside refugia to a variety of regulatory measures that have been an integral part of the utilization of biological resources. This has kept alive the protection of primaeval relic forest patches as sacred groves. Despite their size limitations, these fragments conserve local biodiversity and offer important ecological services (Ray & Ramachandra 2010). This study investigates the structure and floristic composition of the Yelakundli SG, with a focus on understanding its conservation through the role of community-driven management, rooted in cultural reverence and its significance as a living relic of evolutionary antiquity.

Study area

This study was conducted in the Yelakundli Sacred Grove (SG), located in Sagara Taluk, Shivamogga District of Karnataka State (Figure 1). The grove is situated within evergreen-to-semi-evergreen forest matrix, surrounded by human-modified landscapes comprising

paddy fields and Areca plantations. The Yelakundli SG is a 4-ha evergreen climax forest, harbouring several deities and small sacred places, with Rachamma Devi being the primary worshipped deity (Image 1).

MATERIALS AND METHODS

Due to strict regulations and restricted access set by the local people community, a transect-based approach was employed to study the Yelakundli Sacred Grove. The work was done barefoot within the grove's boundaries, adhering to local customs. A single belt transect (2,000 m², 180 m long) was established, comprising five quadrats (20 x 20 m each), following Chandran et al. (2010) (Figure 2). In each tree quadrat, trees with >30 cm GBH and lianas >10 cm GBH were enumerated. Tree height, climbers, and epiphytes were also recorded. Shrubs (GBH <30 cm, height >1 m) were counted in two 5 x 5 m quadrats within each tree quadrat. Herb plots (1 x 1 m) were established within each shrub quadrat to study herbs and woody seedlings.

Data analysis included calculating Shannon-Wiener's diversity index, Simpson dominance (Ludwig & Reynolds 1988), and importance value indices (IVI) for each tree species (Curtis & McIntosh 1951). Basal area per ha was calculated to understand the dominant species in the tree layer. Evergreeness and endemism percentage of the tree layer were calculated following Mesta & Hegde (2018), along with girth class distribution of the dominant tree, *Vateria indica*. Local people and priests were interviewed to gather information on the sacred grove's history, conservation, and community involvement.

RESULTS

Vegetation structure and composition

A total of 187 plant species, representing 52 families, were recorded across the tree, shrub, and herb layers during the survey. There were 122 individuals of *Vateria indica* (Dipterocarpaceae) recorded in a single transect within the tree layer, indicating a near-monodominant forest composition. Other notable tree species present in the transect included *Mesua ferrea*, *Saraca asoca*, *Holigarna arnottiana*, *Artocarpus hirsutus*, and *Knema attenuata*. Importance value indices (IVI) revealed *Vateria indica* as the dominant species (IVI = 209), followed by *M. ferrea* (IVI = 30.86) and *S. asoca* (IVI = 19.58) (Table 1). The Shannon diversity index was low ($H' = 0.6$) and Simpson dominance index was high ($D = 0.71$) indicating

