Ecological niche modelling predicts significant impacts of future climate change on two endemic rodents in eastern Africa

Main Article Content

Aditya Srinivasulu
Alembrhan Assefa
Chelmala Srinivasulu


The impact of climate change on rodents is well studied, however, many of these studies are restricted to the Americas.  Small- to medium-sized rodents, especially murids, are restricted in their home range and microclimatic niche breadth, and are known to be more sensitive to changes in bioclimatic conditions over time.  We analyzed the effect of future climatic scenarios in the near and distant future, using two global climate models (CanESM5 and MIROC-ES2L) for two shared socio-economic pathways (SSP2-4.5 and SSP5-8.5), on two eastern Africa endemic small-bodied mice: Stenocephalemys albipes and Mastomys awashensis. Our results indicate that while S. albipes showed increases in area of climatic suitability in the future, M. awashensis is predicted to suffer severe decline in the area of its fundamental niche.    

Article Details

Author Biographies

Aditya Srinivasulu, Centre for Biodiversity and Conservation Studies, #F6 CFRD Building, Osmania University, Hyderabad, Telangana 500007, India.

Research Fellow

Alembrhan Assefa, Department of Biology, College of Natural and Computational Science, Adigrat University, P.O. Box: 50, Adigrat, Ethiopia.

Assistant Professor

Chelmala Srinivasulu, Natural History Museum & Wildlife Biology and Taxonomy Lab, Department of Zoology, University College of Science, Osmania University, Hyderabad, Telangana 500007, India.

Senior Assistant Professor

Department of Zoology


Assefa, A. & C. Srinivasulu (2019). Comparison of rodent community between natural and modified habitats in Kafta-Sheraro National Park and its adjoining villages, Ethiopia: implication for conservation. Journal of Basic and Applied Zoology 80, Article number: 59. DOI:

Aiello-Lammens, M.E., R.A. Boria, A. Radosavljevic, B. Vilela & R.P. Anderson (2015). spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38(5): 541–545. DOI:

Bean, W.T., L.R. Prugh, R. Stafford, H.S. Butterfield, M. Westphal & J.S. Brashares (2014). Species distribution models of an endangered rodent offer conflicting measures of habitat quality at multiple scales. Journal of Applied Ecology 51(4): 1116–1125. DOI:

Cameron, G.N. & D. Scheel (2001). Getting Warmer: Effect of Global Climate Change on Distribution of Rodents in Texas. Journal of Mammalogy 82(3): 652–680.<0652:GWEOGC>2.0.CO;2 DOI:<0652:GWEOGC>2.0.CO;2

Corti, M., R. Castiglia, P. Colangelo, E. Capanna, F. Beolchini, A. Bekele, N. Oguge, R. Makundi, S. Sichilima, H. Leirs, V. Verheyen, V. & R. Verhagen (2005). Cytotaxonomy of rodent species from Ethiopia, Kenya, Tanzania and Zambia. Belgian Journal of Zoology 135: 197–216.

Elith, J., C.H. Graham, R.P. Anderson, M. Dudík, S. Ferrier, A. Guisan, R.J. Hijmans, F. Huettmann, J.R. Leathwick, A. Lehmann, J. Li, L.G. Lohmann, B.A. Loiselle, G. Manion, C. Moritz, M. Nakamura, Y. Nakazawa, J.M.M. Overton, A.T. Peterson, S.J. Phillips, K. Richardson, R. Scachetti‐Pereira, R.E. Schapire, J. Soberón, S. Williams, M.S. Wisz & N.E. Zimmermann (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29(2): 129–151. DOI:

Evans, J.S. (2020). spatialEco [R package] (Version 1.3-1)

Feng, X., D.S. Park, C. Walker, A.T. Peterson, C. Merow & M. Papeş (2019). A checklist for maximizing reproducibility of ecological niche models. Nature Ecology & Evolution 3(10): 1382–1395. DOI:

Fick, S.E. & R.J. Hijmans (2017). WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37(12): 4302–4315. DOI:

