Environmental DNA as a tool for biodiversity monitoring in aquatic ecosystems – a review

Main Article Content

Manisha Ray
Govindhaswamy Umapathy


The monitoring of changes in aquatic ecosystems due to anthropogenic activities is of utmost importance to ensure the health of aquatic biodiversity. Eutrophication in water bodies due to anthropogenic disturbances serves as one of the major sources of nutrient efflux and consequently changes the biological productivity and community structure of these ecosystems. Habitat destruction and overexploitation of natural resources are other sources that impact the equilibrium of aquatic systems. Environmental DNA (eDNA) is a tool that can help to assess and monitor aquatic biodiversity. There has been a considerable outpour of research in this area in the recent past, particularly concerning conservation and biodiversity management. This review focuses on the application of eDNA for the detection and relative quantification of threatened, endangered, invasive and elusive species. We give a special emphasis on how this technique developed in the past few years to become a tool for understanding the impact of spatial-temporal changes on ecosystems. Incorporating eDNA based biomonitoring with advances in sequencing technologies and computational abilities had an immense role in the development of different avenues of application of this tool.

Article Details



Akamatsu, Y., G. Kume, M. Gotou, T. Kono, T. Fujii, R. Inui & Y. Kurita (2020). Using environmental DNA analyses to assess the occurrence and abundance of the endangered amphidromous fish Plecoglossus altivelis ryukyuensis. Biodiversity Data Journal 8 :e39679. https://doi.org/10.3897/BDJ.8.e39679

Andruszkiewicz, E.A., J.R. Koseff, O.B. Fringer, N.T. Ouellette, A.B. Lowe, C.A. Edwards & A.B. Boehm (2019). Modeling environmental DNA transport in the coastal ocean using Lagrangian particle tracking. Frontiers in Marine Science 6: 477. https://doi.org/10.3389/fmars.2019.00477

Baker, C.S., D. Steel, S. Nieukirk & H. Klinck (2018). Environmental DNA (eDNA) from the wake of the whales: Droplet digital PCR for detection and species identification. Frontiers in Marine Science 5: 1021. https://doi.org/10.3389/fmars.2018.00133

Barnes, M.A. & C.R. Turner (2016). The ecology of environmental DNA and implications for conservation genetics. Conservation Genetics 17(1): 1–17. https://doi.org/10.1007/s10592-015-0775-4

Barnes, M.A., C.R. Turner, C.L. Jerde, M.A Renshaw, W.L Chadderton & D.M. Lodge (2014). Environmental conditions influence eDNA persistence in aquatic systems. Environmental Science and Technology 48(3): 1819–1827. https://doi.org/10.1021/es404734p

Bianchi, T. & E. Morrison (2018). Human Activities Create Corridors of Change in Aquatic Zones. Eos 99(11): 13–15. https://doi.org/10.1029/2018eo104743

Bremmer, R.H., K.G. De Bruin, M.J.C. Van Gemert,, T.G. Van Leeuwen & M.C.G Aalders (2012). Forensic quest for age determination of bloodstains. Forensic Science International 216(1–3): 1–11. https://doi.org/10.1016/j.forsciint.2011.07.027

Brys, R., D. Halfmaerten, S. Neyrinck, Q. Mauvisseau, J. Auwerx, M. Sweet & J. Mergeay (2021). Reliable eDNA detection and quantification of the European weather loach (Misgurnus fossilis). Journal of Fish Biology 98(2): 399–414. https://doi.org/10.1111/jfb.14315

Capo, E., G. Spong, S. Norman, H. Königsson, P. Bartels & P. Byström (2019). Droplet digital PCR assays for the quantification of brown trout (Salmo trutta) and Arctic char (Salvelinus alpinus) from environmental DNA collected in the water of mountain lakes. PLoS ONE 14(12): 1–19. https://doi.org/10.1371/journal.pone.0226638

Carmichael, W.W. (2001). Health Effects of Toxin-Producing Cyanobacteria: “The CyanoHABs.” Human and Ecological Risk Assessment: An International Journal Human and Ecological Risk Assessment 7(5): 1393–1407. https://doi.org/10.1080/20018091095087

Carpenter R.S. (1981). The American Naturalist. The American Naturalist 118(3): 372–383.

