10.11609/jott.2022.14.6.21127-21330 www.threatenedtaxa.org

> 26 June 2022 (Online 5 Print) 14 (6): 21127-21330 ISSN 0974-7907 (Online) ISSN 0974-7893 (Print)

> > Open Access

got conservation globally Journal or Threat

Publisher

Wildlife Information Liaison Development Society www.wild.zooreach.org

Host **Zoo Outreach Organization** www.zooreach.org

No. 12, Thiruvannamalai Nagar, Saravanampatti - Kalapatti Road, Saravanampatti, Coimbatore, Tamil Nadu 641035, India Ph: +91 9385339863 | www.threatenedtaxa.org

Email: sanjay@threatenedtaxa.org

EDITORS

Founder & Chief Editor

Dr. Sanjay Molur

Wildlife Information Liaison Development (WILD) Society & Zoo Outreach Organization (ZOO), 12 Thiruvannamalai Nagar, Saravanampatti, Coimbatore, Tamil Nadu 641035, India

Deputy Chief Editor

Dr. Neelesh Dahanukar Noida, Uttar Pradesh, India

Managing Editor

Mr. B. Ravichandran, WILD/ZOO, Coimbatore, India

Associate Editors

Dr. Mandar Paingankar, Government Science College Gadchiroli, Maharashtra 442605, India Dr. Ulrike Streicher, Wildlife Veterinarian, Eugene, Oregon, USA Ms. Privanka Iver. ZOO/WILD. Coimbatore. Tamil Nadu 641035. India Dr. B.A. Daniel, ZOO/WILD, Coimbatore, Tamil Nadu 641035, India

Editorial Board

Dr. Russel Mittermeier

Executive Vice Chair, Conservation International, Arlington, Virginia 22202, USA

Prof. Mewa Singh Ph.D., FASc, FNA, FNASc, FNAPsy

Ramanna Fellow and Life-Long Distinguished Professor, Biopsychology Laboratory, and Institute of Excellence, University of Mysore, Mysuru, Karnataka 570006, India; Honorary Professor, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore; and Adjunct Professor, National Institute of Advanced Studies, Bangalore

Stephen D. Nash

Scientific Illustrator, Conservation International, Dept. of Anatomical Sciences, Health Sciences Center, T-8, Room 045, Stony Brook University, Stony Brook, NY 11794-8081, USA

Dr. Fred Pluthero

Toronto, Canada

Dr. Priya Davidar

Sigur Nature Trust, Chadapatti, Mavinhalla PO, Nilgiris, Tamil Nadu 643223, India

Dr. Martin Fisher

Senior Associate Professor, Battcock Centre for Experimental Astrophysics, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 OHE, UK

Dr. John Fellowes

Honorary Assistant Professor, The Kadoorie Institute, 8/F, T.T. Tsui Building, The University of Hong Kong, Pokfulam Road, Hong Kong

Prof. Dr. Mirco Solé

Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Vice-coordenador do Programa de Pós-Graduação em Zoologia, Rodovia Ilhéus/Itabuna, Km 16 (45662-000) Salobrinho. Ilhéus - Bahia - Brasil

Dr. Rajeev Raghavan

Professor of Taxonomy, Kerala University of Fisheries & Ocean Studies, Kochi, Kerala, India

English Editors Mrs. Mira Bhojwani, Pune, India

Dr. Fred Pluthero, Toronto, Canada Mr. P. Ilangovan, Chennai, India

Web Development

Mrs. Latha G. Ravikumar, ZOO/WILD, Coimbatore, India Typesetting

Mr. Arul Jagadish. ZOO, Coimbatore, India Mrs. Radhika, ZOO, Coimbatore, India Mrs. Geetha, ZOO, Coimbatore India

Fundraising/Communications Mrs. Payal B. Molur, Coimbatore, India

Subject Editors 2019-2021

Fungi

- Dr. B. Shivaraju, Bengaluru, Karnataka, India
- Dr. R.K. Verma, Tropical Forest Research Institute, Jabalpur, India
- Dr. Vatsavaya S. Raju, Kakatiay University, Warangal, Andhra Pradesh, India
- Dr. M. Krishnappa, Jnana Sahyadri, Kuvempu University, Shimoga, Karnataka, India
- Dr. K.R. Sridhar, Mangalore University, Mangalagangotri, Mangalore, Karnataka, India Dr. Gunjan Biswas, Vidyasagar University, Midnapore, West Bengal, India

Plants

- Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India
- Dr. N.P. Balakrishnan, Ret, Joint Director, BSI, Coimbatore, India
- Dr. Shonil Bhagwat, Open University and University of Oxford, UK
- Prof. D.J. Bhat, Retd. Professor, Goa University, Goa, India
- Dr. Ferdinando Boero, Università del Salento, Lecce, Italy
- Dr. Dale R. Calder, Royal Ontaro Museum, Toronto, Ontario, Canada
- Dr. Cleofas Cervancia, Univ. of Philippines Los Baños College Laguna, Philippines
- Dr. F.B. Vincent Florens, University of Mauritius, Mauritius Dr. Merlin Franco, Curtin University, Malaysia
- Dr. V. Irudayaraj, St. Xavier's College, Palayamkottai, Tamil Nadu, India
- Dr. B.S. Kholia, Botanical Survey of India, Gangtok, Sikkim, India
- Dr. Pankaj Kumar, Kadoorie Farm and Botanic Garden Corporation, Hong Kong S.A.R., China
- Dr. V. Sampath Kumar, Botanical Survey of India, Howrah, West Bengal, India
- Dr. A.J. Solomon Raju, Andhra University, Visakhapatnam, India
- Dr. Vijayasankar Raman, University of Mississippi, USA
- Dr. B. Ravi Prasad Rao, Sri Krishnadevaraya University, Anantpur, India Dr. K. Ravikumar, FRLHT, Bengaluru, Karnataka, India
- Dr. Aparna Watve, Pune, Maharashtra, India
- Dr. Qiang Liu, Xishuangbanna Tropical Botanical Garden, Yunnan, China
- Dr. Noor Azhar Mohamed Shazili, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia Dr. M.K. Vasudeva Rao, Shiv Ranjani Housing Society, Pune, Maharashtra, India
- Prof. A.J. Solomon Raju, Andhra University, Visakhapatnam, India
- Dr. Mandar Datar, Agharkar Research Institute, Pune, Maharashtra, India
- Dr. M.K. Janarthanam. Goa University. Goa. India
- Dr. K. Karthigeyan, Botanical Survey of India, India
- Dr. Errol Vela, University of Montpellier, Montpellier, France
- Dr. P. Lakshminarasimhan, Botanical Survey of India, Howrah, India
- Dr. Larry R. Noblick, Montgomery Botanical Center, Miami, USA
- Dr. K. Haridasan, Pallavur, Palakkad District, Kerala, India
- Dr. Analinda Manila-Fajard, University of the Philippines Los Banos, Laguna, Philippines
- Dr. P.A. Sinu, Central University of Kerala, Kasaragod, Kerala, India
- Dr. Afroz Alam, Banasthali Vidyapith (accredited A grade by NAAC), Rajasthan, India
- Dr. K.P. Rajesh, Zamorin's Guruvayurappan College, GA College PO, Kozhikode, Kerala, India
- Dr. David E. Boufford, Harvard University Herbaria, Cambridge, MA 02138-2020, USA
- Dr. Ritesh Kumar Choudhary, Agharkar Research Institute, Pune, Maharashtra, India Dr. Navendu Page, Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India