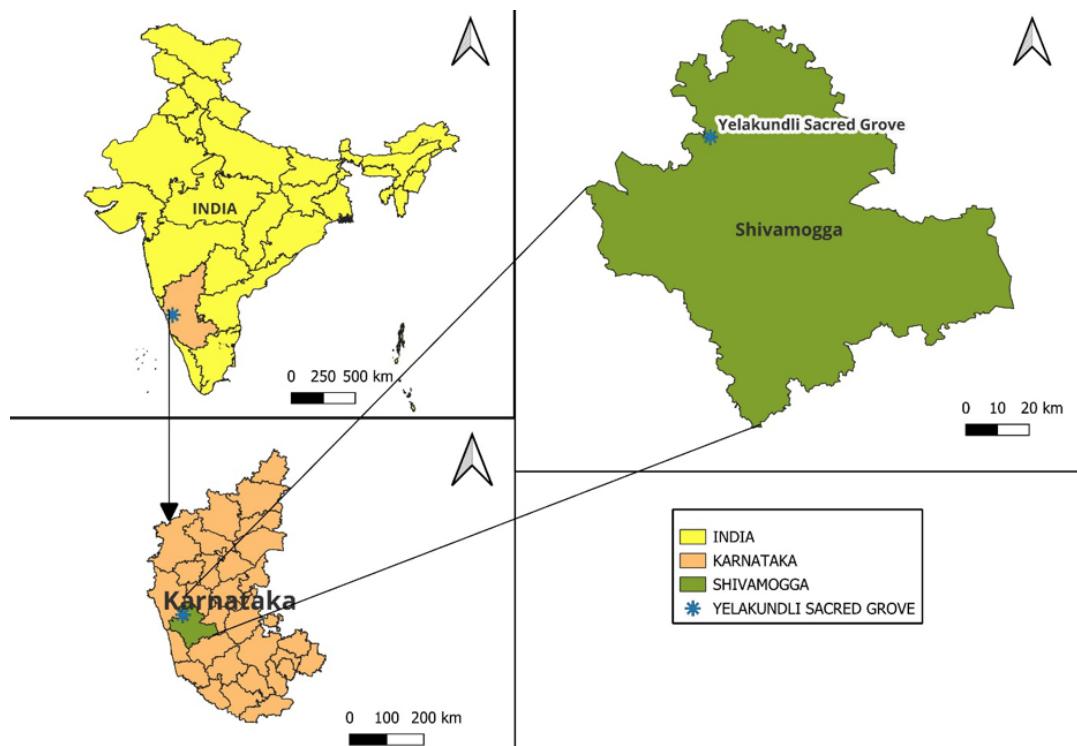
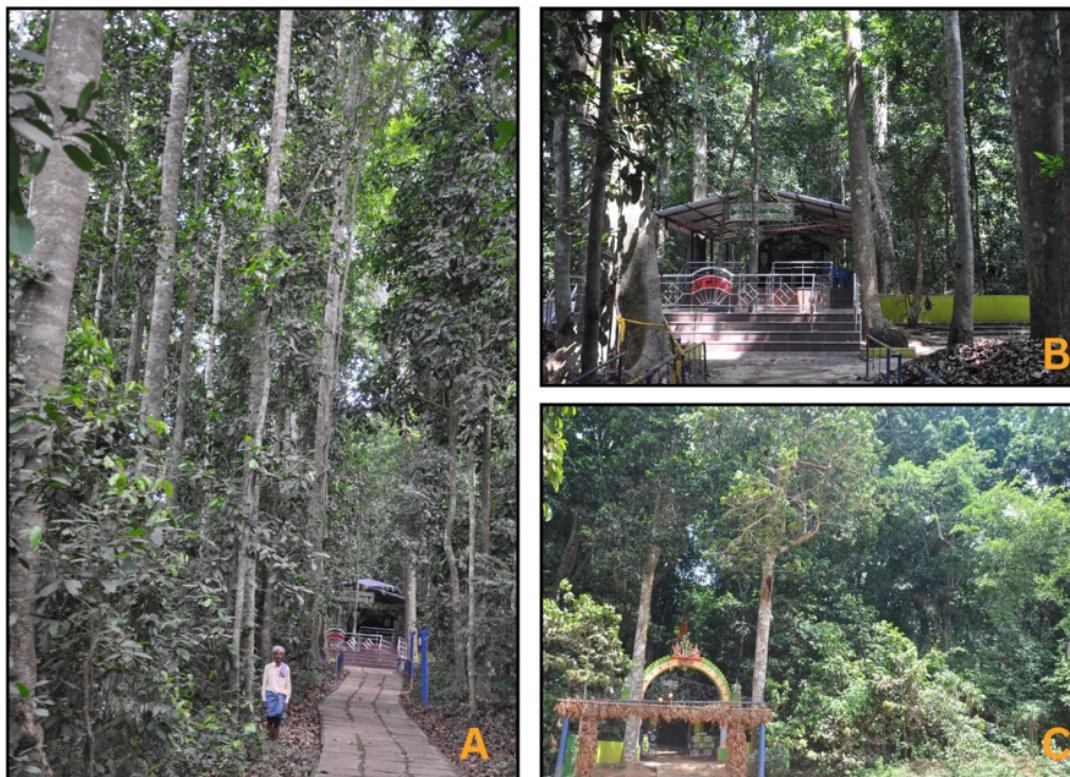


Figure 1. Map of Yelakundli Sacred Grove, Sagara Taluk, Shivamogga District, Karnataka State.

Table 1. IVI of seven tree species (tree layer) in the Yelakundli Sacred Grove.

Species	IVI
<i>Vateria indica</i>	209.01
<i>Mesua ferrea</i>	30.86
<i>Saraca asoca</i>	19.58
<i>Artocarpus hirsutus</i>	14.13
<i>Knema attenuata</i>	9.05
<i>Caryota urens</i>	8.69
<i>Holigarna arnottiana</i>	8.69

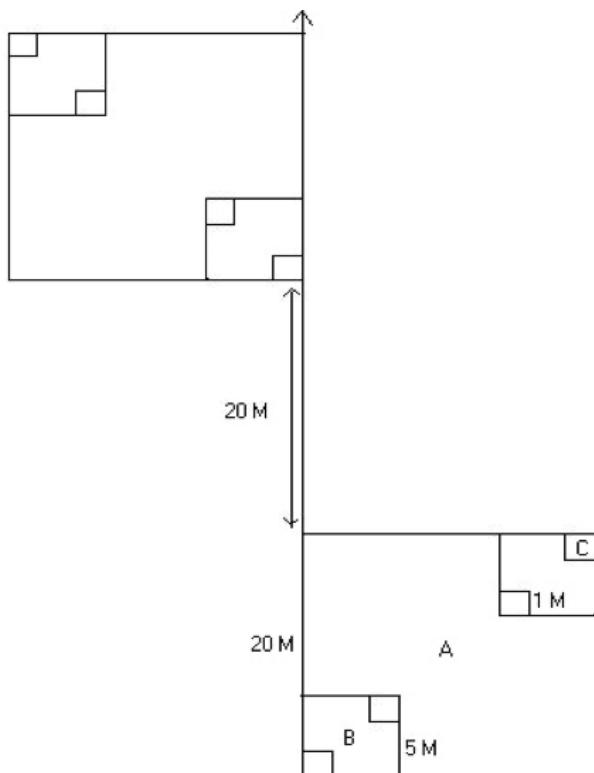

the overwhelming dominance of *V. indica*.

