N

/jott.2022.14.11.22039-22206 www.threatenedtaxa.org

Open Access

26 November 2022 (Online Strint) 14(11):22039-22206 ISSN 0974-7907 (Owline) ISSN 0974-7893 (Print)

10.11609

Publisher

Wildlife Information Liaison Development Society www.wild.zooreach.org

Host **Zoo Outreach Organization** www.zooreach.org

43/2 Varadarajulu Nagar, 5th Street West, Ganapathy, Coimbatore, Tamil Nadu 641035, India Ph: +91 9385339863 | www.threatenedtaxa.org

Email: sanjay@threatenedtaxa.org

EDITORS

Founder & Chief Editor

Dr. Sanjay Molur

Wildlife Information Liaison Development (WILD) Society & Zoo Outreach Organization (ZOO), 12 Thiruvannamalai Nagar, Saravanampatti, Coimbatore, Tamil Nadu 641035, India

Deputy Chief Editor

Dr. Neelesh Dahanukar Noida, Uttar Pradesh, India

Managing Editor

Mr. B. Ravichandran, WILD/ZOO, Coimbatore, India

Associate Editors

Dr. Mandar Paingankar, Government Science College Gadchiroli, Maharashtra 442605, India Dr. Ulrike Streicher, Wildlife Veterinarian, Eugene, Oregon, USA Ms. Privanka Iver. ZOO/WILD. Coimbatore. Tamil Nadu 641035. India Dr. B.A. Daniel, ZOO/WILD, Coimbatore, Tamil Nadu 641035, India

Editorial Board

Dr. Russel Mittermeier

Executive Vice Chair, Conservation International, Arlington, Virginia 22202, USA

Prof. Mewa Singh Ph.D., FASc, FNA, FNASc, FNAPsy

Ramanna Fellow and Life-Long Distinguished Professor, Biopsychology Laboratory, and Institute of Excellence, University of Mysore, Mysuru, Karnataka 570006, India; Honorary Professor, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore; and Adjunct Professor, National Institute of Advanced Studies, Bangalore

Stephen D. Nash

Scientific Illustrator, Conservation International, Dept. of Anatomical Sciences, Health Sciences Center, T-8, Room 045, Stony Brook University, Stony Brook, NY 11794-8081, USA

Dr. Fred Pluthero

Toronto, Canada

Dr. Priya Davidar

Sigur Nature Trust, Chadapatti, Mavinhalla PO, Nilgiris, Tamil Nadu 643223, India

Dr. Martin Fisher

Senior Associate Professor, Battcock Centre for Experimental Astrophysics, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 OHE, UK

Dr. John Fellowes

Honorary Assistant Professor, The Kadoorie Institute, 8/F, T.T. Tsui Building, The University of Hong Kong, Pokfulam Road, Hong Kong

Prof. Dr. Mirco Solé

Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Vice-coordenador do Programa de Pós-Graduação em Zoologia, Rodovia Ilhéus/Itabuna, Km 16 (45662-000) Salobrinho. Ilhéus - Bahia - Brasil

Dr. Rajeev Raghavan

Professor of Taxonomy, Kerala University of Fisheries & Ocean Studies, Kochi, Kerala, India

English Editors

Mrs. Mira Bhojwani, Pune, India Dr. Fred Pluthero, Toronto, Canada Mr. P. Ilangovan, Chennai, India

Web Development

Mrs. Latha G. Ravikumar, ZOO/WILD, Coimbatore, India

Typesetting

Mrs. Radhika. ZOO, Coimbatore, India Mrs. Geetha, ZOO, Coimbatore India

Fundraising/Communications Mrs. Payal B. Molur, Coimbatore, India

Subject Editors 2019-2021

Fungi

- Dr. B. Shivaraju, Bengaluru, Karnataka, India
- Dr. R.K. Verma, Tropical Forest Research Institute, Jabalpur, India
- Dr. Vatsavaya S. Raju, Kakatiay University, Warangal, Andhra Pradesh, India
- Dr. M. Krishnappa, Jnana Sahyadri, Kuvempu University, Shimoga, Karnataka, India
- Dr. K.R. Sridhar, Mangalore University, Mangalagangotri, Mangalore, Karnataka, India Dr. Gunjan Biswas, Vidyasagar University, Midnapore, West Bengal, India