Invertebrates

- Dr. R.K. Avasthi, Rohtak University, Haryana, India
- Dr. D.B. Bastawade, Maharashtra, India
- Dr. Partha Pratim Bhattacharjee, Tripura University, Suryamaninagar, India
- Dr. Kailash Chandra, Zoological Survey of India, Jabalpur, Madhya Pradesh, India
- Dr. Ansie Dippenaar-Schoeman, University of Pretoria, Queenswood, South Africa
- Dr. Rory Dow, National Museum of natural History Naturalis, The Netherlands
- Dr. Brian Fisher, California Academy of Sciences, USA Dr. Richard Gallon, llandudno, North Wales, LL30 1UP
- Dr. Hemant V. Ghate, Modern College, Pune, India
- Dr. M. Monwar Hossain, Jahangirnagar University, Dhaka, Bangladesh
- Mr. Jatishwor Singh Irungbam, Biology Centre CAS, Branišovská, Czech Republic.
- Dr. Ian J. Kitching, Natural History Museum, Cromwell Road, UK
- Dr. George Mathew, Kerala Forest Research Institute, Peechi, India

For Focus, Scope, Aims, and Policies, visit https://threatenedtaxa.org/index.php/JoTT/aims_scope For Article Submission Guidelines, visit https://threatenedtaxa.org/index.php/JoTT/about/submissions For Policies against Scientific Misconduct, visit https://threatenedtaxa.org/index.php/JoTT/policies_various

continued on the back inside cover

Cover: Euphaea pseudodispar shot at Kalindi River, Thirunelly, Wayanad district, Kerala. © Muneer P.K.

Journal of Threatened Taxa | www.threatenedtaxa.org | 26 June 2022 | 14(6): 21161-21169

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print)

https://doi.org/10.11609/jott.7936.14.6.21161-21169

#7936 | Received 27 March 2022 | Final received 01 May 2022 | Finally accepted 10 June 2022

Feather characteristics of Common Myna Acridotheres tristis (Passeriformes: Sturnidae) from India

Swapna Devi Ray 1 , Goldin Quadros 2 , Prateek Dey 3 , Padmanabhan Pramod 4 & & Ram Pratap Singh 5

^{1,3,4,5} National Avian Forensic Laboratory, ² Wetland Ecology Division, Sálim Ali Centre for Ornithology and Natural History, Anaikatty, Coimbatore, Tamil Nadu 641108, India. ^{1,3} Bharathiar University, Coimbatore, Tamil Nadu 641046, India. ⁵ Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, Bihar 824236, India. ¹swapnadray555@gmail.com, ²golding@gmail.com, ³pratikdey23@gmail.com, ⁴neosacon@gmail.com,

⁵ rampratapsingh81@gmail.com (corresponding author)

Abstract: The systematic study of feather microstructure supports species identification, which is important in cases of illegally traded birds and bird-aircraft strikes. Our study focused on morphometric, macro- and micro-characters of feathers of Common Myna Acridotheres tristis from India. Among macro-characters, silver-colored filoplume feathers with pale black pigmentation on the barbs are specific for A. tristis. Morphometric measurements revealed that primary contour feathers (10.8±0.100 cm) were the longest and bristle feathers (1.26±0.051 cm) the shortest among all feathers. The longest (average) barb is found in primary contour feathers (1.875±0.123 cm), and the shortest in filoplume feathers (0.288±0.017 cm). We observed 3 types of nodal structures, and elongated prongs in bristle and filoplume feathers are significant characteristics of A. tristis. These insights into feather microstructures of A. tristis will aid species identification using plumology.

Keywords: Micro-structure, macro-structure, morphometry, plumology, Sturnidae.

Editor: P.A. Azeez, Coimbatore, Tamil Nadu, India.

Date of publication: 26 June 2022 (online & print)

Citation: Ray, S.D., G. Quadros, P. Dey, P. Pramod & R.P. Singh (2022). Feather characteristics of Common Myna Acridotheres tristis (Passeriformes: Sturnidae) from India. Journal of Threatened Taxa 14(6): 21161-21169. https://doi.org/10.11609/jott.7936.14.6.21161-21169

Copyright: © Ray et al. 2022. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: This work was supported by the Ministry of Environment, Forest and Climate Change (MoEFCC).

Competing interests: The authors declare no competing interests.

Author details: SWAPNA DEVI RAY is doctoral student of Bharathiar University, Coimbatore and affiliated to SACON. She is a researcher from ecology and environmental Science background. For her doctoral degree she is working on wildlife crime, plumology and molecular markers of avian species at National Avian Forensic Laboratory, SACON. Dr. GOLDIN QUADROS is working as Principal Scientist at the Wetland Ecology Division of SACON. His area of specialization is the benthic fauna from the intertidal regions of coasts, estuaries and creeks. He is also working as the coordinator of ENVIS Centre at SACON. PRATEEK DEY is a doctoral student of Zoology (Avian Genetics) at SACON. He has Integrated MSc in life sciences from Central University of Tamil Nadu. Currently he is working on whole genome sequencing of birds. DR. PADMANABHAN PRAMOD is a Senior Principal Scientist and head of Nature Education programme at SACON. Over a period of 27 years he has carried out various research projects in the field of ecosystem assessments, eco-development and mitigation measures for the bird hazards to aircrafts. DR. RAM PRATAP SINGH is Associate Professor and Head, Department of Life Science at Central University of South Bihar. The primary focus of Dr. Singh's research is Avian Genetics and Avian Forensic. He established the National Avian Forensic Laboratory and started the Genome Resource Bank at SACON.

Author contributions: S.D.R. collected the sample; R.P.S., G.Q. and P.P. conceived the idea and supervised the research; R.P.S., and P.P. generated the funds for the study. S.D.R, G.Q., P.D. and R.P.S. standardized the methodology; S.D.R. generated the data. S.D.R., G.Q. and R.P.S. wrote the manuscript and analyzed the data. All the authors reviewed the manuscript.

Acknowledgements: We are thankful to the Ministry of Environment, Forest and Climate Change (MoEFCC) for providing funding to the project. We thank to the Assam Forest Department and the Assam State Biodiversity Board for providing necessary permissions. We are greatly thankful to the field assistance Mr. Niren Singh for his assistance during field works in Assam.

OPEN ACCESS

() ()

INTRODUCTION

Feathers cover the body of birds (Gill 2007) and support their survival in a wide range of climatic conditions (Lovette & Fitzpatrick 2016). The study of the microscopic structures of feathers and their systematic description (i.e., plumology) has provided a useful tool in studies of bird evolution (Chandler 1916; Dove 1997), paleontology, archeology, ecology (e.g., examining feeding habits using prey remains) and in the forensic examination of bird strikes (Dove 1997), where feather microstructures support the identification of avian species (Chandler 1916; Lei et al. 2002; Dey et al. 2021). In India only a few recent plumology studies (Dey et al. 2021; Ray et al. 2021) have been reported.