The forest exhibited 100% evergreeness, with a remarkably high level (87%) of tree endemism (Figure 3). Transect analysis of the tree layer revealed a basal area of 86.9 m²/ha, primarily attributed to the massive individuals of *V. indica*, which averaged 17 m in height. Other tree species, such as *A. hirsutus* and *K. attenuata* were represented by a few individuals. Girth class distribution analysis of *V. indica* revealed a healthy population structure with individuals ranging 30 cm to over 100 cm GBH, and some trees exceeding 300 cm GBH (Figure 4). In the shrub layer, *V. indica* exhibited the highest number of saplings (148), followed by *M. ferrea*

(51), *Syzygium stocksii* (19), and others. Similarly, in the herb layer, *V. indica* had the highest number of individuals (119), followed by *Lagenandra ovata* (81), *Combretum latifolium* (52), and others.

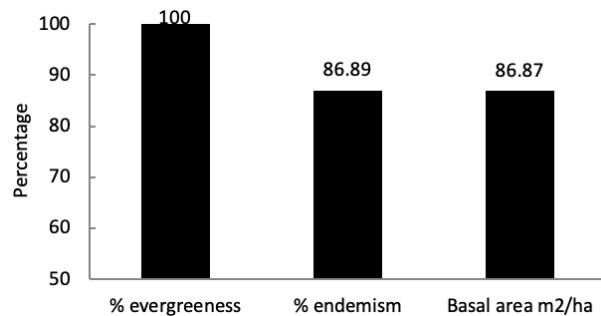
DISCUSSION

The Yelakundli SG is distinguished by a rare and exceptionally large population of the endemic dipterocarp *V. indica*. Within a single transect, 122 mature individuals of this species were recorded, whereas outside the grove, *V. indica* was virtually absent. This species represents one of the important relic species along with other endangered dipterocarps such as *Dipterocarpus indicus* (Chandran et. al. 2010). Other important trees include *M. ferrea*, *S. asoca*, *H. arnottiana*, and *A. hirsutus*, also form some of the important elements of the evergreen forest (Image 2). As the forest area has shrunk to just a few ha the diversity was very low with nearly mono-dominant dipterocarp *V. indica* in overwhelming numbers and just six other tree species sparingly occurring (Table 1). This healthy population of *V. indica* was seen in tree, shrub, and herb layers. The sacred grove was also 100% evergreen climax forest with highest level of tree endemism (87%). One of the important factors contributing to this is the


Image 1. A glimpse into the sacred grove: A—a dense canopy of lofty *Vateria indica* trees | B—the revered deity Rachamma inside the sacred grove, Yelakundli, Sagara Taluk, Shivamogga District, Karnataka State | C—sacred grove entrance view. © G. Ramachandra Rao.

presence of heavy leaf litter, which were not collected by the local people. They informed that even a single dry leaf or fallen twig was never collected or taken out from the sacred grove. The leaf litter layer is itself nearly 0.6 m (2 ft.) thick making ideal nursery grounds for large seeded climax trees such as *V. indica* and *M. ferrea*. The absence of fire promotes the luxuriant regeneration of large-seeded evergreen species. In contrast, many other forest patches, including sacred groves practice intensive litter collection for agricultural use, which significantly alters soil structure. Studies have shown that litter removal increases soil bulk density and reduces surface-soil carbon and nitrogen content, thereby impairing seedling establishment and nutrient cycling (Chandran et al. 2010; Ito et al. 2014). When compounded by forest fires, these disturbances further degrade soil properties, volatilize essential nutrients, and kill microbial communities, leading to a shift in species composition toward smaller-seeded, fire-tolerant, and often deciduous taxa (Elakiya et al. 2023). Such changes undermine the ecological integrity and resilience of evergreen forest fragments.

Yelakundli SG as a biodiversity heritage site


The Yelakundli SG, dedicated to the mother goddess

'Rachamma', stands as a rare and remarkable remnant of tropical forest heritage (Figure 2B). Its continued existence owes much to the unwavering protection offered by the local village community. Other deities seen include Chowdamma and Rameshwar. Outside the SG, a deity by the name Anegundi Bhutappa was also worshipped during the commencement of early monsoon rains. These gods and bhutas with rigorous religious sanctity have played a pivotal role in maintenance and survival of this ancient primary patch. *Vateria indica* trees, being lofty emergent primary forest species, have large sized fruits and seeds. Seeds dispersal can only be feasible by wild animals and large birds such as Hornbills. In Yelakundli SG the forest size is very less to support larger wild animals and hence are totally absent. Absence of larger dispersal agents and soil having heavy leaf litter with moisture, supported trees such as *V. indica* and *M. ferrea* which have dominated the sacred grove over the years. Other evergreen trees might have slowly got locally extinct from the area due to small grove size. But the very presence of primary tree species, *V. indica*, and *M. ferrea* in this hostile area indicates the past grandeur these areas might have had. What is now seen is just a chunk of that bygone history of tropical luxuriance. Studies indicate

Figure 2. Schematic representation of the modified belt transect design, illustrating two of the five quadrats (20 x 20 m each): A—tree quadrat (20 x 20 m) | B—shrub plot (10 x 10 m) | C—herb plot (5 x 5 m), used for vegetation sampling and analysis.