Clark, D.E., C.A. Pilditch, J.K. Pearman, J.I. Ellis & A. Zaiko (2020). Environmental DNA metabarcoding reveals estuarine benthic community response to nutrient enrichment – Evidence from an in-situ experiment. Environmental Pollution 267: 115472. https://doi.org/10.1016/j.envpol.2020.115472

Collins, R.A., O.S. Wangensteen, E.J. O’Gorman, S. Mariani, D.W. Sims & M.J. Genner (2018). Persistence of environmental DNA in marine systems. Communications Biology 1(1): 1–11. https://doi.org/10.1038/s42003-018-0192-6

Conley, D.J., H.W. Paerl, R.W. Howarth, D.F. Boesch, S.P. Seitzinger, K.E. Havens, C. Lancelot & G.E. Likens (2009). Controlling eutrophication: phosphorus and nitrogen. Science 323: 1014–1015.

Cowart, D.A., K.G.H Breedveld, M.J. Ellis, J.M. Hull & E.R. Larson (2018). Environmental DNA (eDNA) applications for the conservation of imperiled crayfish (Decapoda: Astacidea) through monitoring of invasive species barriers and relocated populations. Journal of Crustacean Biology 38(3): 257–266. https://doi.org/10.1093/jcbiol/ruy007

Craine, J., M. Cannon, A. Elmore, S. Guinn & N. Fierer (2017). DNA metabarcoding potentially reveals multi-assemblage eutrophication responses in an eastern North American river. BioRxiv 186452. https://doi.org/10.1101/186452

Cristescu, M.E. & P.D.N. Hebert (2018). Uses and misuses of environmental DNA in biodiversity science and conservation. Annual Review of Ecology, Evolution, and Systematics 49: 209–230. https://doi.org/10.1146/annurev-ecolsys-110617-062306

Deiner, K., J.C. Walser, E. Mächler & F. Altermatt (2015). Choice of capture and extraction methods affect detection of freshwater biodiversity from environmental DNA. Biological Conservation 183: 53–63. https://doi.org/10.1016/j.biocon.2014.11.018

Dejean, T., A. Valentini, A. Duparc, S. Pellier-Cuit, F. Pompanon, P. Taberlet & C. Miaud (2011). Persistence of environmental DNA in freshwater ecosystems. PLoS ONE 6(8): 8–11. https://doi.org/10.1371/journal.pone.0023398

Dejean, T., A. Valentini, C. Miquel, P. Taberlet, E. Bellemain & C. Miaud (2012). Improved detection of an alien invasive species through environmental DNA barcoding: The example of the American bullfrog Lithobates catesbeianus. Journal of Applied Ecology 49(4): 953–959. https://doi.org/10.1111/j.1365-2664.2012.02171.x

Deutschmann, B., A.K. Müller, H. Hollert & M. Brinkmann (2019). Assessing the fate of brown trout (Salmo trutta) environmental DNA in a natural stream using a sensitive and specific dual-labelled probe. Science of the Total Environment 655: 321–327. https://doi.org/10.1016/j.scitotenv.2018.11.247

Díaz-Ferguson, E., J. Herod, J. Galvez & G. Moyer, G (2014). Development of molecular markers for eDNA detection of the invasive African jewelfish (Hemichromis letourneuxi): A new tool for monitoring aquatic invasive species in National Wildlife Refuges. Management of Biological Invasions 5(2): 121–131. https://doi.org/10.3391/mbi.2014.5.2.05

Doi, H., K. Uchii, T. Takahara, S. Matsuhashi, H. Yamanaka & T. Minamoto (2015). Use of droplet digital PCR for estimation of fish abundance and biomass in environmental DNA surveys. PLoS ONE 10(3): 1–11. https://doi.org/10.1371/journal.pone.0122763

Doi, H., T. Watanabe, N. Nishizawa, T. Saito, H. Nagata, Y. Kameda, N. Maki, K. Ikeda & T. Fukuzawa, T (2021). On-site environmental DNA detection of species using ultrarapid mobile PCR. Molecular Ecology Resources 21(7): 2364–2368. https://doi.org/10.1111/1755-0998.13448

Anderson, D.M., P.M. Glibert & J.M. Burkholder (2002). Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries 25(4): 704–726.