The Common Myna Acridotheres tristis belongs to the family Sturnidae, and is widely distributed across the Indian subcontinent. It is a medium-sized (~25 cm) bird, with no distinct sexual dimorphism (Ali & Ripley 1987; Kannan & James 2020). It is one of the world's most invasive species as per IUCN (Lowe et al. 2004), and according to Ahmed (2001), A. tristis is among the top five most traded avian species in Indian pet markets and in the illegal pet/avian trade (Ahmed 1997, 2013). A. tristis is sold at a high price in both domestic and international illegal pet markets as Hill Myna Gracula religiosa by disguising its appearance with slight morphological modifications (Ahmed 1997). Without detailed examination it is difficult to distinguish these species (Ahmed, 1997; Lei et al. 2002), and the high demand for G. religiosa in the pet trade has put pressure on population of A. tristis. Plumology can be used to identify these birds from their feather microstructures (Dove 1997; Lei et al. 2002; Lee et al. 2016; Dey et al. 2021; Ray et al. 2021).

In the present study, we have focused on the systematic approach to document qualitative and quantitative feather characteristics of *A. tristis* useful for identifying species-specific feather signatures. We describe specific microstructures present in both pennaceous and plumulaceous barbs that can be used as baseline data for future plumology studies in India.

METHODS

Feathers from a specimen of *A. tristis* (26.60°N; 93.47°E) were collected during a road-kill survey in September 2019 from adjacent road-stretches of Kaziranga National Park, Assam, India (Figure 1). Permissions were obtained for the collection of avian biological samples from the office of the Principal Chief Conservator of Forests, Assam Forest Department (Ref. no. WL/FG.31/Pt/Technical Committee/2018) and office order (No. 258, date: 11/01/2019) and Assam State Biodiversity Board (Ref. no: ABB/Permission/2012/82). Feathers from the collected individuals were sampled, and macro characteristics, microstructures and morphometric measurements were documented following methods described by Chandler (1916), Dove (1997), and Dey et al. (2021).

Nine different types of pennaceous and plumulaceus feathers were sampled from five different body locations (Image 1) as follows:

1. Primary contour feathers and secondary contour feathers were collected from the right wing;

2. Tail contour feathers were collected from the tail region;

3. Body contour, semiplume, down and powder down feathers were collected from dorsal, ventral, and tail regions.

4. Modified contour feathers known as bristle feathers were collected from specific locations near the eyes and beak.

5. Filoplume feathers, which are filamentous in structure, were retrieved from the right wing.

For primary contour, secondary contour, tail contour, body contour, semiplume, down and powder down types of feathers, two numbers from each type from their respective locations were retrieved for the study. Due to the location specificity, five each of bristle and filoplume feathers were collected. A total of 38 different feathers were studied to document macro characteristics and microstructures.

Based on morphometric measurements of rachis, the feathers were divided into three different regions, proximal, intermediate and distal, except for powder down and bristle feathers (Dey et al. 2021). Because of the absence of proper rachis, the powder down and bristle feathers were not divided into the three regions. From each region, five barbs were sampled for slide preparation. Five each of bristle and filoplume feathers were whole-mounted on slides. The slides were prepared using the dry mount method (Ray et al. 2021; Dey et al. 2021).

Feather macro characters were observed by focusing on three main characters: colour, pattern and texture. Morphometric characters were measured from feathers' photographs for calamus length, vane length and rachis length using imageJ software. The feather microstructures were observed and documented using LaboMed Lx 500 compound light microscope. Slides

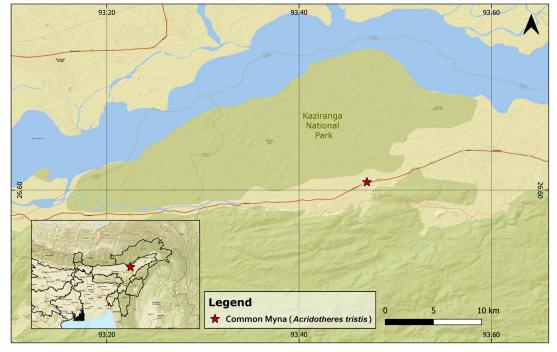


Figure 1. Geotag location of road-killed Common Myna.

were observed under 4X, 10X and 40X magnification for different characters, including presence of subpennaceous region, presence of villi, shape of villi, presence of nodes, shape of nodes, presence of hooklets, presence of prongs, size of prongs, presence of ventral teeth, shape of internodes, pigmentation on nodes, internodes, and ramus.

RESULTS

Feather macro characters

The feather macro characters documented for *A. tristis* are presented in Table 1. Feather color varied from black and white to dark brown to pale white and brown, even dark brown with a tinge of white. Only filoplume feathers showed a silvery appearance with pale black colored barbs at the tip. The texture of feathers varied. Flight contour feathers (primary contour, secondary contour and tail contour feathers) and bristles that represent modified contour feathers were firmly rigid, body contour feathers irrespective of their location were semi-rigid, and semiplume, down and powder down feathers were soft and fluffy.

Feather morphometry

Calamus length, vane length and rachis length of the nine different types of feathers were measured (Table

2). The primary contour feather from the wing was the longest; the average length for the calamus was 1.45 ± 0.050 cm, vane length 9.35 ± 0.050 cm and rachis 10.8 ± 0.100 cm. Bristles were the shortest feathers, with an average calamus length of 0.26 ± 0.024 cm, average vane length of 1 ± 0.032 cm and average rachis length of 1.26 ± 0.051 cm. The vane and rachis length was not measured for powder down due to the absence of rachis. As there was no quill present in filoplume, only the feather and barb lengths were measured.

The average length of barbs was measured. The longest feather type i.e. primary contour feathers followed with the longest barbs measured as 1.875±0.123 cm while the barbs of filoplume feathers measured as the shortest with 0.288±0.017 cm.

Feather microstructures

The barbs from the nine different feather types of *A. tristis* were dry-mounted onto slides to observe different microstructures (Table 3) under the microscope that included elongated barbules, distinct nodes, internodes, sub-pennaceous region, villi, prongs, hooklets, ventral teeth, pigmentation and other focused microstructures, elaborated below.

Sub-pennaceous region: The barbs of all the feathers showed the absence of a sub-pennaceous region in both pennaceous and plumulaceous barbules in all feather types.

Table 1. Feather macro-characteristics.

	Feather type	Feather location	Color	Pattern	Texture
1	Primary contour feather	Wing	Black and white	No Pattern	Rigid
2	Secondary contour feather	Wing	Dark brown	No Pattern	Rigid
3	Tail contour feather	Tail	Dark brown with white tinge	No Pattern	Rigid
4	Body Contour	Dorsal	Pale brown	No Pattern	Semi-rigid
5	Body Contour	Ventral	Pale brown	No Pattern	Semi-rigid
6	Semiplume	Dorsal	Pale brown	No Pattern	Soft and fluffy
7	Semiplume	Ventral	Pale brown	No Pattern	Soft and fluffy
8	Semiplume	Tail	White	No Pattern	Soft and fluffy
9	Down	Dorsal	Pale brown	No Pattern	Soft and fluffy
10	Down	Ventral	Pale white	No Pattern	Soft and fluffy
11	Down	Tail	Pale white	No Pattern	Soft and fluffy
12	Powder Down	Dorsal	White	No Pattern	Soft and fluffy
13	Powder Down	Ventral	White	No Pattern	Soft and fluffy
14	Powder Down	Tail	White	No Pattern	Soft and fluffy
15	Bristle	Near Eye and Beak	Black	No Pattern	Rigid
16	Filoplume	Wings	Silver	No Pattern	Soft

Table 2. Feather morphometric measurements.