that natural populations of *V. indica* are rare in the central Western Ghats, occurring only in undisturbed primary forest patches or well-preserved sacred groves (Chandran et al. 2010; Gunaga et al. 2015) and more frequent in southern Western Ghats (Jose & Binoy 2018; Singh et al. 2022). Therefore, Yelakundli SG with all its evolutionary

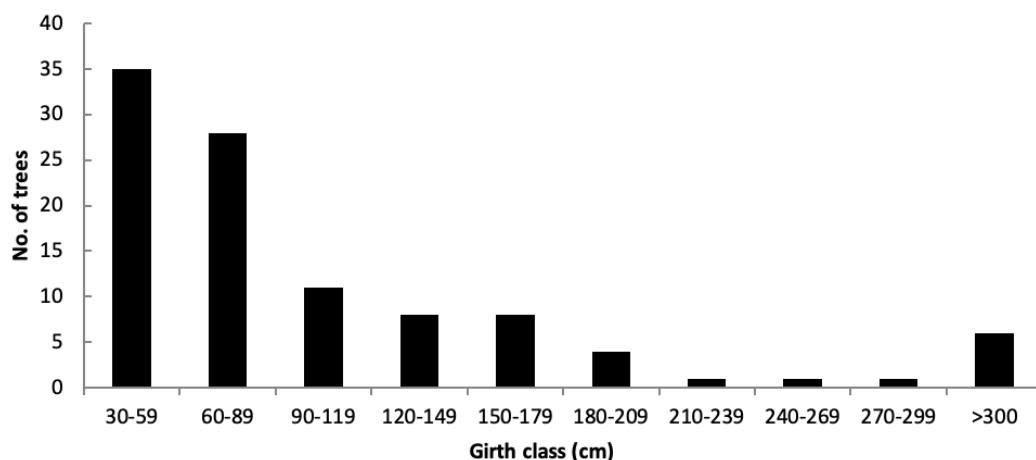


Figure 3. Ecological characteristics of Yelakundli sacred grove: A—percentage evergreeness | B—percentage endemism | C—basal area per ha.

significance and cultural importance highly qualifies to be declared as biodiversity heritage site. These are some of the areas where the missing links of tropical forest evolution are discovered, which would have been highly impossible if it had not been protected with such rigorous austerity.

CONCLUSIONS

The Yelakundli SG represents a unique relic of evergreen forest dominated by the endemic dipterocarp *V. indica*. Its near-monodominant structure, high endemism and evergreeness underscore both its evolutionary antiquity and its role as a living museum of Dipterocarpaceae heritage. Community-driven protection rooted in sacred grove traditions has safeguarded this fragment against litter removal, fire and land conversion. This fosters seedling establishment for large-seeded climax species. This culturally enforced refuge illustrates how traditional

Figure 4. Girth class distribution of the endemic dipterocarp *Vateria indica* in Yelakundli Sacred Grove: a transect-based analysis revealing the population structure and size-class distribution.

Image 2. Important trees of Yelakundli Sacred Grove: A—*Knema attenuata* | B—*Saraca asoca* | C—*Mesua ferrea* | D—*Vateria indica*.
© G. Ramachandra Rao.

ecological knowledge can sustain primeval forest even within intensively modified agricultural landscapes.

REFERENCES

Conservation International (2005). Biodiversity Hotspots. <https://www.conservation.org/learning/biodiversity-hotspots>. Retrieved 4.ix.2025.

Chandran, M.D.S., G.R. Rao, K.V. Gururaja & T.V. Ramachandra (2010). Ecology of the Swampy Relic Forests of Kathalekan from central Western Ghats, India. *Bioremediation, Biodiversity and Bioavailability* 4(Special Issue I): 54–68. [http://www.globalsciencebooks.info/Online/GSBookOnline/images/2010/BBB_4\(SI1\)/BBB_4\(SI1\)54-68o.pdf](http://www.globalsciencebooks.info/Online/GSBookOnline/images/2010/BBB_4(SI1)/BBB_4(SI1)54-68o.pdf)

Curtis J.T. & R.P. McIntosh (1951). An upland forest continuum in the prairie-forest border region of Wisconsin. *Ecology* 32: 476–496. <https://doi.org/10.2307/1931725>

Elakiya N., G. Keerthana & S. Safiya (2023). Effects of forest fire on soil properties. *International Journal of Plant & Soil Science* 35(20): 8–17.

Gadgil, M. & F. Berkes (1991). Traditional resource management systems. *Resource Management and Optimization* 8(3–4): 127–141.

Gunaga, S., N. Rajeshwari, R. Vasudeva & K.N. Ganeshaiyah (2015). Floristic composition of the *kaan* forests of Sagar Taluk: sacred landscape in the central Western Ghats, Karnataka, India. *Check List* 11(3): 1–16. <https://doi.org/10.15560/11.3.1626>

Hughes, J.D. & M.D.S. Chandran (1998). Sacred groves around the Earth: an overview. *Resonance: Journal of Science Education* 3(5): 81–82.