Plants

- Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India
- Dr. N.P. Balakrishnan, Ret, Joint Director, BSI, Coimbatore, India
- Dr. Shonil Bhagwat, Open University and University of Oxford, UK
- Prof. D.J. Bhat, Retd. Professor, Goa University, Goa, India
- Dr. Ferdinando Boero, Università del Salento, Lecce, Italy
- Dr. Dale R. Calder, Royal Ontaro Museum, Toronto, Ontario, Canada
- Dr. Cleofas Cervancia, Univ. of Philippines Los Baños College Laguna, Philippines
- Dr. F.B. Vincent Florens, University of Mauritius, Mauritius
- Dr. Merlin Franco, Curtin University, Malaysia
- Dr. V. Irudayaraj, St. Xavier's College, Palayamkottai, Tamil Nadu, India
- Dr. B.S. Kholia, Botanical Survey of India, Gangtok, Sikkim, India
- Dr. Pankaj Kumar, Kadoorie Farm and Botanic Garden Corporation, Hong Kong S.A.R., China
- Dr. V. Sampath Kumar, Botanical Survey of India, Howrah, West Bengal, India Dr. A.J. Solomon Raju, Andhra University, Visakhapatnam, India
- Dr. Vijayasankar Raman, University of Mississippi, USA
- Dr. B. Ravi Prasad Rao, Sri Krishnadevaraya University, Anantpur, India
- Dr. K. Ravikumar, FRLHT, Bengaluru, Karnataka, India
- Dr. Aparna Watve, Pune, Maharashtra, India
- Dr. Qiang Liu, Xishuangbanna Tropical Botanical Garden, Yunnan, China
- Dr. Noor Azhar Mohamed Shazili, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
- Dr. M.K. Vasudeva Rao, Shiv Ranjani Housing Society, Pune, Maharashtra, India
- Prof. A.J. Solomon Raju, Andhra University, Visakhapatnam, India
- Dr. Mandar Datar, Agharkar Research Institute, Pune, Maharashtra, India
- Dr. M.K. Janarthanam. Goa University. Goa. India
- Dr. K. Karthigeyan, Botanical Survey of India, India
- Dr. Errol Vela, University of Montpellier, Montpellier, France Dr. P. Lakshminarasimhan, Botanical Survey of India, Howrah, India
- Dr. Larry R. Noblick, Montgomery Botanical Center, Miami, USA
- Dr. K. Haridasan, Pallavur, Palakkad District, Kerala, India
- Dr. Analinda Manila-Fajard, University of the Philippines Los Banos, Laguna, Philippines
- Dr. P.A. Sinu, Central University of Kerala, Kasaragod, Kerala, India
- Dr. Afroz Alam, Banasthali Vidyapith (accredited A grade by NAAC), Rajasthan, India
- Dr. K.P. Rajesh, Zamorin's Guruvayurappan College, GA College PO, Kozhikode, Kerala, India
- Dr. David E. Boufford, Harvard University Herbaria, Cambridge, MA 02138-2020, USA
- Dr. Ritesh Kumar Choudhary, Agharkar Research Institute, Pune, Maharashtra, India
- Dr. Navendu Page, Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India
- Dr. Kannan C.S. Warrier, Institute of Forest Genetics and Tree Breeding, Tamil Nadu, India

Invertebrates

- Dr. R.K. Avasthi, Rohtak University, Haryana, India
- Dr. D.B. Bastawade, Maharashtra, India
- Dr. Partha Pratim Bhattacharjee, Tripura University, Suryamaninagar, India
- Dr. Kailash Chandra, Zoological Survey of India, Jabalpur, Madhya Pradesh, India
- Dr. Ansie Dippenaar-Schoeman, University of Pretoria, Queenswood, South Africa
- Dr. Rory Dow, National Museum of natural History Naturalis, The Netherlands
- Dr. Brian Fisher, California Academy of Sciences, USA
- Dr. Richard Gallon, llandudno, North Wales, LL30 1UP Dr. Hemant V. Ghate, Modern College, Pune, India
- Dr. M. Monwar Hossain, Jahangirnagar University, Dhaka, Bangladesh Mr. Jatishwor Singh Irungbam, Biology Centre CAS, Branišovská, Czech Republic.
- Dr. Ian J. Kitching, Natural History Museum, Cromwell Road, UK

_____ For Focus, Scope, Aims, and Policies, visit https://threatenedtaxa.org/index.php/JoTT/aims_scope For Article Submission Guidelines, visit https://threatenedtaxa.org/index.php/JoTT/about/submissions For Policies against Scientific Misconduct, visit https://threatenedtaxa.org/index.php/JoTT/policies_various continued on the back inside cover

Cover: Mugger Crocodile basking on the banks of Savitri River at Mahad in Maharashtra, India. © Utkarsha M. Chavan.

A comparative analysis of the past and present occurrences of some species of Paphiopedilum (Orchidaceae) in northeastern India using MaxEnt and GeoCAT

Debonina Dutta ¹ & Aparajita De ²

^{1,2} Department of Ecology and Environmental Science, Assam University, Silchar, Assam 788011, India. ¹deboninadtt@gmail.com, ²aparajitade.ecology@gmail.com (corresponding author)

Abstract: Members of the genus Paphiopedilum are well known for their long-lasting unique flowers. They are becoming rare due to over-collection and habitat loss because of human disturbances and deforestation. The present study aimed to compare the past and present occurrences of the genus Paphiopedilum in northeastern India using MaxEnt and GeoCAT. A historical occurrence model (HOM) was prepared using secondary data, and an actual occurrence model (AOM) was constructed with primary field data. The HOM and AOM revealed that bioclimatic factors, topography and precipitation play a significant role in the survival of Paphiopedilum populations in northeastern India in both the current and historical distributions. The other vital environmental variables were elevation (h_dem), mean diurnal range (bio 2), annual mean temperature (bio 1), temperature annual range (bio 5) and annual precipitation (bio 12). The results showed a sharp decline in the extent of occurrence and the area of occupancy of Paphiopedilum in the study area. The extent of occurrence and area of occupancy for HOM were 170,972 km² and 18 km². For the AOM, they were 125,315 km² and 12 km², respectively. The HOM model indicated that Paphiopedilum was earlier growing sporadically. On the other hand, the AOM result indicates that it is presently growing sparsely in isolated pockets that are more prone to extinction. Paphiopedilum can be conserved successfully using an integrative conservation approach, comprising ecological modeling techniques to search for additional locations, ex situ propagation techniques, and possible reintroduction in selected areas.

