Ornithophony in the soundscape of Anaikatty Hills, Coimbatore, Tamil Nadu, India

Main Article Content

Chandrasekaran Divyapriya
Padmanabhan Pramod


An attempt has been made to understand the extent of ornithophony (vocalization of birds) in the soundscape of Anaikatty Hills.  The study was limited to 13 hours of daylight from dawn to dusk (06.00–19.00 h) between January 2015 and October 2016.  Six replicates of 5-minute bird call recordings were collected from each hour window in 24 recording spots of the study area.  Each 5-minute recording was divided into 150 ‘2-sec’ observation units for the detailed analysis of the soundscape. A total of 78 recordings amounting to 390 minutes of acoustic data allowed a preliminary analysis of the ornithophony of the area.  A total of 62 bird species were heard vocalizing during the study period and contributed 8,629 units.  A total of 73.75% acoustic space was occupied by birds, among which the eight dominant species alone contributed to 63.65% of ornithophony.  The remaining 26% of acoustic space was occupied by other biophonies (12.60%), geophony (5.57%), indistinct sounds (7.66%), and anthropogenic noise (0.41%).  Passerines dominated the vocalizations with 7,269 (84.24%) and non-passerines with 1,360 (15.76%) units.  Birds vocalized in all 13 observation windows, with a peak in the first three hours of the day (06.00–09.00 h).  Vocalizations of non-passerines were prominent in the dusk hours (18.00–19.00 h). 


Article Details

Author Biographies

Chandrasekaran Divyapriya, Nature Education Division, Sálim Ali Centre for Ornithology & Natural History (SACON), Anaikatty (P.O.), Coimbatore, Tamil Nadu 641108, India.

PhD Research Scholar,

Nature Education Division,

Salim Ali Centre for Ornithology & Natural History (SACON).

Padmanabhan Pramod, Nature Education Division, Sálim Ali Centre for Ornithology & Natural History (SACON), Anaikatty (P.O.), Coimbatore, Tamil Nadu 641108, India.

Principal Scientist,

Nature Education Division,

Salim Ali Centre for Ornithology & Natural History (SACON).


Ali, A.M.S., S.B. Shanthakumar, S.R. Kumar, R. Chandran, S.S. Marimuthu & P.R. Arun (2013). Birds of the Sálim Ali Centre for Ornithology and Natural History Campus, Anaikatty Hills, southern India. Journal of Threatened Taxa 5(17): 5288–5298. https://doi.org/10.11609/JoTT.3660.5288-98

Aylor, D. (1971). Noise reduction by vegetation and ground. The Journal of the Acoustical Society of America 51(1): 197–205. https://doi.org/10.1121/1.1912830

Balasubramanian, P., M.K. Sebastian, P.R. Arun, P. Pramod, R. Jayapal & H.N. Kumara (2017). Glimpses of SACON Campus Biodiversity. Sálim Ali Centre for Ornithology and Natural History, 81pp.

Baker, M.C. & J.T. Boylan (1995). A catalog of song syllables of Indigo and Lazuli Buntings. The Condor 97: 1028–1040. https://doi.org/10.2307/1369541

Bioacoustics Research Program (2011). Raven Pro: Interactive Sound Analysis Software (Version 1.4) [Computer software]. Ithaca, NY: The Cornell Lab of Ornithology. Available from http://www.birds.cornell.edu/raven.

Blindfolded birdwatching (2010). The effect of harmonics on localization of birds calls (May 30). Retrieved from https://sites.dartmouth.edu/dujs/2010/05/30/blindfolded-birdwatching-the-effect-of-harmonics-on-localization-of-bird-calls/

Boncoraglio, G. & N. Saino (2007). Habitat structure and the evolution of bird song: a metaâ€analysis of the evidence for the acoustic adaptation hypothesis. Functional Ecology 21(1): 134–142; https://doi.org/10.1111/j.1365-2435.2006.01207.x

Brenowitz, E.A. (1982). The active space of red-winged blackbird song. Journal of Comparative Physiology 147(4): 511–522. https://doi.org/10.1007/BF00612017

Brown, T.J. & P. Handford (2003). Why birds sing at dawn: the role of consistent song transmission. Ibis 145(1): 120–129. https://doi.org/10.1046/j.1474-919X.2003.00130.x

Brumm, H. (2006). Signalling through acoustic windows: nightingales avoid interspecific competition by short-term adjustment of song timing. Journal of Comparative Physiology A 192(12): 1279–1285. https://doi.org/10.1007/s00359-006-0158-x