Ito, E., J. Toriyama, M. Araki, Y. Kiyono, M. Kanzaki, B. Tith, S. Keth, L. Chandararithy & S. Chann (2014). Physicochemical surface-soil properties after litter-removal manipulation in a Cambodian Lowland Dry Evergreen Forest. *Japan Agricultural Research Quarterly (JARQ)* 48(2): 195–211. <https://doi.org/10.6090/jarq.48.195>

Jose, P.A., S.T. Kuruvila & N.M. Binoy (2018). Distribution and population status of *Kingiodendron pinnatum* (Angiosperms: Fabaceae) an endemic and endangered legume tree in southern Western Ghats, Kerala, India. *Journal of Threatened Taxa* 10(7): 11963–11968. <https://doi.org/10.11609/jott.3430.10.7.11963-11968>

Ludwig, J.A. & J.F. Reynolds (1988). *Statistical Ecology: A Primer on Methods and Computing*. John Wiley & Sons, 331 pp.

Meijer, W. (1973). Dipterocarpaceae, pp. 237–552. In: van Steenis C.G.G.J. (ed.). *Flora Malesiana, Series I, Vol. 8, Part 2*. The Hague: Rijks herbarium, 552 pp.

Mesta, D.K. & G.R. Hegde (2018). Forest evergreeness and tree endemism in the central Western Ghats, southern India. *Journal of Threatened Taxa* 10(6): 11743–11752. <https://doi.org/10.11609/jott.3173.10.6.11743-11752>

Myers, N., R.A. Mittermeier, C. Mittermeier, G.A.B. da Fonesca & J. Kent (2000). Biodiversity hotspots for conservation priorities. *Nature* 403: 853–858.

Nayar, M.P. (1996). “Hot Spots” of Endemic Plants of India, Nepal and Bhutan, Tropical Botanical Garden and Research Institute, Thiruvananthapuram, 252 pp.

Singh, M.P., M.T. Nanjappa, S. Raman, S.H. Satyanatayana, A. Narayanan, G. Renagaian & S.K. Ashtamoorthy (2022). Forest vegetation and dynamics studies in India. *IntechOpen* <https://doi.org/10.5772/intechopen.97724>

Ray, R. & T.V. Ramachandra (2010) Small sacred grove in local landscape: are they really worthy for conservation? *Current Science* 98: 1078–1080.

Rust, J., H. Singh, R.S. Rana, T. McCann, L. Singh, K. Anderson, N. Sarkar, P.C. Nascimbene, F. Stebner, J.C. Thomas, M.S. Kraemer, C.J. Williams, M.S. Engel, A. Sahni & D. Grimaldi (2010). Biogeographic and evolutionary implications of a diverse paleobiota in amber from the early Eocene of India. *Proceedings of the National Academy of Sciences of the United States of America* 107(43): 18360–18365.

Mr. Jatishwor Singh Irungbam, Biology Centre CAS, Branišovská, Czech Republic.
Dr. Ian J. Kitching, Natural History Museum, Cromwell Road, UK
Dr. George Mathew, Kerala Forest Research Institute, Peechi, India
Dr. John Noyes, Natural History Museum, London, UK
Dr. Albert G. Orr, Griffith University, Nathan, Australia
Dr. Sameer Padhye, Katholieke Universiteit Leuven, Belgium
Dr. Nancy van der Poorten, Toronto, Canada
Dr. Karen Schnabel, NIWA, Wellington, New Zealand
Dr. R.M. Sharma, (Retd.) Scientist, Zoological Survey of India, Pune, India
Dr. Manju Siliwal, WILD, Coimbatore, Tamil Nadu, India
Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India
Dr. K.A. Subramanian, Zoological Survey of India, New Alipore, Kolkata, India
Dr. P.M. Sureshan, Zoological Survey of India, Kozhikode, Kerala, India
Dr. R. Varatharajan, Manipur University, Imphal, Manipur, India
Dr. Eduard Vives, Museu de Ciències Naturals de Barcelona, Terrassa, Spain
Dr. James Young, Hong Kong Lepidopterists' Society, Hong Kong
Dr. R. Sundararaj, Institute of Wood Science & Technology, Bengaluru, India
Dr. M. Nithyanandan, Environmental Department, La Al Kuwait Real Estate. Co. K.S.C., Kuwait
Dr. Himender Bharti, Punjabi University, Punjab, India
Mr. Purnendu Roy, London, UK
Mr. Saito Motoki, The Butterfly Society of Japan, Tokyo, Japan
Dr. Sanjay Sondhi, TITLI TRUST, Kalpavriksh, Dehradun, India
Dr. Nguyen Thi Phuong Lien, Vietnam Academy of Science and Technology, Hanoi, Vietnam
Dr. Nitin Kulkarni, Tropical Research Institute, Jabalpur, India
Dr. Robin Wen Jiang Ngiam, National Parks Board, Singapore
Dr. Lional Monod, Natural History Museum of Geneva, Genève, Switzerland.
Dr. Asheesh Shivam, Nehru Gram Bharti University, Allahabad, India
Dr. Rosana Moreira da Rocha, Universidade Federal do Paraná, Curitiba, Brasil
Dr. Kurt R. Arnold, North Dakota State University, Saxony, Germany
Dr. James M. Carpenter, American Museum of Natural History, New York, USA
Dr. David M. Claborn, Missouri State University, Springfield, USA
Dr. Karen Schnabel, Marine Biologist, Wellington, New Zealand
Dr. Amazonas Chagas Júnior, Universidade Federal de Mato Grosso, Cuiabá, Brasil
Mr. Monsoon Jyoti Gogoi, Assam University, Silchar, Assam, India
Dr. Heo Chong Chin, Universiti Teknologi MARA (UiTM), Selangor, Malaysia
Dr. R.J. Shiel, University of Adelaide, SA 5005, Australia
Dr. Siddharth Kulkarni, The George Washington University, Washington, USA
Dr. Priyadarshan Dharma Rajan, ATREE, Bengaluru, India
Dr. Phil Alderslade, CSIRO Marine And Atmospheric Research, Hobart, Australia
Dr. John E.N. Veron, Coral Reef Research, Townsville, Australia
Dr. Daniel Whitmore, State Museum of Natural History Stuttgart, Rosenstein, Germany.
Dr. Yu-Feng Hsu, National Taiwan Normal University, Taipei City, Taiwan
Dr. Keith V. Wolfe, Antioch, California, USA
Dr. Siddharth Kulkarni, The Hormiga Lab, The George Washington University, Washington, D.C., USA
Dr. Tomas Ditrich, Faculty of Education, University of South Bohemia in Ceske Budejovice, Czech Republic
Dr. Mihaly Foldvari, Natural History Museum, University of Oslo, Norway
Dr. V.P. Uniyal, Wildlife Institute of India, Dehradun, Uttarakhand 248001, India
Dr. John T.D. Caleb, Zoological Survey of India, Kolkata, West Bengal, India
Dr. Priyadarshan Dharma Rajan, Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Bangalore, Karnataka, India