Keywords: Ecological niche modeling, environmental variables, lady slipper orchids, orchid conservation.

Editor: Pankaj Kumar, Kadoorie Farm and Botanic Garden Corporation, Hong Kong S.A.R., P.R. China. Date of publication: 26 November 2022 (online & print)

Citation: Dutta, D. & A. De (2022). A comparative analysis of the past and present occurrences of some species of Paphiopedilum (Orchidaceae) in northeastern India using MaxEnt and GeoCAT. Journal of Threatened Taxa 14(11): 22086–22097. https://doi.org/10.11609/jott.7861.14.11.22086-22097

Copyright: © Dutta & De 2022. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: DBT (BT/ENV/BC/01/2010 & 23rd March 2012).

Competing interests: The authors declare no competing interests.

Author details: DEBONINA DUTTA is currently pursuing her PhD. Her research interest includes the study of few selected species of Paphiopedilum genus in northeastern India and their conservation using biotechnological tools. APARAJITA DE is a professor. She has specialized in forest ecology, RS, and GIS applications in forest ecology and ethnobiology.

Author contributions: DD carried out the fieldwork and drafted the manuscript. AD provided guidance to conduct the field surveys and has reviewed and corrected the manuscript.

Acknowledgements: We would like to express our sincere gratitude to Department of Ecology and Environmental Science, Assam University, Silchar and The Botanical Survey of India, Eastern Regional Circle. We are grateful to the Department of Biotechnology, Govt. of India for providing financial support for the study. We are thankful to the director, BSI, Dr A.A. Mao and we convey our special regards to Dr N. Odyuo, head of office, BSI, Eastern Regional Circle, Shillong. We are thankful to Dr. Dibyendu Adhikari, principal scientist, National Botanical Research Institute for critically going through the manuscript and suggesting improvements. We are also thankful to the Dr D.K. Agarwala, BSI Gangtok. We are thankful to Miss Dukmit Lepcha, Bantei Thyrniang, M.A.M. Saikia, and Dr. Batskhem Myrboh, assistant professor, Synod College, for helping us in our field study. We duly acknowledge the following scientists who provided herbarium related information: Dr. R.K. Gupta, in-charge, Central National Herbarium, Kolkata; Dr. Anup Chandra, head, Botany Branch, Forest Research Institute, Dehradun.

भारत सरकार विज्ञान और प्रौद्योगिकी मंत्रालय T OF INDIA MINISTRY OF SCIENCE AND TECHNOLOGY जैवपौरोगिकी विभाग DEPARTMENT OF BIOTECHNOLOGY

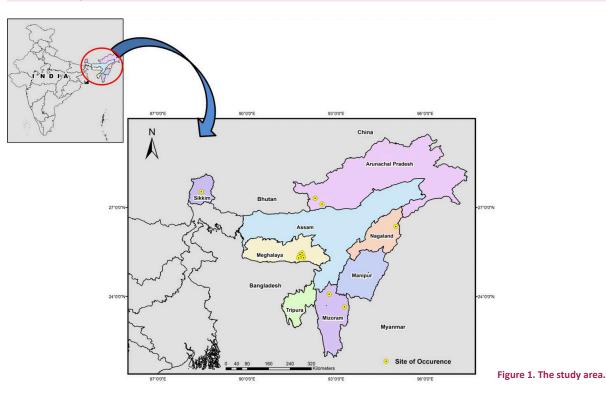
INTRODUCTION

Predictive habitat distribution models are being used extensively in ecology as they can statistically relate the geographic distribution of species or communities to their environment (Guisan & Zimmermann 2000). These models correlate known species occurrence with climatic data available for relevant areas to determine the boundaries of the multidimensional range of the species. By projecting such conditions onto geographical space, one can predict the potential distribution of the target species. These techniques are applied in a wide variety of studies to: 1. predict the distribution of rare, threatened, or invasive species (Serra et al. 2012; Silva et al. 2013, 2014; Deka et al. 2018), 2. optimize future faunal/floristic surveys (De Siqueira et al. 2009), and 3. inform the establishment of future protected areas (Nóbrega & De Marco Jr 2011).

Studies related to species distribution models have been conducted for the family Orchidaceae by many workers (Kolanowaska & Konowalik 2014; Kolanowska & Busse 2020). Orchids are one of the most threatened group of plants as their complex life history makes them particularly vulnerable to global environmental change. There are more than 1,200 genera of orchids reported in India (Misra 2019; Singh et al. 2019; Schuiteman 2022). The present study tries to model the current distribution of the genus Paphiopedilum, family Orchidaceae in northeastern India, and compare it with the historical occurrence data depicting its distribution in the past. The genus Paphiopedilum is highly preferred in the horticultural market for its exotic, large flowers on small plants (Cribb 1998). A few species are regarded as threatened or even extinct in the wild due to overcollection from natural areas and large-scale illegal trade (Long et al. 2010). The genus Paphiopedilum is listed in Appendix I of the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES 2022). All the species under the genus Paphiopedilum found in India come under the category of Vulnerable to Critically Endangered according to the IUCN Red List of Threatened Species (IUCNredlist.org/2021-3) (Table 1). Due to its high horticultural importance (Zhen et al. 2006), the genus faces extensive collection pressure from the wild. This, along with the rapid degradation of its habitat has led to the drastic reduction in the population of the genus (Cribb 1998).