Dougherty, M.M., E.R. Larson, M.A. Renshaw, C.A. Gantz, S.P. Egan, D.M. Erickson & D.M. Lodge (2016). Environmental DNA (eDNA) detects the invasive rusty crayfish Orconectes rusticus at low abundances. Journal of Applied Ecology 53(3): 722–732. https://doi.org/10.1111/1365-2664.12621

Elberri, A.I., A. Galal-Khallaf, S.E. Gibreel, S.F. El-Sakhawy, I. El-Garawani, S. El-Sayed Hassab ElNabi & K. Mohammed-Geba (2020). DNA and eDNA-based tracking of the North African sharptooth catfish Clarias gariepinus. Molecular and Cellular Probes 51: 101535. https://doi.org/10.1016/j.mcp.2020.101535

Elbrecht, V. & F. Leese (2015). Can DNA-based ecosystem assessments quantify species abundance? Testing primer bias and biomass-sequence relationships with an innovative metabarcoding protocol. PLoS ONE 10(7): 1–16. https://doi.org/10.1371/journal.pone.0130324

Ficetola, G.F., J. Pansu, A. Bonin, E. Coissac, C. Giguet-Covex, M. De Barba, L. Gielly, C.M. Lopes, F. Boyer, F. Pompanon, G. Rayé & P. Taberlet (2015). Replication levels, false presences and the estimation of the presence/absence from eDNA metabarcoding data. Molecular Ecology Resources 15(3): 543–556. https://doi.org/10.1111/1755-0998.12338

Fonseca, V. G (2018). Pitfalls in relative abundance estimation using edna metabarcoding. Molecular Ecology Resources 18(5): 923–926. https://doi.org/10.1111/1755-0998.12902

Fujiwara, A., S. Matsuhashi, H. Doi, S. Yamamoto & T. Minamoto (2016). Use of environmental DNA to survey the distribution of an invasive submerged plant in ponds. Freshwater Science 35(2): 748–754. https://doi.org/10.1086/685882

Fukumoto, S., A. Ushimaru & T. Minamoto (2015). A basin-scale application of environmental DNA assessment for rare endemic species and closely related exotic species in rivers: A case study of giant salamanders in Japan. Journal of Applied Ecology 52(2): 358–365. https://doi.org/10.1111/1365-2664.12392

Gargan, L.M., T. Morato, C.K. Pham, J.A. Finarelli, J.E.L Carlsson & J. Carlsson (2017). Development of a sensitive detection method to survey pelagic biodiversity using eDNA and quantitative PCR: a case study of devil ray at seamounts. Marine Biology 164(5): 1–9. https://doi.org/10.1007/s00227-017-3141-x

Garlapati, D., B.C. Kumar, C. Muthukumar, P. Madeswaran, K. Ramu & M.V.R. Murthy (2021). Assessing the in situ bacterial diversity and composition at anthropogenically active sites using the environmental DNA (eDNA). Marine Pollution Bulletin 170: 112593. https://doi.org/10.1016/j.marpolbul.2021.112593

Geerts, A.N., P. Boets, S. Van den Heede, P. Goethals & C. Van der heyden (2018). A search for standardized protocols to detect alien invasive crayfish based on environmental DNA (eDNA): A lab and field evaluation. Ecological Indicators 84: 564–572. https://doi.org/10.1016/j.ecolind.2017.08.068

Gunzburger, M.S (2007). Evaluation of seven aquatic sampling methods for amphibians and other aquatic fauna. Applied Herpetology 4(1): 47–63. https://doi.org/10.1163/157075407779766750