Fishes

Dr. Topiltzin Contreras MacBeath, Universidad Autónoma del estado de Morelos, México
Dr. Heok Hee Ng, National University of Singapore, Science Drive, Singapore
Dr. Rajeev Raghavan, St. Albert's College, Kochi, Kerala, India
Dr. Robert D. Sluka, Chiltern Gateway Project, A Rocha UK, Southall, Middlesex, UK
Dr. E. Vivekanandan, Central Marine Fisheries Research Institute, Chennai, India
Dr. Davor Zanella, University of Zagreb, Zagreb, Croatia
Dr. A. Biju Kumar, University of Kerala, Thiruvananthapuram, Kerala, India
Dr. Akhilesh KV, ICAR-Central Marine Fisheries Research Institute, Mumbai Research Centre, Mumbai, Maharashtra, India
Dr. J.A. Johnson, Wildlife Institute of India, Dehradun, Uttarakhand, India
Dr. R. Ravinesh, Gujarat Institute of Desert Ecology, Gujarat, India

Amphibians

Dr. Sushil K. Dutta, Indian Institute of Science, Bengaluru, Karnataka, India
Dr. Annemarie Ohler, Muséum national d'Histoire naturelle, Paris, France

Reptiles

Dr. Gernot Vogel, Heidelberg, Germany
Dr. Raja Vyas, Vadodara, Gujarat, India
Dr. Pritpal S. Soorae, Environment Agency, Abu Dhabi, UAE.
Prof. Dr. Wayne J. Fuller, Near East University, Mersin, Turkey
Prof. Chandrashekher U. Rixonker, Goa University, Taleigao Plateau, Goa, India
Dr. S.R. Ganesh, Chennai Snake Park, Chennai, Tamil Nadu, India
Dr. Himansu Sekhar Das, Terrestrial & Marine Biodiversity, Abu Dhabi, UAE

Journal of Threatened Taxa is indexed/abstracted in Bibliography of Systematic Mycology, Biological Abstracts, BIOSIS Previews, CAB Abstracts, EBSCO, Google Scholar, Index Copernicus, Index Fungorum, JournalSeek, National Academy of Agricultural Sciences, NewJour, OCLC WorldCat, SCOPUS, Stanford University Libraries, Virtual Library of Biology, Zoological Records.

NAAS rating (India) 5.64

Birds

Dr. Hem Sagar Baral, Charles Sturt University, NSW Australia
Mr. H. Biju, Coimbatore, Tamil Nadu, India
Dr. Chris Bowden, Royal Society for the Protection of Birds, Sandy, UK
Dr. Priya Davidar, Pondicherry University, Kalapet, Puducherry, India
Dr. J.W. Duckworth, IUCN SSC, Bath, UK
Dr. Rajah Jayopal, SACON, Coimbatore, Tamil Nadu, India
Dr. Rajiv S. Kalsi, M.L.N. College, Yamuna Nagar, Haryana, India
Dr. V. Santharam, Rishi Valley Education Centre, Chittoor Dt., Andhra Pradesh, India
Dr. S. Balachandran, Bombay Natural History Society, Mumbai, India
Mr. J. Praveen, Bengaluru, India
Dr. C. Srinivasulu, Osmania University, Hyderabad, India
Dr. K.S. Gopi Sundar, International Crane Foundation, Baraboo, USA
Dr. Gombobaatar Sundev, Professor of Ornithology, Ulaanbaatar, Mongolia
Prof. Reuven Yosef, International Birding & Research Centre, Eilat, Israel
Dr. Taej Mundkur, Wetlands International, Wageningen, The Netherlands
Dr. Carol Inskip, Bishop Auckland Co., Durham, UK
Dr. Tim Inskip, Bishop Auckland Co., Durham, UK
Dr. V. Gokula, National College, Tiruchirappalli, Tamil Nadu, India
Dr. Arkady Lelej, Russian Academy of Sciences, Vladivostok, Russia
Dr. Simon Dowell, Science Director, Chester Zoo, UK
Dr. Mário Gabriel Santiago dos Santos, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, Vila Real, Portugal
Dr. Grant Connette, Smithsonian Institution, Royal, VA, USA
Dr. P.A. Azeez, Coimbatore, Tamil Nadu, India