Nine species of *Paphiopedilums* have been reported from India: *Paphiopedilum druryi* (Bedd.) Stein, growing at an altitudinal range 1,400–1,550 m, *Paphiopedilum fairrieanum* (Lindl.) Stein growing at 200–1,200 m, Paphiopedilum venustum (Wall. ex Sims) Pfitzer at 500-1,500 m, Paphiopedilum wardii (Summerh.) at 1,200-2,500 m, Paphiopedilum villosum (Lindl.) Stein at 1,300–2,200 m, Paphiopedilum insigne (Wall. ex Lindl.) Pfitzer at 1,000–1,500 m, Paphiopedilum charlesworthii (Rolfe) Pfitzer at 1,200-1,600 m, Paphiopedilum spicerianum (Rchb.f.) Pfitzer at 300-1,400 m and Paphiopedilum hirsutissimum (Lindl. ex Hook.) Stein at 200-1,800 m. Eight species are found in the eastern Himalaya and northeastern India, and one in southern India (Hajra & De 2009; Chowdhery 2015). All the species of this genus found in northeastern India have been reported to grow at altitudes of 200-2,200 m. Several species of Paphiopedilum are found growing in shady vertical/limestone cliffs at varying altitudes (Averyanov 2007; Averyanov et al. 2014; Gurung et al. 2019).

The present work deals with the following objectives: estimation of the past and the present distribution status of some *Paphiopedilum* orchids in northeastern India, estimation of changes in the area and the extent of occurrence of *Paphiopedilum* spp. (if any), and determination of the environmental variables that are vital to the distribution of the genus.


Study area

Northeastern India comprises the eastern part of the Himalayan range, intercepted by plains, valleys, and hilly terrains (Yadava 1990). Our study was carried out in Meghalaya, Mizoram, Arunachal Pradesh, Sikkim, Nagaland, and Assam (Figure 1). The following species of *Paphiopedilum* were recorded in the present study, viz, *P. spicerianum*, *P. venustum*, *P. insigne*, *P. fairreanum*, and *P. hirsutissimum*.

MATERIALS AND METHODS

Study design

Ecological niche models (ENM) were prepared using maximum entropy modelling (MaxEnt) of species geographic distributions (Phillips et al. 2006). The version 3.3 of MaxEnt was used for the current study. We executed two models for our study. Past and present data were divided into historical occurrence points and actual occurrence points. Model 1 was executed using the Historical occurrence points. Historical occurrence data of *Paphiopedilum* were obtained from the recorded historical data such as herbarium records (Kew Herbarium catalogue 2022; Museum National D histoire Naturelle 2022; GBIF 2022; Natural History Museum 2022) and published literature (Table 2). We have named

it as historical occurrence model (HOM) in this paper. Model 2 was executed using the actual occurrence data (Table 3). Therefore, model 2 is referred to as the actual occurrence model (AOM).

The results obtained from the ecological niche model were verified in the study area during the period of 2015–2021. The details of the historical presence sites and actual presence sites are given in the Table 2 & 3. Based on the ENM observations, the area of occupancy (AOO) & extent of occurrence (EOO) of historical and actual occurrence data of *Paphiopedilum* were estimated. The estimation of AOO & EOO were performed using Geospatial Conservation Assessment Tool (GeoCAT), calculated at a 1 km² area cell size. Figure 2 gives the details of the study design.

Data collection

Historical data were collected from various herbaria (both offline and online) and literature sources. Occurrence data of *Paphiopedilum* was obtained from herbaria of the Botanical Survey of India, ERC, Shillong (Assam), Global Biodiversity Information Facility (GBIF), Central National Herbarium (CAL), Forest Research Institute, Dehradun (DD), Botanical Survey of India, Arunachal Pradesh Regional Centre (ARUN), Natural History Museum (NHM), Museum National d'Histoire Naturelle (MNHN) and Kew herbarium (KEW) (Table 2). The previous occurrence reports were also noted from

Table 1. The threat category of genus Paphiopedilum (IUCN: Ver.2021–3)

Dutta S De

Name	Threat category	Population trend	
P. druryi	Critically endangered	Decreasing	
P. fairrieanum	Critically endangered	Decreasing	
P. venustum	Endangered	Decreasing	
P. wardii	Endangered	Decreasing	
P. villosum	Vulnerable	Decreasing	
P. insigne	Endangered	Decreasing	
P. charlesworthii	Endangered	Decreasing	
P. spicerianum	Endangered	Decreasing	
P. hirsutissimum	Vulnerable	Decreasing	

the literature survey (Pradhan 1971; Pradhan 1975; Pradhan 1976, 1979; Kataki et al. 1984; Bose et al. 1999; Lucksom 2007; Misra 2007; Russel 2008a,b; Mao 2010; Bhattacharjee et al. 2018). The records obtained from literature reviews were used for cross-referencing with the reported locations of herbarium collections. Further the herbaria collections having location information (nearby village name or landmark) were tagged and digitized with the help of Google Earth following Milagros & Funk (2010).