				Length	(in cm)	
	Feather type	Feather location	Calamus ± S.E.	Vane ± S.E.	Rachis ± S.E.	Barb ± S.E.
1	Primary contour feather	Wing	1.45±0.050	9.35±0.050	10.8±0.100	1.875±0.123
2	Secondary contour feather	Wing	1.35±0.050	7.80±0.000	9.25±0.050	1.821±0.111
3	Tail contour feather	Tail	0.8±0.100	7.3±0.100	8.25±0.050	1.637±0.079
4	Body contour	Dorsal	0.2±0.000	3.85±0.050	4.25±0.050	1.391±0.026
5	Body contour	Ventral	0.35±0.050	4.85±0.050	5.25±0.050	1.646±0.043
6	Semiplume	Dorsal	0.35±0.050	3.40±0.100	3.80±0.100	1.532±0.033
7	Semiplume	Ventral	0.45±0.050	4.51±0.395	4.58±0.425	1.901±0.037
8	Semiplume	Tail	0.45±0.050	4.95±0.150	5.50±0.100	1.034±0.024
9	Down	Dorsal	0.25±0.050	3.15±0.050	3.45±0.050	1.415±0.068
10	Down	Ventral	0.3±0.000	3.45±0.050	3.70±0.100	1.604±0.064
11	Down	Tail	0.2±0.000	3.25±0.050	3.45±0.050	1.078±0.057
12	Powder down	Dorsal	0.2±0.000	N/A	N/A	1.2799±0.046
13	Powder down	Ventral	0.25±0.050	N/A	N/A	1.032±0.043
14	Powder down	Tail	0.25±0.050	N/A	N/A	0.765±0.028
15	Bristle	Near Eye and Beak	0.26±0.024	1±0.032	1.26±0.051	0.316±0.008
16	Filoplume	Wings	N/A	N/A	1.94±0.262	0.288±0.017

Villi: Villi are the unique diagnostic microstructural characteristic of passerine birds that extend out from the basal cell of the barbules, only present in the basal cell region of the plumulaceous barbs. The shape of villi was

either knobbed or pointed, but sometimes both were present in the basal cells forming finger-like structures (Image 2A–B).

Nodes and their shape: The barbules of all feathers

Common Myna feather mícrostructure

had nodes that were swollen, with three different shapes: plain nodes (Image 2C–D), plain pronged nodes (Image 2E–F) and quadrilobed nodes (Image 2G–H). The plumulaceous barbs have all three node types, which were absent in pennaceous barbs. The quadrilobed nodes were mainly present in the proximal region of barbules (Image 2), while the distal region had plain nodes either with prongs or without prongs. These nodes were present in all the different feather types, except in powder down, bristle and filoplume feathers.

Internode shape: The region between two nodes is the internode, which is straight in shape and present in the barbules of plumulaceous barbs (Image 2C–H).

Prongs and their size: Prongs are present only on the swollen nodes. Nodes with small prongs were present in the plumulaceous barbs of primary contour, secondary contour, tail contour, body contour, semiplume and down feathers. On the nodes of the bristle (Image 2I–J) and filoplume (Image 3K–L) feathers, elongated and large-sized prongs are present. Prongs were totally absent in powder down feathers.

Hooklets: Distinct hooklets were present in pennaceous barbs of primary contour, secondary contour and tail contour feathers, and were present after the basal cells of the barbules (Image 3M–N). Hooklets were completely absent in all plumulaceous barbs of *A. tristis*.

Ventral teeth: Pennaceous barbs had ventral teeth at the end of basal cells that were less broadened (Image 30–P).

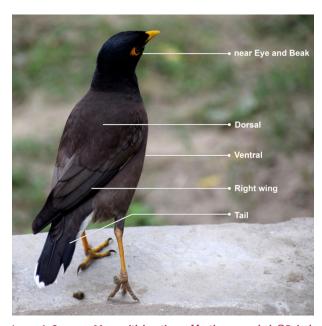


Image 1. Common Myna with locations of feathers sampled. ©Rajesh Kumar.

	Feather type	noitsool 1941ss	!II!A	əqsris illiV	səpoN	əderls əboN	Prongs	Prong size	Pooklets	Ventral teeth	ədens İnternode		noitstnemgiq	
		94	0/1	KNB/PNT	0/1	2,3,4	0/1	S/L	0/1	0/1	STR/KNK	Nodes	Internodes	Ramus
1	Wing Feather	Right Wing	1	KNB, PNT	1	2, 3	1	S	1	1	STR	9	ъ	9
2	Tail Contour	Tail	1	KNB, PNT	1	2, 3	1	S	4	1	STR	9	ъ	9
æ	Body Contour	Dorsal & Ventral	1	KNB, PNT	1	2,3,4	1	S	4	0	STR	9	ъ	5, 6
4	Semiplume	Dorsal, Ventral & Tail	1	KNB, PNT	1	2,3,4	1	S	0	0	STR	6,5	ъ	5,6
S	Down	Dorsal, Ventral & Tail	1	KNB, PNT	1	2,3,4	1	S	0	0	STR	9	£	5, 6
9	Powder Down	Dorsal, Ventral & Tail	1	KNB, PNT	1	m	0	NA	0	0	STR	5,6	ъ	9
7	Bristle	Near eye and beak	1	KNB, PNT	1	2	1	L	0	0	STR	9	ъ	9
∞	Filoplume	Wings	0	NA	1	2	1	L	0	0	STR	S	5	5, 6

Ray et al. 🖉 🐖

Table 3. Feather microstructures

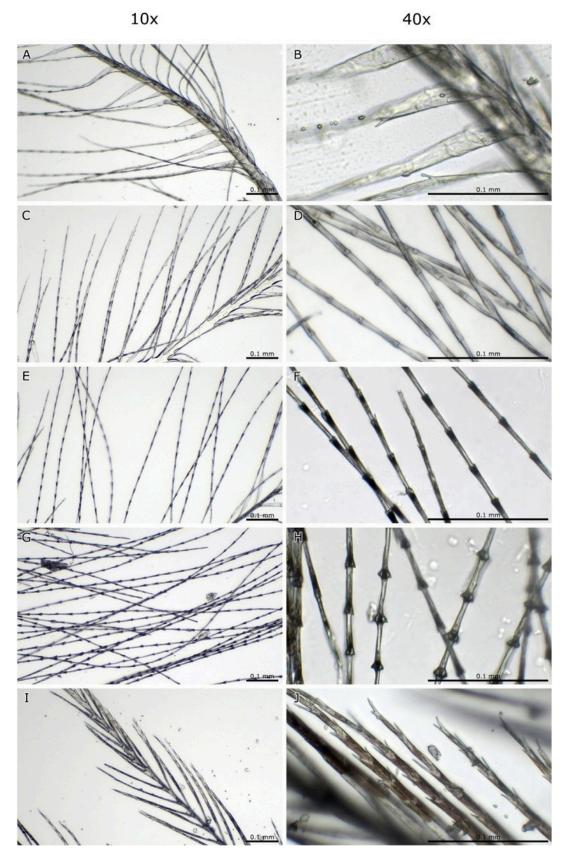
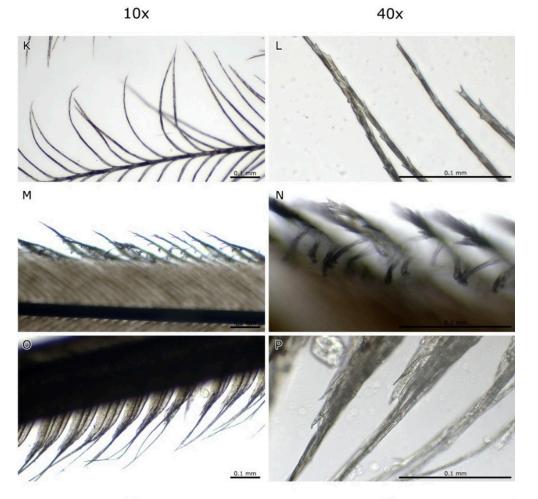