Mammals

Dr. Giovanni Amori, CNR - Institute of Ecosystem Studies, Rome, Italy
Dr. Anwaruddin Chowdhury, Guwahati, India
Dr. David Mallon, Zoological Society of London, UK
Dr. Shomita Mukherjee, SACON, Coimbatore, Tamil Nadu, India
Dr. Angie Appel, Wild Cat Network, Germany
Dr. P.O. Nameer, Kerala Agricultural University, Thrissur, Kerala, India
Dr. Ian Redmond, UNEP Convention on Migratory Species, Lansdown, UK
Dr. Heidi S. Riddle, Riddle's Elephant and Wildlife Sanctuary, Arkansas, USA
Dr. Karin Schwartz, George Mason University, Fairfax, Virginia.
Dr. Lala A.K. Singh, Bhubaneswar, Orissa, India
Dr. Mewa Singh, Mysore University, Mysore, India
Dr. Paul Racey, University of Exeter, Devon, UK
Dr. Honnavalli N. Kumara, SACON, Anaikatty P.O., Coimbatore, Tamil Nadu, India
Dr. Nishith Dharaiya, HNG University, Patan, Gujarat, India
Dr. Spartaco Gippoliti, Socio Onorario Società Italiana per la Storia della Fauna "Giuseppe Altobello", Rome, Italy
Dr. Justin Joshua, Green Future Foundation, Tiruchirappalli, Tamil Nadu, India
Dr. H. Raghuram, Sri S. Ramasamy Naidu Memorial College, Virudhunagar, Tamil Nadu, India
Dr. Paul Bates, Harison Institute, Kent, UK
Dr. Jim Sanderson, Small Wild Cat Conservation Foundation, Hartford, USA
Dr. Dan Challender, University of Kent, Canterbury, UK
Dr. David Mallon, Manchester Metropolitan University, Derbyshire, UK
Dr. Brian L. Cypher, California State University-Stanislaus, Bakersfield, CA
Dr. S.S. Talmale, Zoological Survey of India, Pune, Maharashtra, India
Prof. Karan Bahadur Shah, Budhanilakantha Municipality, Kathmandu, Nepal
Dr. Susan Cheyne, Borneo Nature Foundation International, Palangkaraja, Indonesia
Dr. Hemanta Kafley, Wildlife Sciences, Tarleton State University, Texas, USA

Other Disciplines

Dr. Aniruddha Belsare, Columbia MO 65203, USA (Veterinary)
Dr. Manda S. Paingankar, University of Pune, Pune, Maharashtra, India (Molecular)
Dr. Jack Tordoff, Critical Ecosystem Partnership Fund, Arlington, USA (Communities)
Dr. Ulrike Streicher, University of Oregon, Eugene, USA (Veterinary)
Dr. Hari Balasubramanian, EcoAdvisors, Nova Scotia, Canada (Communities)
Dr. Rayanna Hellern Santos Bezerra, Universidade Federal de Sergipe, São Cristóvão, Brazil
Dr. Jamie R. Wood, Landcare Research, Canterbury, New Zealand
Dr. Wendy Collinson-Jonker, Endangered Wildlife Trust, Gauteng, South Africa
Dr. Rajeshkumar G. Jani, Anand Agricultural University, Anand, Gujarat, India
Dr. O.N. Tiwari, Senior Scientist, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
Dr. L.D. Singla, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
Dr. Rupika S. Rajakaruna, University of Peradeniya, Peradeniya, Sri Lanka
Dr. Bahar Baviskar, Wild-CER, Nagpur, Maharashtra 440013, India

Reviewers 2021–2023

Due to paucity of space, the list of reviewers for 2021–2023 is available online.

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.

Print copies of the Journal are available at cost. Write to:
The Managing Editor, JoTT,
c/o Wildlife Information Liaison Development Society,
3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore,
Tamil Nadu 641006, India
ravi@threatenedtaxa.org & ravi@zooreach.org

Articles

Morpho-taxonomic studies on the genus *Fissidens* Hedw. (Bryophyta: Fissidentaceae) in Senapati District, Manipur, India

– Kholi Kaini & Kazhuhrii Eshuo, Pp. 27787–27796

Ecology and conservation concerns of *Indianthus virgatus* (Marantaceae): an endemic species of the Western Ghats–Sri Lanka Biodiversity Hotspot

– Shreekara Bhat Vishnu, Vivek Pandi, Bhathiya Gopallawa, Rajendiran Gayathri, B. Mahim, Deepthi Yakandawala & Annamalai Muthusamy, Pp. 27797–27805