AOM was prepared from the primary data. The primary data were collected from field visits to respective localities of different states (Table 3). The field surveys

Comparative analysis of some Paphiopedilum species in northeastern India

were conducted by snowball sampling method (Spreen 1992; Johnson 2014). The flowers of each species growing on the cliff were identified using a binocular. Geo -coordinates of the location were recorded using GPS (Garmin etrex 20) and the habitat features were recorded. The accessible sites were thoroughly surveyed for a closer view of the habitat.

Environmental variables

The dataset for ENM include NDVI (Normalized differential vegetation index), bioclimatic variables, and hydrological variables (i.e., slope, aspect, topography, and elevation). A total of 12 environmental variables were selected for the study. Table 4 shows the list of the final selected variables for the present study.

The environmental variables were applied with principal component analysis (PCA) to avoid multi-co linearity (correlation among the variables that could create redundancy in models) (Chaudhary et al. 2021). The bioclimatic layers in ASCII format were used with a resolution of 30 ARC seconds for this study. The variables for the area of interest were obtained by masking the bioclimatic rosters with the boundary of northeastern India using ArcView. Highly correlated variables were excluded by performing a Pearson correlation test of variables exhibiting a value of r < 0.9 (i.e., 90%). A total of 12 environmental variables were used post correlation (Table 4).

RESULTS

A total of 40 specimens were obtained from various herbaria in India and other countries (Table 2). During the present study, we located five species of *Paphiopedilum* in different sites of the study area (Table 3). They were *P. spicerianum*, *P. insigne*, *P. fairreanum*, *P. venustum*, and *P. hirsutissimum*. A total of 16 actual occurrence sites were recorded for the five species. Image 1 shows the habitat of a few *Paphiopedilum* species. The two ecological niche models were executed based on this data and the results obtained are given as follows.

Historical occurrence model and actual occurrence model

Two models were obtained using the historical occurrence data and actual occurrence data. The ENM models are represented in Figure 3. Model 1 or HOM represents the historical occurrence distribution of *Paphiopedilum*, and model 2 or AOM represents the actual occurrence distribution of *Paphiopedilum* in

northeastern India.

AUC and jackknife interpretation

The model calibration test for *Paphiopedilum* yielded satisfactory results for both models. The red line shows the 'fit' of the model to the training data, and the blue line indicates the 'fit' of the model to the testing data (Figure 4). The area under the curve (AUC) value of each model aids in the assessment of the model quality. In the jackknife of AUC, the blue line depicts the real test of the predictive power of the MaxEnt model. An AUC value above 0.9 (closer to 1.0) indicates a good model performance. The AUC values for HOM (AUCtest = 0.972 \pm 0.015) and AOM (AUCtest = 0.942 \pm 0.015) therefore indicated that the model performance was good in both cases.

The significance of environmental variables on each model was assessed by interpretation of the jackknife of AUC (Figure 5). The contribution of the environmental variables on the model build was assessed from the percent contribution of variables and permutation importance (Table 5). Among all the variables, bio 2 (mean diurnal range) and bio 1 (annual mean temperature) were the most influential variables in the build of HOM as evident from the percent contribution of the variables in model build. The variable bio_2 contributed 46.6% and bio_1 contributed 19.3% respectively on HOM (Table 5). According to the internal jackknife of AUC for HOM, bio 1 (annual mean temperature) has the highest contribution to the model, followed by h dem (elevation) (Figure 5). Jackknife of AUC shows the contribution of environmental variables in both models. The variables collectively contributed 100% to the HOM. Aspect (h aspect) and topographic index (h_topoind) contributed 19.1% and 0.7% (Table 5). Considering the permutation importance, bio_5 contributed the highest (55.3%) to the model, followed by h_dem (27. 5%) and bio_2 (8. 9%) (Table 5). The variable bio 2 was the most influential environmental variable in the model build of HOM.

The percent contribution of variables in the model build of AOM revealed that bio_12 (annual precipitation) and bio_2 (mean diurnal range) were most influential in the model build. Bio_12 contributed 41.9% and bio_2 contributed 29.1% to the model build. The variable bio_2 was followed by bio_5 (max temperature of the warmest month) that contributed 24.4%, and h_ topoind contributed 3.9% to the AOM. Considering the permutation importance, bio_5 contributed 53.1%. Jackknife of AOM infers the highest contribution of h_topoind and bio_14 (precipitation of driest month),

Table 2. Historical occurrence records of *Paphiopedilum* spp.