Image 2. Feather microstructures of *A. tristis*. A—Villi at 10X | B—Villi at 40X | C—Plain unpronged nodes at 10X | D—Plain unpronged nodes at 40X | E—Plain pronged nodes at 10X | F—Plain pronged nodes at 40X | G—Quadrilobed nodes at 10X | H—Quadrilobed nodes at 40X | I— Elongated prongs on bristle feathers barbs at 10X | J—Elongated prongs at bristle feathers barbs at 40X. © Swapna Devi Ray.

40x

40x

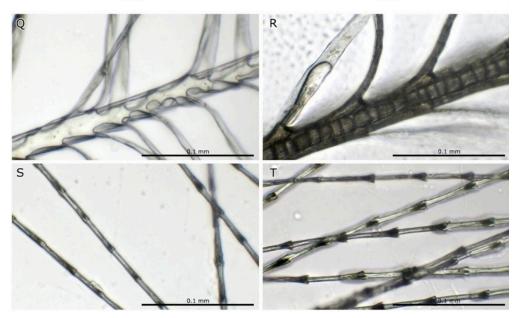


Image 3. Feather microstructures of Common Myna (*A. tristis*): K—Elongated prongs on filoplume feathers at 10X | L—Elongated prongs on filoplume feathers at 40X | M—Hooklets at 10X | N—Hooklets at 40X | O—Ventral teeth at 10X | P—Ventral teeth at 40X | Q—Patchy pigmentation on ramus 40X | R—Dark pigmentation on ramus at 40X | S—Patchy pigmentation on nodes at 40X | T—Dark pigmentation on nodes at 40X. © Swapna Devi Ray.

Pigmentation: Dark pigmentation was mainly present on the nodes where internodes mostly had patchy pigmentation. However, in the semiplume and powder down feathers, nodes had both types of pigmentation (Image 3S–T). Ramus was present with both patchy (Image 3Q) and dark pigmentation (Image 3R).

DISCUSSION

In this study we have documented feather macrocharacters, morphometry and microstructures of *A. tristis*. The colour and texture of feathers mainly depends on their location in the body, and also their functional aspects (Ray et al. 2021). According to Chandler (1916), colour is the most important characteristic in species identification, and we observed silver-colored filoplume feathers with pale black pigmentation on the barbs as a specific character of *A. tristis*. It must be noted, however, that it is difficult to retrieve filoplume feathers due to their location and almost transparent nature. Except for the filoplume feathers, we recorded varying colors specific to feather types.

The texture of feathers is known to vary based on their body location and functions, such as flight, thermoregulation, signaling and protection (Lovette & Fitzpatrick 2016). The texture of the feathers of *A. tristis* mainly comprised of three types: rigid, semi-rigid, and soft and fluffy, associated with flight, protection and thermoregulation respectively. While macro characteristics and morphometric measurements tend to vary according to bird age and sex, the measurements are species-specific (Dove 2000; Lee et al. 2015). Data on feather morphometry can also provide clues about physical size (Lee et al. 2015). The present study provides ranges for feather morphometry of *A. tristis* that can be used for these purposes.

Several studies have examined the variation of diagnostic feather features among species, and among different feathers (Chandler 1916; Dey 1966; Robertson et al. 1984; Brom 1991; Dove 2000; Dove & Peurach 2002; Lee et al. 2015; Dey et al. 2021; Ray et al. 2021). These studies illustrate that the feather microstructures of a species remain the same irrespective of individual variation (Dove 1997; Lee et al. 2015; Ray et al. 2021). To identify passerine birds, Chandler (1916) stated that the pennaceous barbs would contain three to four hooklets, while Lee et al. (2015) observed the presence of the broadened shape of ventral teeth in *A. tristis.* However, Lee et al. (2015) cautioned that these microstructures cannot be used as an exclusive character for the

identification of species, while Dove (2000) suggested that pigmentation patterns provide diagnostic clues for determining species groups. From our study of *A. tristis* feathers, we observed that there is no particular uniform pigmentation pattern present in nodes, internodes, and ramus. However, the presence of dark and patchy pigmentation on different shapes of nodes can be used as a micro character for the identification of *A. tristis*. Also from this study we report three microstructures that can be used in the identification of *A. tristis* species: (i) the presence of finger-like villi that are distinctively knobbed and pointed on the border of the basal cells, (ii) the presence of all three types of nodes: quadrilobed, pronged and plain, and (iii) the presence of sharply pointed pronged nodes on bristle and filoplume feathers.

CONCLUSION

Plumology feather characters, uses macro morphometry, and microstructures to aid the identification of order, family and species of birds. During our study we used a systematic approach towards identification of A. tristis. Macro-characters including filoplume feathers helped to identify this as a passerine species, while examination of microstructures including finger-like projection of villi, the presence of three node types and the presence of elongated prongs on the nodes of bristle and filoplume feathers were identified as specific to A. tristis. This study provides feather morphometry measurements for future reference as a baseline for the identification of A. tristis from India.

REFERENCES

- Ali, S. & S.D. Ripley (1987). Handbook of the birds of India and Pakistan. Vol. 5. Oxford University Press, Bombay, 278 pp.
- Ahmed, A. (1997). Live Bird Trade in Northern India. TRAFFIC India, New Delhi, 104pp.
- Ahmed, A. (2001). Fraudulence in Indian live bird trade: An identification monograph for control of illegal trade. TRAFFIC India, New Delhi, 24 pp.
- Ahmed A. (2013). 'WILDLIFE ON SALE': An insight into the Sonepur Mela, Bihar. TRAFFIC POST 17: 16.
- Brom, T. (1991). The diagnostic and phylogentic significance of feather structures. PhD Thesis. Universiteit van Amsterdam, Instituutvoor Taxonomische Zoölogie, University of Amsterdam, viii+277 pp.
- Chandler, A.C. (1916). A study of Feathers, with reference to their taxonomic significance. University of California Press, Berkeley, 274 pp.
- Day, M.G. (1966). Identification of hair and feather remains in the gut and faeces of stoats and weasels. *Journal of Zoology* 148(2): 201– 217. https://doi.org/10.1111/j.1469-7998.1966.tb02948.x
- Dove, C.J. (1997). Quantification of Microscopic Feather Characters Used in the Identification of North American Plovers. *The Condor* 99(1): 47–57.