Brumm, H. & H. Slabbekoorn (2005). Acoustic communication in noise. Advances in the Study of Behavior 35:151–209. https://doi.org/10.1016/S0065-3454(05)35004-2

Calder, W.A. (1990) The scaling of sound output and territory size: are they matched? Ecology 71: 1810–1816. https://doi.org/10.2307/1937589

Cardoso, G.C. (2010). Loudness of birdsong is related to the body size, syntax and phonology of passerine species. Journal of Evolutionary Biology 23(1): 212–219. https://doi.org/10.1111/j.1420-9101.2009.01883.x

Cardoso, G.C. & J.W. Atwell (2011). On the relation between loudness and increased song frequency of urban birds. Animal Behaviour 82: 831–836. https://doi.org/10.1016/j.anbehav.2011.07.018

Cardoso, G.C. & P.G. Mota (2009). Loudness of syllables is related to syntax and phonology in the songs of canaries and seedeaters. Behaviour 146: 1649–1663.

Catchpole, C.K. & P.J.B. Slater (2008). Bird song: Biological themes and variations. 2nd ed., Cambridge University Press, Cambridge, pp. 203–239.

Cuthill, I.C. & W.A. Macdonald (1990). Experimental manipulation of the dawn and dusk chorus in the blackbird Turdus merula. Behavioral Ecology and Sociobiology 26(3): 209–216. https://doi.org/10.1007/BF00172088

Dabelsteen, T. & N. Mathevon (2002). Why do songbirds sing intensively at dawn? Acta Ethologica 4(2): 65–72; https://doi.org/10.1007/s10211-001-0056-8

Ey, E. & J. Fischer (2009). The “acoustic adaptation hypothesis†– a review of the evidence from birds, anurans and mammals. Bioacoustics 19(1–2): 21–48. https://doi.org/10.1080/09524622.2009.9753613

Ficken, R.W., M.S. Ficken & J.P. Hailman (1974). Temporal pattern shifts to avoid acoustic interference in singing birds. Science 183(4126): 762–763. https://doi.org/10.1126/science.183.4126.762

Fisher, R.A. (1925). Statistical Methods for Research Workers. Oliver and Boyd, Edinburgh, London, 145pp.

Forstmeier, W., B. Kempenaers, A. Meyer & B. Leisler (2002). A novel song parameter correlates with extra-pair paternity and reflects male longevity. Proceedings of the Royal Society of London B: Biological Sciences, 269(1499), 1479-1485; https://doi.org/10.1098/rspb.2002.2039

Gage, S.H. & A.C. Axel (2014). Visualization of temporal change in soundscape power of a Michigan lake habitat over a 4-year period. Ecological Informatics 21: 100–109. https://doi.org/10.1016/j.ecoinf.2013.11.004

Garamszegi, L.Z. & A.P. Møller (2004). Extrapair paternity and the evolution of bird song. Behavioral Ecology 15(3): 508–519. https://doi.org/10.1093/beheco/arh041

Hart, P.J., R. Hall, W. Ray, A. Beck & J. Zook (2015). Cicadas impact bird communication in a noisy tropical rainforest. Behavioral Ecology 26(3): 839–842. https://doi.org/10.1093/beheco/arv018

Hartley, R.S. & R.A. Suthers (1989). Airflow and pressure during canary song: direct evidence for mini-breaths. Journal of Comparative Physiology A 165(1): 15–26. https://doi.org/10.1007/BF00613795

Henwood, K. & A. Fabrick (1979). A quantitative analysis of the dawn chorus: Temporal selection for communicatory optimization. The American Naturalist 114: 260–274. https://doi.org/10.1086/283473

Hildebrand, J.A. (2009). Anthropogenic and natural sources of ambient noise in the ocean. Marine Ecology Progress Series 395: 5–20. https://doi.org/10.3354/meps08353

Hutchinson, J.M. (2002). Two explanations of the dawn chorus compared: how monotonically changing light levels favour a short break from singing. Animal Behaviour 64(4): 527–539. https://doi.org/10.1006/anbe.2002.3091

Irwin, R.E. (1990). Directional sexual selection cannot explain variation in song repertoire size in the New World Blackbirds (Icterinae). Ethology 85: 212–224. https://doi.org/10.1111/j.1439-0310.1990.tb00401.x

Joo, W. (2008). Environmental sounds as an ecological variable to understand dynamics of ecosystems. Master’s Thesis. Department of Zoology, Michigan State University, East Lansing, Michigan.