	Species	Year	Location	Herbarium source	
1	P. fairreanum	1857	NA	Royal Botanic garden, Kew	
2	P. insigne	1859	Mount Khasia, Meghalaya	Museum National d'Histoire Naturelle	
3	P. venustum	1893	Sonai, Assam	Natural History Museum	
4	P. venustum	1893	Sikkim Himalaya	Natural History Museum	
5	P. insigne	1894	Cherrapunjee, Meghalaya	Central National Herbarium, Kolkata	
6	P. insigne	1899	Shella, Meghalaya	Central National Herbarium, Kolkata	
7	P. insigne	1899	Jaintia hills, Meghalaya	Central National Herbarium, Kolkata	
8	P. insigne	1899	Jaintia hills, Meghalaya	Bavarian Natural History Collections (SNSB-GBIF)	
9	P. venustum	1899	Lingzah Tolung,North Sikkim	Naturalis Biodiversity Center (GBIF)	
10	P. venustum	1899	Sikkim	Harvard University Herbaria (GBIF)	
11	P. fairreanum	1941	Rohlu, Sikkim	Central National Herbarium, Kolkata	
12	P. insigne	1944	Smit, Meghalaya	Natural History Museum	
13	P. venustum	1952	Cherrapunjee, Mount Khasia, Meghalaya	Naturalis Biodiversity Center (GBIF)	
14	P. venustum	1952	Khasia hills, Meghalaya	Museum National d'Histoire Naturelle, ,	
15	P. fairreanum	1957	Dirang dzong, Arunachal Pradesh	Central National Herbarium, Kolkata	
16	P. hirsutissimum	1962	Khasi hills, Meghalaya	Central National Herbarium, Kolkata	
17	P. villosum	1963	Cultivated plant	Central National Herbarium, Kolkata	
18	P. spicerianum	1972	National orchidarium	BSI-ERC, Shillong	
19	P. fairreanum	1974	Tenga Valley, Arunachal Pradesh	BSI-ERC, Shillong	
20	P. insigne	1974	Mount Khasia, Meghalaya	Natural History Museum	
21	P. insigne	1974	Mount Khasia, Meghalaya	Museum National d'Histoire Naturelle	
22	P. insigne	1975	Khasia Mountains	Royal Botanic Garden, Kew	
23	P. villosum	1976	Lunglei, Mizoram	Forest research Institute, Dehradun	
24	P. fairreanum	1978	Jameri, Arunachal Pradesh	Forest research Institute, Dehradun	
25	P. venustum	1984	Khasya hills, Meghalaya	Royal Botanic Garden, Kew	
26	P. venustum	1984	Sikkim Himalaya	Royal Botanic Garden, Kew	
27	P. venustum	1993	Khasia hills, Meghalaya	Museum National d'Histoire Naturelle	
28	P. hirsutissimum	2006	Maram, Manipur	BSI-ERC, Shillong	
29	P. insigne	2016	Sohra, Meghalaya	iNaturalist (GBIF)	
30	P. fairreanum	2017	Arunachal Pradesh	Wildlife Institude of India (GBIF)	
31	P. venustum	2019	East Khasi Hills, Meghalaya	University of Michigan Herbarium (GBIF)	
32	P. hirsutissimum	2019	Senapati, Manipur	University of Michigan Herbarium (GBIF)	
33	P. hirsutissimum	NA	NA	Royal Botanic Garden, Kew	
34	P. fairreanum	NA	Rupa bridge, Arunachal Pradesh	Central National Herbarium, Kolkata	
35	P. fairreanum	NA	Gochum, Rupa	BSI-ERC, Shillong	
36	P. insigne	NA	Khasiya mountains	Royal Botanic Garden, Kew	
37	P. villosum	NA	Sairep, Mizoram	BSI-ERC, Shillong	
38	P. insigne	NA	Khasi hills, Meghalaya	Central National Herbarium, Kolkata	
39	P. spicerianum	NA	Cachar, Assam	Central National Herbarium, Kolkata	
40	P. hirsutissimum	NA	Naga hills. Nagaland	Central National Herbarium, Kolkata	

Comparative analysis of some Paphiopedilum species in northeastern India

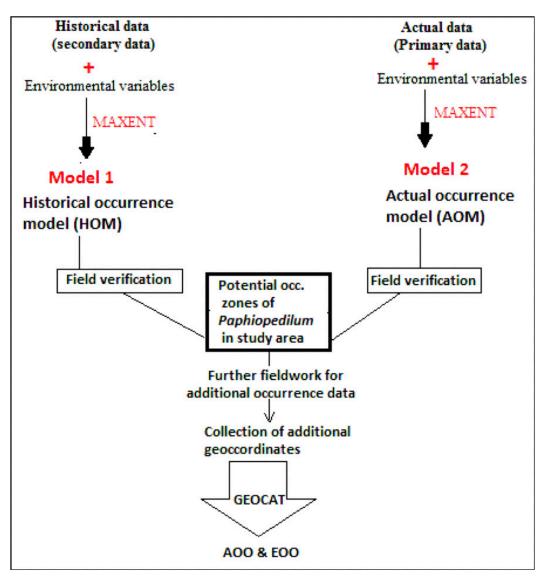


Figure 2. Flowchart of the study design.

Image 1. i—Cliff habitat site of Paphiopedilum insigne | ii—Habitat of Paphiopedilum insigne | iii—Habitat of Paphiopedilum fairrieanum | iv—Habitat of Paphiopedilum spicerianum. © Debonina Dutta.

Table 3. Actual occurrence records of Paphiopedilum spp.