Common Myna feather microstructure

- Dove, C.J. & S.C. Peurach (2002). Microscopic Analysis of Feather and Hair Fragments Associated with Human Mummified Remains from Kagamil Island, Alaska. To the Aleutians and Beyond-The Anthropology of William S. Laughlin. *Ethnographical Series* 20: 51–62.
- Dey, P., S.D. Ray, S.K. Sharma, P. Pramod & R.P. Singh (2021). Identification of a unique barb from the dorsal body contour feathers of the Indian Pitta *Pitta brachyura* (Aves: Passeriformes: Pittidae). *Journal of Threatened Taxa* 13(8): 19029–19039. https:// doi.org/10.11609/jott.6362.13.8.19029-19039
- Gill, F.B. (2007). Ornithology. Third Edition, W.H. Freeman and Company, New York City, 725 pp.
- Kannan, R. & D.A. James (2020). Common Myna (Acridotheres tristis), version 1.0. In; Billerman, S.M. (ed.). Birds of the World. Cornell Lab of Ornithology, USA. https://doi.org/10.2173/bow.commyn.01
- Lei, F.M., Y.H. Qu, Y.L. Gan, A. Gebauer & M. Kaiser (2002). The feather microstructure of Passerine sparrows in China. *Journal für Ornithologie* 143(2): 205–212.
- Lowe, S., M. Browne, S. Boudjelas & M. De Poorter (2004). 100 of the World's Worst Invasive Alien Species – A Selection from the Global Invasive Species Database. Invasive Species Specialist Group

(Species Survival Commission) of the World Conservation Union

- (IUCN), 12 pp.
 Lee, J., S.D. Sarre, L. Joseph & J. Robertson (2016). Microscopic characteristics of the plumulaceous feathers of Australian birds: a preliminary analysis of taxonomic discrimination for forensic purposes. Australian Journal of Forensic Sciences 48(4): 421–444. https://doi.org/10.1080/00450618.2015.107603
- Lovette, I.J. & J.W. Fitzpatrick (Eds.). (2016). Handbook of Bird Biology. John Wiley & Sons, UK, 716 pp.
- Robertson, J., C. Harkin & J. Govan (1984). The identification of bird feathers. Scheme for feather examination. *Journal of the Forensic Science Society* 24(2): 85–98. https://doi.org/10.1016/S0015-7368 (84)72301-2
- **Robertson, G.R. (2002).** Birds of a feather stick: microscopic feather residues on stone artifacts from Deep Creek Shelter, New South Wales, pp. 175–182. Proceedings of the 2001 Australian Archaeological Assoc Annual Conference, Tempus, Anthropology Museum, The University of Queensland.
- Ray, S.D., P. Dey, N. Islam, S.K.S. Sharma, P. Pramod & R.P. Singh (2021). Comparative study of Yellow-billed Babbler (*Turdoides affinis*) feather reveals uniformity in their microstructure among individuals. *Journal of Experimental Biology and Agricultural Sciences* 9(1): 51–64. https://doi.org/10.18006/2021.9(1).51.64

Dr. John Noyes, Natural History Museum, London, UK

- Dr. Albert G. Orr, Griffith University, Nathan, Australia
- Dr. Sameer Padhye, Katholieke Universiteit Leuven, Belgium
- Dr. Nancy van der Poorten, Toronto, Canada Dr. Kareen Schnabel, NIWA, Wellington, New Zealand
- Dr. R.M. Sharma, (Retd.) Scientist, Zoological Survey of India, Pune, India
- Dr. Manju Siliwal, WILD, Coimbatore, Tamil Nadu, India
- Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India
- Dr. K.A. Subramanian, Zoological Survey of India, New Alipore, Kolkata, India
- Dr. P.M. Sureshan, Zoological Survey of India, Kozhikode, Kerala, India
- Dr. R. Varatharajan, Manipur University, Imphal, Manipur, India Dr. Eduard Vives, Museu de Ciències Naturals de Barcelona, Terrassa, Spain
- Dr. James Young, Hong Kong Lepidopterists' Society, Hong Kong
- Dr. R. Sundararaj, Institute of Wood Science & Technology, Bengaluru, India

Dr. M. Nithyanandan, Environmental Department, La Ala Al Kuwait Real Estate. Co. K.S.C., Kuwait

- Dr. Himender Bharti, Punjabi University, Punjab, India
- Mr. Purnendu Roy, London, UK
- Dr. Saito Motoki, The Butterfly Society of Japan, Tokyo, Japan Dr. Sanjay Sondhi, TITLI TRUST, Kalpavriksh, Dehradun, India
- Dr. Nguyen Thi Phuong Lien, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Dr. Nitin Kulkarni, Tropical Research Institute, Jabalpur, India
- Dr. Robin Wen Jiang Ngiam, National Parks Board, Singapore
- Dr. Lional Monod, Natural History Museum of Geneva, Genève, Switzerland.
- Dr. Asheesh Shivam, Nehru Gram Bharti University, Allahabad, India
- Dr. Rosana Moreira da Rocha, Universidade Federal do Paraná, Curitiba, Brasil Dr. Kurt R. Arnold, North Dakota State University, Saxony, Germany
- Dr. James M. Carpenter, American Museum of Natural History, New York, USA
- Dr. David M. Claborn, Missouri State University, Springfield, USA
- Dr. Kareen Schnabel, Marine Biologist, Wellington, New Zealand
- Dr. Amazonas Chagas Júnior, Universidade Federal de Mato Grosso, Cuiabá, Brasil
- Mr. Monsoon Jyoti Gogoi, Assam University, Silchar, Assam, India Dr. Heo Chong Chin, Universiti Teknologi MARA (UITM), Selangor, Malaysia
- Dr. R.J. Shiel, University of Adelaide, SA 5005, Australia
- Dr. Siddharth Kulkarni, The George Washington University, Washington, USA
- Dr. Priyadarsanan Dharma Rajan, ATREE, Bengaluru, India
- Dr. Phil Alderslade, CSIRO Marine And Atmospheric Research, Hobart, Australia
- Dr. John E.N. Veron, Coral Reef Research, Townsville, Australia
- Dr. Daniel Whitmore, State Museum of Natural History Stuttgart, Rosenstein, Germany.
- Dr. Yu-Feng Hsu, National Taiwan Normal University, Taipei City, Taiwan
- Dr. Keith V. Wolfe, Antioch, California, USA
- Dr. Siddharth Kulkarni, The Hormiga Lab, The George Washington University, Washington, D.C., USA
- Dr. Tomas Ditrich, Faculty of Education, University of South Bohemia in Ceske Budejovice, Czech Republic
- Dr. Mihaly Foldvari, Natural History Museum, University of Oslo, Norway
- Dr. V.P. Unival, Wildlife Institute of India, Dehradun, Uttarakhand 248001, India
- Dr. John T.D. Caleb, Zoological Survey of India, Kolkata, West Bengal, India
- Dr. Priyadarsanan Dharma Rajan, Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Bangalore, Karnataka, India