Fischer, C., C. Gayer, K. Kurucz, F. Riesch, T. Tscharntke & P. Batáry (2018). Ecosystem services and disservices provided by small rodents in arable fields: Effects of local and landscape management. Journal of Applied Ecology 55(2): 548–558. DOI:

Flores-Zamarripa, F.J. & J.A. Fernández (2018). Predictive species distribution model of two endemic kangaroo rats from Mexico: Dipodomys ornatus and D. phillipsii (Rodentia: Heteromyidae). Therya 9(3): 237–246. DOI:

Fricko, O., P. Havlik, J. Rogelj, Z. Klimont, M. Gusti, N. Johnson, P. Kolp, M. Strubegger, H. Valin, M. Amann, T. Ermolieva, N. Forsell, M. Herrero, C. Heyes, G. Kindermann, V. Krey, D.L. McCollum, M. Obersteiner, S. Pachauri, S. Rao, E. Schmid, W. Schoepp & K. Riahi (2017). The marker quantification of the Shared Socioeconomic Pathway 2: A middle-of-the-road scenario for the 21st century. Global Environmental Change 42: 251–267. DOI:

Habtamu, T. & A. Bekele (2008). Habitat association of insectivores and rodents of Alatish National Park, northwestern Ethiopia. Tropical Ecology 49(1): 1–11.

Happold, D.C.D. & J. Kingdon (eds.) (2013). Mammals of Africa. Vol. 3: Rodents, Hares and Rabbits. Bloomsbury, London, 784pp.

Hutchinson, G.E. (1957). Concluding Remarks. Cold Spring Harbor Symposia on Quantitative Biology 22(0): 415–427. DOI:

Kassa, D. & A. Bekele (2008). Species composition, abundance, distribution and habitat association of rodents of Wondo Genet, Ethiopia. SINET: Ethiopian Journal of Science 31(2): 141–146. DOI:

Kasso, M., A. Bekele & G. Hemson (2010). Species composition, abundance and habitat association of rodents and insectivores from Chilalo-Galama Mountain range, Arsi, Ethiopia: Small mammals of Chilalo-Galama Mountains. African Journal of Ecology 48(4): 1105–1114. DOI:

Keller, E.F. & E.A. Lloyd (eds.) (1999). Keywords in Evolutionary Biology. Harvard University Press, Cambridge, Mass., 414pp.

Kingdon, J. (1997). The Kingdon Field Guide to African Mammals. Academic Press, San Diego, London, Boston, 459pp.

Kriegler, E., N. Bauer, A. Popp, F. Humpenöder, M. Leimbach, J. Strefler, L. Baumstark, B.L. Bodirsky, J. Hilaire, D. Klein, I. Mouratiadou, I. Weindl, C. Bertram, J.-P. Dietrich, G. Luderer, M. Pehl, R. Pietzcker, F. Piontek, H. Lotze-Campen, A. Biewald, M. Bonsch, A. Giannousakis, U. Kreidenweis, C. Müller, S. Rolinski, A. Schultes, J. Schwanitz, M. Stevanovic, K. Calvin, J. Emmerling, S. Fujimori, S. & O. Edenhofer (2017). Fossil-fueled development (SSP5): An energy and resource intensive scenario for the 21st century. Global Environmental Change 42: 297–315. DOI:

Kubiak, B.B., E.E. Gutiérrez, D. Galiano, R. Maestri & T.R.O. de Freitas (2017). Can niche modeling and geometric morphometrics document competitive exclusion in a pair of subterranean rodents (Genus Ctenomys) with tiny parapatric distributions? Scientific Reports 7(1): 1–13. DOI:

Lavrenchenko, L.A., O.P. Likhnova, M.I. Baskevich & A. Bekele (1998). Systematics and distribution of Mastomys (Muridae, Rodentia) from Ethiopia, with the description of a new species. Zeitschrift Für Säugetierkunde 63: 37–51.