Joo, W., S.H. Gage & E.P. Kasten (2011). Analysis and interpretation of variability in soundscapes along an urban–rural gradient. Landscape and Urban Planning 103(3–4): 259–276. https://doi.org/10.1016/j.landurbplan.2011.08.001

Kacelnik, A. (1979). The foraging efficiency of great tits (Parus major L.) in relation to light intensity. Animal Behaviour 27: 237–241. https://doi.org/10.1016/0003-3472(79)90143-X

Kasten, E.P., S.H. Gage, J. Fox & W. Joo (2012). The remote environmental assessment laboratory’s acoustic library: An archive for studying soundscape ecology. Ecological Informatics 12: 50–67. https://doi.org/10.1016/j.ecoinf.2012.08.001

Klump, G. (1996). Bird communication in the noisy world, pp. 321–338. In: Kroodsma, D.E. & E.H. Miller (eds.). Ecology and Evolution of Acoustic Communication in Birds. Cornell University Press, Ithaca (NY), 587pp.

Krause, B. (1987). Bioacoustics, habitat ambience in ecological balance. Whole Earth Review, 57(Winter).

Krebs, J.R. & N.B. Davies (1981). An Introduction to Behavioural Ecology. Blackwell Scientific Publications, Oxford, UK, 420pp.

Kroodsma, D.E. (1977). Correlates of song organization among North American wrens. The American Naturalist 111(981): 995–1008. https://doi.org/10.1086/283228

Kruskal, W.H. & W.A. Wallis (1952). Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association 47(260): 583–621.

Luther, D. (2009). The influence of the acoustic community on songs of birds in a neotropical rain forest. Behavioral Ecology 20(4): 864–871. https://doi.org/10.1093/beheco/arp074

Mace, R. (1986). The importance of female behaviour in the dawn chorus. Animal Behaviour 34: 621–622. https://doi.org/10.1016/S0003-3472(86)80139-7

Mace, R. (1987). The dawn chorus in the great tit Parus major is directly related to female fertility. Nature 330: 745–746. https://doi.org/10.1038/330745a0

Marten, K. & P. Marler (1977). Sound transmission and its significance for animal vocalization. I. Temperate habitats. Behavioral Ecology and Sociobiology 2: 271–290. https://doi.org/10.1007/BF00299740

Marten, K., D. Quine & P. Marler (1977). Sound transmission and its significance for animal vocalization. II Tropical forest habitats. Behavioral Ecology and Sociobiology 2: 291–302. https://doi.org/10.1007/BF00299741

McNamara, J.M., R.H. Mace & A.I. Houston (1987). Optimal daily routines of singing and foraging in a bird singing to attract a mate. Behavioral Ecology and Sociobiology 20(6): 399–405. https://doi.org/10.1007/BF00302982

Morton, E.S. (1975). Ecological sources of selection on avian sounds. The American Naturalist 109(965): 17–34; https://doi.org/10.1086/282971

Mukherjee, D. & S. Bhupathy (2007). A new species of wolf snake (Serpentes: Colubridae: Lycodon) from Anaikatti Hills, Western Ghats, Tamil Nadu, India. Russian Journal of Herpetology 14(1): 21–26.

Mullet, T.C. (2017). Connecting Soundscapes to Landscapes: Modeling the Spatial Distribution of Sound, pp. 211–224. In: Farina, A. & S.H. Gage (eds.). Ecoacoustics: The Ecological Role of Sounds. John Wiley and Sons, India, 336pp.

Mullet, T.C., S.H. Gage, J.M. Morton & F. Huettmann (2016). Temporal and spatial variation of a winter soundscape in south-central Alaska. Landscape Ecology 31(5): 1117–1137. https://doi.org/10.1007/s10980-015-0323-0

Napoletano, B.M. (2004). Measurement, quantification and interpretation of acoustic signals within an ecological context. MSc. Thesis. Department of Zoology, Michigan State University. Department of Zoology, xii+186.

Nelson, D.A. & P. Marler (1990). The perception of birdsong and an ecological concept of signal space, pp. 443–478. In: W.C. Stebbins & M.A. Berkley (eds.). Comparative perception, Vol. 2. Complex signals. John Wiley & Sons, England, 483pp.