An updated floral diversity of Tal Chhapar Wildlife Sanctuary, Rajasthan, India

– Sneha Singh & Orus Ilyas, Pp. 27806–27821

An updated checklist of the family Rosaceae in Arunachal Pradesh, India

– Pinaki Adhikary & P.R. Gajurel, Pp. 27822–27841

Restoring biodiversity: case studies from two sacred groves of Kozhikode District, Kerala, India

– K. Kishore Kumar, Pp. 27842–27853

A preliminary investigation on wing morphology, flight patterns, and flight heights of selected odonates

– Ananditha Pascal & Chelmala Srinivasulu, Pp. 27854–27862

Phylogenetic confirmation of generic allocation and specific distinction of Mawphlang Golden-cheeked Frog *Odorrana mawphlangensis* (Pillai & Chanda, 1977) (Amphibia: Anura: Ranidae) and its updated distribution records

– Angshuman Das Tariang, Mathipi Vabeiryureilai, Fanai Malsawmdawngliana & Hmar Tlawmte Lalremsanga, Pp. 27863–27873

Phenotypic and genotypic variability in the Snowtrout *Schizothorax richardsonii* (Cypriniformes: Cyprinidae) wild populations from central Himalayan tributaries of the Ganga River basin

– Yasmeen Kousar, Mahender Singh & Deepak Singh, Pp. 27874–27888

Avian composition and distribution in the bird sanctuary planning zone of Can Gio Mangrove Biosphere Reserve, Ho Chi Minh City, Vietnam

– Huynh Duc Hieu, Huynh Duc Hoan, Bui Nguyen The Kiet, Dang Ngoc Heip, Nguyen Thi Phuong Linh & Nguyen Dang Hoang Vu, Pp. 27889–27896

Bat echolocation in South Asia

– Aditya Srinivasulu, Chelmala Srinivasulu, Bhargavi Srinivasulu, Deepa Senapathi & Manuela González-Suárez, Pp. 27897–27931

A checklist of the mammals of Jammu & Kashmir, India

– Muzaffar A. Kichloo, Ajaz Ansari, Khursheed Ahmad & Neeraj Sharma, Pp. 27932–27945

Communications

Notes on distribution, identification and typification of the Elongated Sweet Grass *Anthoxanthum hookeri* (Aveneae: Poaceae) with comparative notes on *A. borii*

– Manoj Chandran, Kuntal Saha, Ranjana Negi & Saurabh Guleri, Pp. 27946–27953

Conservation significance of Yelakundli Sacred Grove: a relic population of the endemic dipterocarp *Vateria indica* L.

– G. Ramachandra Rao, Pp. 27954–27959

A preliminary study of fish diversity in Sirum River of East Siang District, Arunachal Pradesh, India

– Obinam Tayeng, Leki Wangchu & Debangshu Narayan Das, Pp. 27960–27969

Preliminary investigation on morphometrics and habitat of the Indian Flapshell Turtle *Lissemys punctata* (Bonnaterre, 1789) (Reptilia: Trionychidae) in rural wetlands of Alappuzha, Kerala, India

– Sajan Sunny, Appiyathu Saraswathy Vijayasree, Nisha Thomas Panikkavettil & E. Sherly Williams, Pp. 27970–27975

A preliminary assessment of avifaunal diversity in Parwati Arga Bird Sanctuary, Uttar Pradesh, India

– Yashmita-Ulman & Manoj Singh, Pp. 27976–27984

Sightings of the Rusty-spotted Cat *Prionailurus rubiginosus* (I. Geoffroy Saint-Hilaire, 1831) (Mammalia: Carnivora: Felidae) in Saurashtra Peninsula, Gujarat, India

– Raju Vyas, Pranav Vaghshiya & Devendra Chauhan, Pp. 27985–27991

Short Communications

Abundance and distribution of the Critically Endangered Giant Staghorn Fern *Platycerium grande* (A.Cunn. ex Hook.) J.Sm. in Maguindanao del Sur, BARMM, Philippines

– Marylene M. Demapitan, Roxane B. Sombero, Datu Muhaymin C. Abo, Nof A. Balabagan & Cherie Cano-Mangaoang, Pp. 27992–27996

Bonnaya gracilis a novel find for the flora of Uttarakhand, India

– Monal R. Jadhav, Revan Y. Chaudhari & Tanveer A. Khan, Pp. 27997–28000

Notes

Crab eating crab: first record of the Horn-eyed Ghost Crab *Ocypode brevicornis* preying on the Mottled Light-footed Crab *Grapsus albolineatus* in Visakhapatnam, India

– Harish Prakash, M.K. Abhisree & Rohan Kumar, Pp. 28001–28003

First record of Greater Scaup *Aythya marila* in Farakka IBA near West Bengal & Jharkhand border, India

– Subhro Paul, Sudip Ghosh & J. Jiju Jaesper, Pp. 28004–28006

Filling the gap: first regional record of the Little Owl *Athene noctua ludlowi* (Strigiformes: Strigidae) from Uttarakhand, India

– Anuj Joshi, Dhanesh Ponnu, Vineet K. Dubey & Sambandam Sathyakumar, Pp. 28007–28010

Publisher & Host

Threatened Taxa