Leroy, B., C.N. Meynard, C. Bellard & F. Courchamp (2016). Virtualspecies, an R package to generate virtual species distributions. Ecography 39(6): 599–607. DOI:

Martínez-Salazar, E.A., T. Escalante, M. Linaje & J. Falcón-Ordaz (2013). Predicting the potential distribution of Vexillata (Nematoda: Ornithostrongylidae) and its hosts (Mammalia: Rodentia) within America. Journal of Helminthology 87(4): 400–408. DOI:

Martynov, A.A., J. Bryja, Y. Meheretu & L.A. Lavrenchenko (2020). Multimammate mice of the genus Mastomys (Rodentia: Muridae) in Ethiopia – diversity and distribution assessed by genetic approaches and environmental niche modelling. Journal of Vertebrate Biology 69(2): 1–16. DOI:

McDonough, M.M., R. Šumbera, V. Mazoch, A.M. Ferguson, C.D. Phillips & J. Bryja (2015). Multilocus phylogeography of a widespread savanna-woodland-adapted rodent reveals the influence of Pleistocene geomorphology and climate change in Africa’s Zambezi region. Molecular Ecology 24(20): 5248–5266. DOI:

Meheretu, Y., V. Sluydts, K. Welegerima, H. Bauer, M. Teferi, G. Yirga, L. Mulungu, M. Haile, J. Nyssen, J. Deckers, R. Makundi & H. Leirs (2014). Rodent abundance, stone bund density and its effects on crop damage in the Tigray highlands, Ethiopia. Crop Protection 55: 61–67. DOI:

Merow, C., M.J. Smith & J.A. Silander (2013). A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36(10): 1058–1069. DOI:

Millien, V. & J. Damuth (2004). Climate change and size evolution in an island rodent species: new perspectives on the island rule. Evolution 58(6): 1353. DOI:

Monadjem, A. (2015). Rodents of Sub-Saharan Africa: A Biogeographic and Taxonomic Synthesis. Walter de Gruyter GmbH & Co. KG, Berlin, Boston, 1,092pp. DOI:

Muscarella, R., P.J. Galante, M. Soley-Guardia, R.A. Boria, J.M. Kass, M. Uriarte & R.P. Anderson (2014). ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for MaxEnt ecological niche models. Methods in Ecology and Evolution 5(11): 1198–1205. DOI:

Nowak, R.M. (1999). Walker’s Mammals of the World, 6th edition. The Johns Hopkins University Press, Baltimore, 2pp.

Ortega-Huerta, M.A. & A.T. Peterson (2008). Modeling ecological niches and predicting geographic distributions: a test of six presence-only methods. Revista Mexicana de Biodiversidad 79: 205–216.

Pardi, M.I., R.C. Terry, E.A. Rickart & R.J. Rowe (2020). Testing climate tracking of montane rodent distributions over the past century within the Great Basin ecoregion. Global Ecology and Conservation 24: e01238. DOI:

Phillips, S.J., R.P. Anderson & R.E. Schapire (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling 190(3–4): 231–259. DOI:

Porfirio, L. L., R.M.B. Harris, E.C. Lefroy, S. Hugh, S.F. Gould, G. Lee, N.L. Bindoff & B. Mackey (2014). Improving the Use of Species Distribution Models in Conservation Planning and Management under Climate Change. PLoS ONE 9(11): e113749. DOI:

R Core Team (2020). R: A language and environment for statistical computing. (Version 4.0.1). R Foundation for Statistical Computing, Vienna, Austria.