Noss, R.F., W.J. Platt, B.A. Sorrie, A.S. Weakley, D.B. Means, J. Costanza & R.K. Peet (2015). How global biodiversity hotspots may go unrecognized: lessons from the North American Coastal Plain. Diversity and Distributions 21(2): 236–244. https://doi.org/10.1111/ddi.12278

Nowicki, S. & D.A. Nelson (1990). Defining Natural Categories in Acoustic Signals: Comparison of Three Methods Applied to ‘Chickâ€aâ€dee’ Call Notes. Ethology 86(2): 89–101. https://doi.org/10.1111/j.1439-0310.1990.tb00421.x

Oberweger, K. & F. Goller (2001). The metabolic cost of birdsong production. Journal of Experimental Biology 204(19): 3379–3388.

Pijanowski, B.C., L.J. Villanueva-Rivera, S.L. Dumyahn, A. Farina, B.L. Krause, B.M. Napoletano, S.H. Gage & N. Pieretti (2011). Soundscape ecology: the science of sound in the landscape. BioScience 61(3): 203–216; https://doi.org/10.1525/bio.2011.61.3.6

Planque, R. & H. Slabbekoorn (2008). Spectral overlap in songs and temporal avoidance in a Peruvian bird assemblage. Ethology 114(3): 262–271. https://doi.org/10.1111/j.1439-0310.2007.01461.x

Podos, J. (1997). A performance constraint on the evolution of trilled vocalizations in a songbird family (Passeriformes: Emberizidae). Evolution 51(2): 537–551. https://doi.org/10.1111/j.1558-5646.1997.tb02441.x

Praveen J., R. Jayapal & A. Pittie (2019). Checklist of the birds of India (v3.0). Website: http://www.indianbirds.in/india/ [Date of publication: 05 May, 2019].

Prestwich, K.N. (1994). The energetics of acoustic signaling in anurans and insects. American Zoologist 34(6): 625–643. https://doi.org/10.1093/icb/34.6.625

Qi, J., S.H. Gage, W. Joo, B. Napoletano & S. Biswas (2008). Soundscape Characteristics of an Environment: A New Ecological Indicator of Ecosystem Health. Wetland and Water Resource Modeling and Assessment. CRC Press, New York, 655pp.

Singh, P. & T.D. Price (2015). Causes of the latitudinal gradient in birdsong complexity assessed from geographical variation within two Himalayan warbler species. Ibis 157(3): 511–527. https://doi.org/10.1111/ibi.12271

Slabbekoorn, H. (2004). Habitat-dependent ambient noise: consistent spectral profiles in two African forest types. The Journal of the Acoustical Society of America 116(6): 3727–3733. https://doi.org/10.1121/1.1811121

Slagsvold, T. (1996). Dawn and dusk singing of male American robins in relation to female behavior. The Wilson Bulletin 507–515. https://www.jstor.org/stable/4163717

Sony Linear PCM Recorder PCM-M10 (2009). Retrieved from Sony website. https://www.docs.sony.com/release/PCMM10.pdf

SPSS Inc (2007). SPSS for Windows, Rel.16.0.0. SPSS Inc, Chicago

Stanley, C.Q., M.H. Walter, M.X. Venkatraman & G.S. Wilkinson (2016). Insect noise avoidance in the dawn chorus of Neotropical birds. Animal Behaviour 112: 255–265. https://doi.org/10.1016/j.anbehav.2015.12.003

Sturkie, P.D. (Ed.) (1976). Avian Physiology. Springer-Verlag, New York, 400pp.

Sueur, J., S. Pavoine, O. Hamerlynck, & S. Duvail (2008). Rapid acoustic survey for biodiversity appraisal. Plos One 3(12): e4065. https://doi.org/10.1371/journal.pone.0004065

Velásquez, N.A., F.N. Moreno-Gómez, E. Brunetti & M. Penna (2018). The acoustic adaptation hypothesis in a widely distributed South American frog: southernmost signals propagate better. Scientific Reports 8(1): 6990. https://doi.org/10.1038/s41598-018-25359-y

Wiley, R.H. & D.G. Richards (1978). Physical constraints on acoustic communication in the atmosphere: implications for the evolution of animal vocalizations. Behavioral Ecology and Sociobiology 3(1): 69–94. https://doi.org/10.1007/BF00300047

Wiley, R.H. & D.G. Richards (1982). Adaptations for acoustic communication in birds: sound propagation and signal detection pp. 131–181. In: Kroodsma, D.E. & E.H. Miller (eds.). Acoustic Communication in Birds, Vol. 1. Academic Press, New York, 371pp.

Wiley, R.H. (1991). Associations of song properties with habitats for territorial oscine birds of eastern North America. The American Naturalist 138: 973–993. https://doi.org/10.1086/285263