	Species	State	Locality	District
1.	P. spicerianum	Mizoram	Lengpui	Mammit
2.	P. insigne	Meghalaya	Laimotsiang	East Khasi Hills
3.	P. insigne	Meghalaya	Latara	East Khasi Hills
4.	P. insigne	Meghalaya	Mawlyndiar	East Khasi Hills
5.	P. insigne	Meghalaya	Mawlyndiar (Liewla)	East Khasi Hills
6.	P. insigne	Meghalaya	Sohra (Nohkalikai)	East Khasi Hills
7.	P. venustum	Arunachal Pradesh	Dirang	West Kameng
8.	P. venustum	Meghalaya	Sohra	East Khasi Hills
9.	P. fairreanum	Arunachal Pradesh	Dirang	West Kameng
10.	P. fairreanum	Arunachal Pradesh	Dirang	West Kameng
11.	P. fairreanum	Arunachal Pradesh	Tenga	West Kameng
12.	P. fairreanum	Arunachal Pradesh	Rupa	West Kameng
13.	P. venustum	Sikkim	Upper Dzongu	North Sikkim
14.	P.hirsutissimum	Nagaland	Tobu	Mon
15.	P.hirsutissimum	Nagaland	Meluri	Phek
16.	P. venustum	Sikkim	Mangan	North Sikkim

followed by bio_2 (mean diurnal range) and bio_12 (annual precipitation). Amongst the bioclimatic factors, bio_12 showed the highest contribution to the build of AOM (Table 5).

Potential habitat areas and actual habitat areas of *Paphiopedilum* spp.

Figure 3 shows the Ecological niche model for HOM and AOM. The figure depicts the probable habitats in different colours. Areas in red are the highest potential areas for the distribution of *Paphiopedilum*. Yellow represents areas with medium potential whereas the low potential areas are represented by green; 40 secondary occurrence records (historical occurrence records) were recorded from literature and herbarium sources (Table 2). However, the field survey results revealed 16 actual occurrence records of the *Paphiopedilum* spp. in the study area (Table 3).

EOO & AOO of the genus Paphiopedilum

HOM shows the distribution regions of *Paphiopedilum* in Assam, Mizoram, Meghalaya, Sikkim, Arunachal Pradesh, Nagaland, and Manipur. However, according to AOM, the distribution of *Paphiopedilum* is

Table 4. List of environmental variables.

	Variable	Description
1.	Bio_1	Annual mean temperature
2.	Bio_2	Mean Diurnal Range (mean of monthly (max temp – min temp))
3.	Bio_3	Isothermality (P2/P7)*(100)
4.	Bio_4	Temperature Seasonality (standard deviation *100)
5.	Bio_5	Max temperature of the warmest month
6.	Bio_12	Annual precipitation
7.	Bio_14	Precipitation of Driest Month
8.	Bio_15	Precipitation of Seasonality (coefficient of variation)
9.	h_dem	Digital elevation model
10.	h_ topoind	Topographic index
11.	h_aspect	Aspect
12.	h_slope	Slope

found in all the states of northeastern India, found in HOM except Assam (Table 6). The EOO and the AOO for HOM of *Paphiopedilum* were 170,972 km² and 18 km². EOO and AOO for the AOM were 125,315 km² and 12 km².

DISCUSSION

Ecological niche modeling has efficiently predicted the potential population areas of the genus in this study. The high AUC values for training and testing (> 0.90) infer the high efficiency of the niche model to differentiate between presence and absence areas for the species.

In the Table 6, a comparison between the historical presence sites and actual presence sites obtained through ENM survey is presented. This comparison revealed the high predictive value of the model. It, therefore, provides a check on the accuracy and reliability of the ENM model in the present study.

Significant environmental variables determining the distribution of *Paphiopedilum*

According to the jackknife model and the percent contribution of variables in model build, the parameter bio_2 (mean diurnal range) shows the highest contribution to the build of HOM (Table 5). The variable bio_2 infers to the mean of monthly temperatures (max temperature-min temperature). It contributes 46.6% to the model build of HOM, indicating the high importance of the mean temperature in the growth of the orchids of this genus.

Dutta S De 🏾 🎆

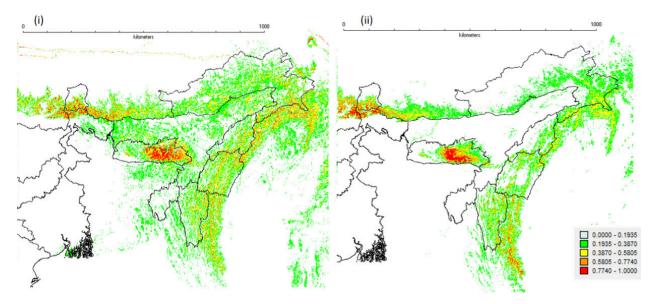


Figure 3. ENM Models representing: i—Historical distribution of *Paphiopedilum* (Model 1) | ii—Actual distribution of *Paphiopedilum* (Model 2) in study area.