Harper, K.J., N.P. Anucha, J.F. Turnbull, C.W. Bean & M.J. Leaver (2018). Searching for a signal: Environmental DNA (eDNA) for the detection of invasive signal crayfish, Pacifastacus leniusculus (Dana, 1852). Management of Biological Invasions 9(2): 137–148. https://doi.org/10.3391/mbi.2018.9.2.07

Hinlo, R., D. Gleeson, M.Lintermans & E.Furlan (2017). Methods to maximise recovery of environmental DNA from water samples. PLoS ONE 12(6): 1–22. https://doi.org/10.1371/journal.pone.0179251

Hunter, M.E., J.A. Ferrante, G. Meigs-Friend & A. Ulmer (2019). Improving eDNA yield and inhibitor reduction through increased water volumes and multi-filter isolation techniques. Scientific Reports 9(1): 1–9. https://doi.org/10.1038/s41598-019-40977-w

Jackson, M., C. Myrholm, C. Shaw & T. Ramsfield (2017). Using nested PCR to improve detection of earthworm eDNA in Canada. Soil Biology and Biochemistry 113: 215–218. https://doi.org/10.1016/j.soilbio.2017.06.009

Jiao, N.Z., D.K. Chen, Y.M. Luo, X.P. Huang, R. Zhang, H.B. Zhang, Z.J. Jiang & F. Zhang (2015). Climate change and anthropogenic impacts on marine ecosystems and countermeasures in China. Advances in Climate Change Research 6(2): 118–125. https://doi.org/10.1016/j.accre.2015.09.010

Jovel, J., J. Patterson, W. Wang, N. Hotte, S. O’Keefe, T. Mitchel, T. Perry, D. Kao, A.L. Mason, K.L. Madsen & G.K.S. Wong (2016). Characterization of the gut microbiome using 16S or shotgun metagenomics. Frontiers in Microbiology 7: 459. https://doi.org/10.3389/fmicb.2016.00459

Lacoursière-Roussel, A., G. Côté, V. Leclerc & L. Bernatchez (2016a). Quantifying relative fish abundance with eDNA: a promising tool for fisheries management. Journal of Applied Ecology 53(4): 1148–1157. https://doi.org/10.1111/1365-2664.12598

Lacoursière-Roussel, A., M. Rosabal & L. Bernatchez (2016b). Estimating fish abundance and biomass from eDNA concentrations: variability among capture methods and environmental conditions. Molecular Ecology Resources 16(6): 1401–1414. https://doi.org/10.1111/1755-0998.12522

Lacoursière-Roussel, A., Y. Dubois, E. Normandeau & L. Bernatchez (2016c). Improving herpetological surveys in eastern North America using the environmental DNA method1. Genome 59(11): 991–1007. https://doi.org/10.1139/gen-2015-0218

Lee, A.H., J. Lee, J. Noh, C. Lee, S. Hong, B.O. Kwon, J.J. Kim & J.S. Khim (2020). Characteristics of long-term changes in microbial communities from contaminated sediments along the west coast of South Korea: Ecological assessment with eDNA and physicochemical analyses. Marine Pollution Bulletin 160: 111592. https://doi.org/10.1016/j.marpolbul.2020.111592

Leray, M. & N. Knowlton (2017). Random sampling causes the low reproducibility of rare eukaryotic OTUs in Illumina COI metabarcoding. PeerJ 3: 1–27. https://doi.org/10.7717/peerj.3006

Li, F., Y. Peng, W. Fang,, F. Altermatt., Y. Xie, J. Yang & X. Zhang (2018). Application of Environmental DNA Metabarcoding for Predicting Anthropogenic Pollution in Rivers. Environmental Science and Technology 52(20): 11708–11719. https://doi.org/10.1021/acs.est.8b03869

Liang, Z. & A. Keeley (2013). Filtration recovery of extracellular DNA from environmental water samples. Environmental Science and Technology 47(16): 9324–9331. https://doi.org/10.1021/es401342b

Lor, Y., T.M. Schreier, D.L. Waller & C.M. Merkes (2020). Using environmental dna (eDNA) to detect the endangered spectaclecase mussel (margaritifera monodonta). Freshwater Science 39(4): 837–847. https://doi.org/10.1086/71167

Manu, S. & G. Umapathy (2021). A Novel Metagenomic Workflow for Biomonitoring across the Tree of Life using PCR-free Ultra-deep Sequencing of Extracellular eDNA. Authorea Preprints.