Fishes

- Dr. Neelesh Dahanukar, IISER, Pune, Maharashtra, India
- Dr. Topiltzin Contreras MacBeath, Universidad Autónoma del estado de Morelos, México
- Dr. Heok Hee Ng, National University of Singapore, Science Drive, Singapore
- Dr. Rajeev Raghavan, St. Albert's College, Kochi, Kerala, India
- Dr. Robert D. Sluka, Chiltern Gateway Project, A Rocha UK, Southall, Middlesex, UK
- Dr. E. Vivekanandan, Central Marine Fisheries Research Institute, Chennai, India
- Dr. Davor Zanella, University of Zagreb, Zagreb, Croatia Dr. A. Biju Kumar, University of Kerala, Thiruvananthapuram, Kerala, India
- Dr. Akhilesh K.V., ICAR-Central Marine Fisheries Research Institute, Mumbai Research
- Centre, Mumbai, Maharashtra, India
- Dr. J.A. Johnson, Wildlife Institute of India, Dehradun, Uttarakhand, India

Amphibians

- Dr. Sushil K. Dutta, Indian Institute of Science, Bengaluru, Karnataka, India
- Dr. Annemarie Ohler, Muséum national d'Histoire naturelle, Paris, France

Reptiles

- Dr. Gernot Vogel, Heidelberg, Germany
- Dr. Raju Vyas, Vadodara, Gujarat, India
- Dr. Pritpal S. Soorae, Environment Agency, Abu Dubai, UAE.
- Prof. Dr. Wayne J. Fuller, Near East University, Mersin, Turkey
- Prof. Chandrashekher U. Rivonker, Goa University, Taleigao Plateau, Goa. India
- Dr. S.R. Ganesh, Chennai Snake Park, Chennai, Tamil Nadu, India

Dr. Himansu Sekhar Das, Terrestrial & Marine Biodiversity, Abu Dhabi, UAE

Journal of Threatened Taxa is indexed/abstracted in Bibliography of Systematic Mycology, Biological Abstracts, BIOSIS Previews, CAB Abstracts, EBSCO, Google Scholar, Index Copernicus, Index Fungorum, JournalSeek, National Academy of Agricultural Sciences, NewJour, OCLC WorldCat, SCOPUS, Stanford University Libraries, Virtual Library of Biology, Zoological Records.

NAAS rating (India) 5.64

Birds

- Dr. Hem Sagar Baral, Charles Sturt University, NSW Australia
- Mr. H. Byju, Coimbatore, Tamil Nadu, India
- Dr. Chris Bowden, Royal Society for the Protection of Birds, Sandy, UK
- Dr. Priya Davidar, Pondicherry University, Kalapet, Puducherry, India Dr. J.W. Duckworth, IUCN SSC, Bath, UK
- Dr. Rajah Jayapal, SACON, Coimbatore, Tamil Nadu, India Dr. Rajiv S. Kalsi, M.L.N. College, Yamuna Nagar, Haryana, India
- Dr. V. Santharam, Rishi Valley Education Centre, Chittoor Dt., Andhra Pradesh, India
- Dr. S. Balachandran, Bombay Natural History Society, Mumbai, India
- Mr. J. Praveen, Bengaluru, India
- Dr. C. Srinivasulu, Osmania University, Hyderabad, India
- Dr. K.S. Gopi Sundar, International Crane Foundation, Baraboo, USA
- Dr. Gombobaatar Sundev, Professor of Ornithology, Ulaanbaatar, Mongolia
- Prof. Reuven Yosef, International Birding & Research Centre, Eilat, Israel
- Dr. Taej Mundkur, Wetlands International, Wageningen, The Netherlands
- Dr. Carol Inskipp, Bishop Auckland Co., Durham, UK
- Dr. Tim Inskipp, Bishop Auckland Co., Durham, UK Dr. V. Gokula, National College, Tiruchirappalli, Tamil Nadu, India
- Dr. Arkady Lelej, Russian Academy of Sciences, Vladivostok, Russia
- Dr. Simon Dowell, Science Director, Chester Zoo, UK
- Dr. Mário Gabriel Santiago dos Santos, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, Vila Real, Portugal
- Dr. Grant Connette, Smithsonian Institution, Royal, VA, USA
- Dr. M. Zafar-ul Islam, Prince Saud Al Faisal Wildlife Research Center, Taif, Saudi Arabia

Mammals

Altobello", Rome, Italy

Other Disciplines

Delhi, India

Reviewers 2019-2021

The Managing Editor, JoTT,

ravi@threatenedtaxa.org

- Dr. Giovanni Amori, CNR Institute of Ecosystem Studies, Rome, Italy
- Dr. Anwaruddin Chowdhury, Guwahati, India
- Dr. David Mallon, Zoological Society of London, UK
- Dr. Shomita Mukherjee, SACON, Coimbatore, Tamil Nadu, India
- Dr. Angie Appel, Wild Cat Network, Germany
- Dr. P.O. Nameer, Kerala Agricultural University, Thrissur, Kerala, India
- Dr. Ian Redmond, UNEP Convention on Migratory Species, Lansdown, UK
- Dr. Heidi S. Riddle, Riddle's Elephant and Wildlife Sanctuary, Arkansas, USA

Dr. Honnavalli N. Kumara, SACON, Anaikatty P.O., Coimbatore, Tamil Nadu, India

Dr. Justus Joshua, Green Future Foundation, Tiruchirapalli, Tamil Nadu, India

Dr. Jim Sanderson, Small Wild Cat Conservation Foundation, Hartford, USA

Dr. David Mallon, Manchester Metropolitan University, Derbyshire, UK

Dr. Brian L. Cypher, California State University-Stanislaus, Bakersfield, CA Dr. S.S. Talmale, Zoological Survey of India, Pune, Maharashtra, India

Prof. Karan Bahadur Shah, Budhanilakantha Municipality, Kathmandu, Nepal

Dr. Hemanta Kafley, Wildlife Sciences, Tarleton State University, Texas, USA

Dr. Aniruddha Belsare, Columbia MO 65203, USA (Veterinary)

Dr. Ulrike Streicher, University of Oregon, Eugene, USA (Veterinary)

Dr. Hari Balasubramanian, EcoAdvisors, Nova Scotia, Canada (Communities) Dr. Rayanna Hellem Santos Bezerra, Universidade Federal de Sergipe, São Cristóvão, Brazil Dr. Jamie R. Wood, Landcare Research, Canterbury, New Zealand Dr. Wendy Collinson-Jonker, Endangered Wildlife Trust, Gauteng, South Africa

Dr. Rajeshkumar G. Jani, Anand Agricultural University, Anand, Gujarat, India

Dr. Rupika S. Rajakaruna, University of Peradeniya, Peradeniya, Sri Lanka

Due to pausity of space, the list of reviewers for 2018-2020 is available online.

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political

Dr. Bahar Baviskar, Wild-CER, Nagpur, Maharashtra 440013, India

boundaries shown in the maps by the authors.