Radosavljevic, A. & R.P. Anderson (2014). Making better Maxent models of species distributions: complexity, overfitting and evaluation. Journal of Biogeography 41(4): 629–643. DOI:

Royer, A., S. Montuire, S. Legendre, E. Discamps, M. Jeannet & C. Lécuyer (2016). Investigating the Influence of Climate Changes on Rodent Communities at a Regional-Scale (MIS 1-3, Southwestern France). PLoS ONE 11(1): e0145600. DOI:

Soberón, J. & B. Arroyo-Peña (2017). Are fundamental niches larger than the realized? Testing a 50-year-old prediction by Hutchinson. PLOS ONE 12(4): e0175138. DOI:

Swart, N.C., J.N.S. Cole, V.V. Kharin, M. Lazare, J.F. Scinocca, N.P. Gillett, J. Anstey, V. Arora, J.R. Christian, Y. Jiao, W.G. Lee, F. Majaess, O.A. Saenko, C. Seiler, C. Seinen, A. Shao, L. Solheim, K. von Salzen, D. Yang, B. Winter & M. Sigmond (2019a). CCCma CanESM5 model output prepared for CMIP6 C4MIP esm-ssp585. Earth System Grid Federation.

Swart, N.C., J.N.S. Cole, V.V. Kharin, M. Lazare, J.F. Scinocca, N.P. Gillett, J. Anstey, V. Arora, J.R. Christian, Y. Jiao, W.G. Lee, F. Majaess, O.A. Saenko, C. Seiler, C. Seinen, A. Shao, L. Solheim, K. von Salzen, D. Yang, B. Winter & M. Sigmond (2019b). CCCma CanESM5 model output prepared for CMIP6 DAMIP ssp245-GHG. Earth System Grid Federation.

Szpunar, G., G. Aloise, S. Mazzotti, L. Nieder & M. Cristaldi (2008). Effects of global climate change on terrestrial small mammal communities in Italy. Fresenius Environmental Bulletin 17(9b): 1526–1533.

Tachiiri, K., M. Abe, T. Hajima, O. Arakawa, T. Suzuki, Y. Komuro, K. Ogochi, M. Watanabe, A. Yamamoto, H. Tatebe, M.A. Noguchi, R. Ohgaito, A. Ito, D. Yamazaki, A. Ito, K. Takata, S. Watanabe & M. Kawamiya (2019a). MIROC MIROC-ES2L model output prepared for CMIP6 ScenarioMIP ssp245. Earth System Grid Federation.

Tachiiri, K., M. Abe, T. Hajima, O. Arakawa, T. Suzuki, Y. Komuro, K. Ogochi, M. Watanabe, A. Yamamoto, H. Tatebe, M.A. Noguchi, R. Ohgaito, A. Ito, D. Yamazaki, A. Ito, K. Takata, S. Watanabe & M. Kawamiya (2019b). MIROC MIROC-ES2L model output prepared for CMIP6 ScenarioMIP ssp585. Earth System Grid Federation.

Takele, S., A. Bekele, G. Belay & M. Balakrishnan (2011). A comparison of rodent and insectivore communities between sugarcane plantation and natural habitat in Ethiopia. Tropical Ecology 52(1): 61–68.

Taylor, P.J., A. Nengovhela, J. Linden & R.M. Baxter (2016). Past, present, and future distribution of Afromontane rodents (Muridae: Otomys) reflect climate-change predicted biome changes. Mammalia 80(4): 359–375. DOI:

Tilaye, W. (2005). Reproductive rhythm of the Grass Rat Arvicanthis abyssinicus at the Entoto Mountain, Ethiopia. Belgian Journal of Zoology 135: 53–56.

Urbina-Cardona, N., M.E. Blair, M.C. Londoño, R. Loyola, J. Velásquez-Tibatá & H. Morales-Devia (2019). Species Distribution Modeling in Latin America: A 25-Year Retrospective Review. Tropical Conservation Science 12: 194008291985405. DOI:

Yalden, D.W. & M.J. Largen (1992). The endemic mammals of Ethiopia. Mammal Review 22(3–4): 115–150. DOI:

Zhang, Y., Z. Zhang & J. Liu (2003). Burrowing rodents as ecosystem engineers: the ecology and management of Plateau Zokors Myospalax fontanierii in alpine meadow ecosystems on the Tibetan Plateau. Mammal Review 33(3–4): 284–294. DOI:

Most read articles by the same author(s)

1 2 > >>