Maruyama, A., K. Nakamura, H. Yamanaka, M. Kondoh & T. Minamoto (2014). The release rate of environmental DNA from juvenile and adult fish. PLoS ONE 9(12): 1–13. https://doi.org/10.1371/journal.pone.0114639

Mauvisseau, Q., E. Kalogianni, B. Zimmerman, M. Bulling, R. Brys & M. Sweet (2020). eDNA-based monitoring: Advancement in management and conservation of critically endangered killifish species. Environmental DNA 2(4): 601–613. https://doi.org/10.1002/edn3.92

McKee, A.M., S.F. Spear & T.W. Pierson (2015). The effect of dilution and the use of a post-extraction nucleic acid purification column on the accuracy, precision, and inhibition of environmental DNA samples. Biological Conservation 183: 70–76. https://doi.org/10.1016/j.biocon.2014.11.031

Miralles, L., M. Parrondo, A. Hernández de Rojas, E. Garcia-Vazquez. & Y.J. Borrell (2019). Development and validation of eDNA markers for the detection of Crepidula fornicata in environmental samples. Marine Pollution Bulletin 146: 827–830. https://doi.org/10.1016/j.marpolbul.2019.07.050

Morley, S.A. & B.L. Nielsen (2016). Chloroplast DNA copy number changes during plant development in organelle DNA polymerase mutants. Frontiers in Plant Science 7: 1–10. https://doi.org/10.3389/fpls.2016.00057

Nazari-Sharabian, M., S. Ahmad & K. Moses (2018). Climate change and groundwater : a short review Engineering, Technology and Applied Science Research 8(6): 3668–3672. https://digitalscholarship.unlv.edu/fac_articles/562

Nevers, M.B., M.N. Byappanahalli, C.C. Morris, D. Shively, K. Przybyla-Kelly, A.M. Spoljaric, J. Dickey & E.F. Roseman (2018). Environmental DNA (eDNA): A tool for quantifying the abundant but elusive round goby (Neogobius melanostomus). PLoS ONE 13(1): 1–22. https://doi.org/10.1371/journal.pone.0191720

Niemiller, M.L., M.L. Porter, J. Keany, H. Gilbert, D.W. Fong, D.C. Culver, C.S. Hobson, K.D. Kendall, M.A. Davis & S.J. Taylor (2018). Evaluation of eDNA for groundwater invertebrate detection and monitoring: a case study with endangered Stygobromus (Amphipoda: Crangonyctidae). Conservation Genetics Resources 10(2): 247–257. https://doi.org/10.1007/s12686-017-0785-2

Oberemm, A., J. Becker, G.A. Codd & C. Steinberg (1999). Effects of cyanobacterial toxins and aqueous crude extracts of cyanobacteria on the development of fish and amphibians. Environmental Toxicology 14(1): 77–88. https://doi.org/10.1002/(SICI)1522-7278(199902)14:1<77::AID-TOX11>3.0.CO;2-F

Ogram, A., G.S. Sayler & T. Barkay (1987). The extraction and purification of microbial DNA from sediments. Journal of Microbiological Methods 7(2–3): 57–66. https://doi.org/10.1016/0167-7012(87)90025-X

Parsons, K.M., M. Everett, M. Dahlheim & L. Park (2018). Water, water everywhere: Environmental DNA can unlock population structure in elusive marine species. Royal Society Open Science 5(8): 180537. https://doi.org/10.1098/rsos.180537