Print copies of the Journal are available at cost. Write to:

c/o Wildlife Information Liaison Development Society, No. 12, Thiruvannamalai Nagar, Saravanampatti - Kalapatti Road,

Saravanampatti, Coimbatore, Tamil Nadu 641035, India

Dr. O.N. Tiwari, Senior Scientist, ICAR-Indian Agricultural Research Institute (IARI), New

Dr. L.D. Singla, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India

Dr. Susan Cheyne, Borneo Nature Foundation International, Palangkaraja, Indonesia

Dr. Mandar S. Paingankar, University of Pune, Pune, Maharashtra, India (Molecular) Dr. Jack Tordoff, Critical Ecosystem Partnership Fund, Arlington, USA (Communities)

Dr. H. Raghuram, The American College, Madurai, Tamil Nadu, India

Dr. Spartaco Gippoliti, Socio Onorario Società Italiana per la Storia della Fauna "Giuseppe

Dr. Karin Schwartz, George Mason University, Fairfax, Virginia. Dr. Lala A.K. Singh, Bhubaneswar, Orissa, India

Dr. Nishith Dharaiya, HNG University, Patan, Gujarat, India

Dr. Dan Challender, University of Kent, Canterbury, UK

Dr. Mewa Singh, Mysore University, Mysore, India Dr. Paul Racey, University of Exeter, Devon, UK

Dr. Paul Bates, Harison Institute, Kent, UK

The Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservation globally by publishing peer-reviewed articles online every month at a reasonably rapid rate at www.threatenedtaxa.org. All articles published in JoTT are registered under Creative Commons Attribution 4.0 International License unless otherwise mentioned. JoTT allows allows unrestricted use, reproduction, and distribution of articles in any medium by providing adequate credit to the author(s) and the source of publication.

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print)

June 2022 | Vol. 14 | No. 6 | Pages: 21127–21330 Date of Publication: 26 June 2022 (Online & Print) DOI: 10.11609/jott.2022.14.6.21127-21330

Viewpoint

Comments on "The Dragonflies and Damselflies (Odonata) of Kerala – Status and Distribution" – A. Vivek Chandran & K. Muhamed Sherif, Pp. 21282–21284

Short Communications

Landings of IUCN Red Listed finfishes at Chetlat Island of Lakshadweep, southeastern Arabian Sea

- Davood Nihal, N.M. Naseem, N. Abhirami & M.P. Prabhakaran, Pp. 21285-21289

First report of the termite *Glyptotermes ceylonicus* (Blattodea: Isoptera: Kalotermitidae) from India: an example of discontinuous distribution

– Edwin Joseph, Chinnu Ipe, Nisha P. Aravind, Sherin Antony & Jobin Mathew, Pp. 21290–21295

Authentic report of the emesine bug *Gardena melinarthrum* Dohrn, 1860 (Hemiptera: Heteroptera: Reduviidae) from India

– Sangamesh R. Hiremath, Santana Saikia & Hemant V. Ghate, Pp. 21296–21301

Reappearance of stomatopod *Gonodactylus platysoma* (Wood-Mason, 1895) after an era from the intertidal region of Chota Balu, South Andaman, India

– N. Muthu Mohammed Naha, Limaangnen Pongener & G. Padmavati, Pp. 21302–21306

Range extension of earthworm *Drawida impertusa* Stephenson, 1920 (Clitellata: Moniligastridae) in Karnataka, India

– Vivek Hasyagar, S. Prasanth Narayanan & K.S. Sreepada, Pp. 21307–21310

Pelatantheria insectifera (Rchb.f.) Ridl. (Orchidaceae): a new generic record for Eastern Ghats of Andhra Pradesh, India

– V. Ashok Kumar, P. Janaki Rao, J. Prakasa Rao, S.B. Padal & C. Sudhakar Reddy, Pp. 21311–21314

Notes

New breeding site record of Oriental White Ibis Threskiornis melanocephalus (Aves: Threskiornithidae) at Thirunavaya wetlands, Kerala, India – Binu Chullakattil, Pp. 21315–21317

Rediscovery of Gardena melinarthrum Dohrn from Sri Lanka – Tharindu Ranasinghe & Hemant V. Ghate, Pp. 21318–21320

A report on the occurrence of the cicada *Callogaeana festiva* (Fabricius, 1803) (Insecta: Cicadidae) from Mizoram, India

- Khawlhring Marova, Fanai Malsawmdawngliana, Lal Muansanga & Hmar Tlawmte Lalremsanga, Pp. 21321–21323

New distribution records of two species of metallic ground beetles of the genus *Chlaenius* (Coleoptera: Carabidae: Chlaeniini) from the Western Ghats, India – Duraikannu Vasanthakumar & Erich Kirschenhofer, Pp. 21324–21326

Report of *Euphaea pseudodispar* Sadasivan & Bhakare, 2021 (Insecta: Odonata) from Kerala, India

- P.K. Muneer, M. Madhavan & A. Vivek Chandran, Pp. 21327-21330

Publisher & Host

www.threatenedtaxa.org

Article

Identification of confiscated pangolin for conservation purposes through molecular approach

- Wirdateti, R. Taufiq P. Nugraha, Yulianto & Gono Semiadi, Pp. 21127-21139

Communications

The trade of Saiga Antelope horn for traditional medicine in Thailand – Lalita Gomez, Penthai Siriwat & Chris R. Shepherd, Pp. 21140–21148

The occurrence of Indochinese Serow Capricornis sumatraensis in Virachey National Park, northeastern Cambodia

- Gregory McCann, Keith Pawlowski & Thon Soukhon, Pp. 21149–21154

Attitudes and perceptions of people about the Capped Langur Trachypithecus pileatus (Mammalia: Primates: Cercopithecidae): a preliminary study in Barail Wildlife Sanctuary, India

 – Rofik Ahmed Barbhuiya, Amir Sohail Choudhury, Nazimur Rahman Talukdar & Parthankar Choudhury, Pp. 21155–21160

Feather characteristics of Common Myna Acridotheres tristis (Passeriformes: Sturnidae) from India

 – Swapna Devi Ray, Goldin Quadros, Prateek Dey, Padmanabhan Pramod & Ram Pratap Singh, Pp. 21161–21169

Population and distribution of Wattled Crane Bugeranus carunculatus, Gmelin, 1989 at lake Tana area, Ethiopia

- Shimelis Aynalem Zelelew & George William Archibald, Pp. 21170-21178

Waterbird assemblage along Punatsangchhu River, Punakha and Wangdue Phodrang, Bhutan

– Nima & Ugyen Dorji, Pp. 21179–21189

Freshwater fishes of the Chimmony Wildlife Sanctuary, Western Ghats, India – P.S. Eldho & M.K. Saieevan, Pp. 21190–21198

Butterflies of Eravikulam National Park and its environs in the Western Ghats of Kerala, India

Kalesh Sadasivan, Toms Augustine, Edayillam Kunhikrishnan & Baiju Kochunarayanan, Pp. 21199–21212

The dragonflies and damselflies (Insecta: Odonata) of Shendurney Wildlife Sanctuary, southern Western Ghats, India

- Kalesh Sadasivan, Vinayan P. Nair & K. Abraham Samuel, Pp. 21213-21226

A pioneering study on the spider fauna (Arachnida: Araneae) of Sagar District, Madhya Pradesh, India

- Tanmaya Rani Sethy & Janak Ahi, Pp. 21227-21238

Taxonomy and threat assessment of *Lagotis kunawurensis* Rupr (Plantaginaceae), an endemic medicinal plant species of the Himalaya, India – Aijaz Hassan Ganie, Tariq Ahmad Butt, Anzar Ahmad Khuroo, Nazima Rasool, Rameez

Ahmad, Syed Basharat & Zafar A. Reshi, Pp. 21239–21245

The study of algal diversity from fresh water bodies of Chimmony Wildlife Sanctuary, Kerala, India

- Joel Jose & Jobi Xavier, Pp. 21246-21265

Review

A checklist of herpetofauna of Telangana state, India

- Chelmala Srinivasulu & Gandla Chethan Kumar, Pp. 21266-21281