Paul, J.H., W.H. Jeffrey & M.F. DeFlaun (1987). Dynamics of extracellular DNA in the marine environment. Applied and Environmental Microbiology 53(1): 170–179. https://doi.org/10.1128/aem.53.1.170-179.1987

Pilliod, D.S., C.S. Goldberg, M.B. Laramie & L.P. Waits (2013a). Application of Environmental DNA for Inventory and Monitoring of Aquatic Species. United States Geological Survey, USA, 4 pp. http://www.arlis.org/docs/vol1/F/835572905.pdf

Pilliod, D.S., C.S. Goldberg, R.S. Arkle & L.P. Waits (2013b). Estimating occupancy and abundance of stream amphibians using environmental DNA from filtered water samples. Canadian Journal of Fisheries and Aquatic Sciences 70(8): 1123–1130. https://doi.org/10.1139/cjfas-2013-0047

Pinto, A.J. & L. Raskin (2012). PCR biases distort bacterial and archaeal community structure in pyrosequencing datasets. PLoS ONE 7(8): e43093. https://doi.org/10.1371/journal.pone.0043093

Pukk, L., J. Kanefsky, A.L. Heathman, E.M. Weise, L.R. Nathan, S.J. Herbst, N.M. Sard, K.T. Scribner & J.D. Robinson (2021). eDNA metabarcoding in lakes to quantify influences of landscape features and human activity on aquatic invasive species prevalence and fish community diversity. Diversity and Distributions 27(10): 2016–2031. https://doi.org/10.1111/ddi.13370

Reji, L. & C.A. Francis (2020). Metagenome-assembled genomes reveal unique metabolic adaptations of a basal marine Thaumarchaeota lineage. ISME Journal 14(8): 2105–2115. https://doi.org/10.1038/s41396-020-0675-6

Renshaw, M.A., B.P. Olds, C.L. Jerde, M.M. Mcveigh & D.M. Lodge (2015). The room temperature preservation of filtered environmental DNA samples and assimilation into a phenol-chloroform-isoamyl alcohol DNA extraction. Molecular Ecology Resources 15(1): 168–176. https://doi.org/10.1111/1755-0998.12281

Sassoubre, L.M., K.M. Yamahara, L.D. Gardner, B.A. Block & A.B. Boehm (2016). Quantification of Environmental DNA (eDNA) Shedding and Decay Rates for Three Marine Fish. Environmental Science and Technology 50(19): 10456–10464. https://doi.org/10.1021/acs.est.6b03114

Schmelzle, M.C. & A.P. Kinziger (2016). Using occupancy modelling to compare environmental DNA to traditional field methods for regional-scale monitoring of an endangered aquatic species. Molecular Ecology Resources 16(4): 895–908. https://doi.org/10.1111/1755-0998.12501

Schmidt, B.R., M. Kéry, S. Ursenbacher, O.J. Hyman & J.P. Collins (2013). Site occupancy models in the analysis of environmental DNA presence/absence surveys: A case study of an emerging amphibian pathogen. Methods in Ecology and Evolution 4(7): 646–653. https://doi.org/10.1111/2041-210X.12052

Sigsgaard, E.E., I.B. Nielsen, S.S. Bach, E.D. Lorenzen, D.P. Robinson, S.W. Knudsen, M.W. Pedersen., M.Al Jaidah, L. Orlando, E. Willerslev, P.R. Møller & P.F. Thomsen (2017). Population characteristics of a large whale shark aggregation inferred from seawater environmental DNA. Nature Ecology & Evolution 1(1): 1–4. https://doi.org/10.1038/s41559-016-0004

Smith, V.H. (1998). Cultural Eutrophication of Inland, Estuarine, and Coastal Waters, pp. 7–49. In: Pace, M.L. & P.M. Groffman (eds.). Successes, Limitations, and Frontiers in Ecosystem Science. Springer, New York, 490 pp. https://doi.org/10.1007/978-1-4612-1724-4_2

Song, J. W., M.J. Small & E.A. Casman (2017). Making sense of the noise: The effect of hydrology on silver carp eDNA detection in the Chicago area waterway system. Science of the Total Environment 605: 713–720. https://doi.org/10.1016/j.scitotenv.2017.06.255

Stepien, C.A., M.R. Snyder & A.E. Elz (2019). Invasion genetics of the silver carp Hypophthalmichthys molitrix across North America: Differentiation of fronts, introgression, and eDNA metabarcode detection. PLoS One 14(3): e0203012.

Sutter, M. & A.P. Kinziger (2019). Rangewide tidewater goby occupancy survey using environmental DNA. Conservation Genetics 20(3): 597–613. https://doi.org/10.1007/s10592-019-01161-9

Tillotson, M.D., R.P. Kelly, J.J. Duda, M. Hoy, J. Kralj & T.P. Quinn (2018). Concentrations of environmental DNA (eDNA) reflect spawning salmon abundance at fine spatial and temporal scales. Biological Conservation 220: 1–11. https://doi.org/10.1016/j.biocon.2018.01.030

Petty, J.T., J.L. Hansbarger, B.M. Huntsman & P.M. Mazik (2012). Brook trout movement in response to temperature, flow, and thermal refugia within a complex Appalachian riverscape. Transactions of the American Fisheries Society 141(4): 1060–1073. https://doi.org/10.1080/00028487.2012.681102

Tran, P.Q., S.C. Bachand, P.B. McIntyre, B.M. Kraemer, Y. Vadeboncoeur, I.A. Kimirei, R. Tamatamah, K.D. McMahon & K. Anantharaman (2021). Depth-discrete metagenomics reveals the roles of microbes in biogeochemical cycling in the tropical freshwater Lake Tanganyika. ISME Journal 1971–1986. https://doi.org/10.1038/s41396-021-00898-x

Wilcox, T.M., K.S. McKelvey, M.K. Young, S.F. Jane, W.H. Lowe, A.R. Whiteley & M.K. Schwartz (2013). Robust Detection of Rare Species Using Environmental DNA: The Importance of Primer Specificity. PLoS ONE 8(3): e59520. https://doi.org/10.1371/journal.pone.0059520

Wilcox, T.M., K.S. McKelvey, M.K. Young, W.H. Lowe & M.K. Schwartz (2015). Environmental DNA particle size distribution from Brook Trout (Salvelinus fontinalis). Conservation Genetics Resources 7(3): 639–641. https://doi.org/10.1007/s12686-015-0465-z

Williams, K.E., K.P. Huyvaert & A.J. Piaggio (2016). No filters, no fridges: A method for preservation of water samples for eDNA analysis. BMC Research Notes 9(1): 1–5. https://doi.org/10.1186/s13104-016-2104-5

Xie, Y., X. Zhang, J. Yang, S. Kim, S. Hong, J.P. Giesy, U.H. Yim, W.J. Shim, H. Yu & J.S. Khim (2018). eDNA-based bioassessment of coastal sediments impacted by an oil spill. Environmental Pollution 238: 739–748. https://doi.org/10.1016/j.envpol.2018.02.081

Xu, C.L., B.H. Letcher & K.H. Nislow (2010). Size-dependent survival of brook trout Salvelinus fontinalis in summer: Effects of water temperature and stream flow. Journal of Fish Biology 76(10): 2342–2369. https://doi.org/10.1111/j.1095-8649.2010.02619.x

Yang, J. & X. Zhang (2020). eDNA metabarcoding in zooplankton improves the ecological status assessment of aquatic ecosystems. Environment International 134: 105230. https://doi.org/10.1016/j.envint.2019.105230

Yoshitake, K., T. Yoshinaga, C. Tanaka, N. Mizusawa, M. Reza, A. Tsujimoto, T. Kobayashi & S. Watabe (2019). HaCeD-Seq: a novel method for reliable and easy estimation about the fish population using haplotype count from eDNA. Marine Biotechnology 21(6): 813–820. https://doi.org/10.1007/s10126-019-09926-6