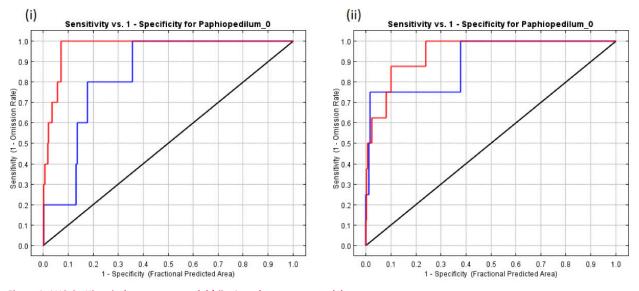


Figure 4. AUC: i—Historical occurrence model | ii—Actual occurrence model.

In the AOM, bio_12 is the most significant variable in the jackknife interpretation of the model (Figure 5). The variable bio_12 indicates the annual precipitation in the model build. The bio_12 variable is followed by bio_2 (mean diurnal range) and bio_5 (max temperature of the warmest month). These results indicate that temperature and rainfall are two important contributors that determine the availability of the members of genus *Paphiopedilum*. The field observations also correlate the importance of precipitation and temperature requirements of *Paphiopedilum*.

All the species of this genus found in northeastern

India are found between an altitude of 200–2,200 m, which shows importance of h_dem (digital elevation model) being one of the highest contributing variables of the internal jackknife of HOM (Figure 5, Table 5). Similarly, mean temperature, mean diurnal range, max temperature of the warmest month and annual precipitation play a significant role in the model execution of *Paphiopedilum* in both HOM and AOM.

Other workers have also studied the dependence of the survival, reproduction, and germination of different plant species on temperature and precipitation. For instance, Wilkie et al. (2008) reported the influence of

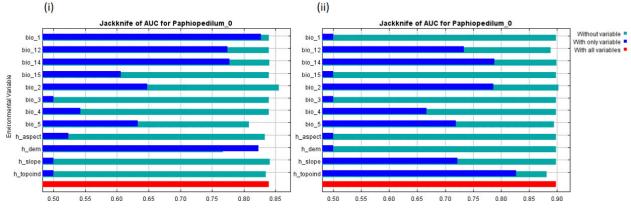


Figure 5. Jackknife of environmental variables: i—Historical occurrence model | ii—Actual occurrence model.

Percent contribution of variable in Historical occurrence model			Percent contribution of variables in Actual occurrence model		
Variable	Percent contribution	Permutation importance	Variable	Percent contribution	Permutation importance
bio_2	46.6	8.9	bio_12	41.9	0
bio_1	19.3	0	bio_2	29.1	43.1
h_aspect	19.1	6.6	bio_5	24.4	53.1
h_dem	6	27.5	h_topoind	3.9	3.8
bio_14	4.3	0.2	bio_14	0.7	6.7
bio_5	3.7	55.3	bio_15	0	0
h_topoind	0.7	1.3	h_slope	0	0
bio_12	0.3	0	h_dem	0	0
h_slope	0	0	h_aspect	0	0

Table 5. Percent contribution of variables in model build.

low temperatures (vernalization), seasonal variations in temperature, photoperiod, and water stress on the flowering of plants (Wilkie et al. 2008). In another study, inadequate temperature conditions during endodormancy compromised flowering or led to erratic and longer flowering duration with morphological disorders and flower necrosis (Rodrigo & Herrero 2002).

AOO, EOO concerning the past and present distribution of *Paphiopedilum*

Comparison of both models shows that the species distribution of *Paphiopedilum* has undergone a sharp decline over the past two decades. Field observations also indicate highly fragmented populations. All the species of this genus have very few individuals in the study area. A reduction in the extent of occurrence (EOO) and area of occupancy (AOO) was observed in the AOM compared to the HOM. During the field survey no species was located in the earlier reported sites of Assam (Table 6).

The reduction in AOO could be due to factors

like over-collection, climate change, urbanisation, unplanned development, and habitat fragmentation. An increased frequency of large-scale disturbances caused by extreme weather events is known to cause increasing gaps and an overall contraction of the distribution range, particularly in areas with relatively low levels of spatial cohesion (Paul & Wascher 2004).

Effects of habitat fragmentation on the persistence of populations and species play a major role in conservation biology (Reed & Frankham 2003). Limitations of plant species dispersal also affect plant colonization (Olivier et al. 2002). Small population sizes, lead to decreased population fitness and eventually make the small population sizes more vulnerable to extinction (Reed & Frankham 2003; Reed 2005, 2008). The field studies revealed that the populations of *Paphiopedilum* had very few individuals. The habitat was also highly fragmented. These factors are further exacerbating the risk of extinction of the genus.

It was observed that *Paphiopedilum* grew in the rock crevices of east-facing slopes of the habitats situated

Species	State	Locality	Source	Nearby Positive sites as per field findings
	Mizoram	Mammit district	Literature review	Present
P. spicerianum	Assam	Cachar, Sonai river Bank, Barak river bank, Narpuh WS.	Literature review Herbarium data ENM depiction	Not found
P. fairrieanum	Sikkim	Tinkitam	Literature review	Previously presence reported. Habitat Destruction due to ongoing agricultural practices (Jhum cultivation)
P. insigne	Meghalaya	Cherrapunjee, Mawsynram, East Khasi hills	Literature review, Herbarium data, ENM depiction	Present
P. venustum	Sikkim	Beh, Tong, Sanklang (Sikkim)	Literature Review, Herbarium data	Present
	Meghalaya	Jaintia Hills	Literature Review, Herbarium data	Not found
P. fairreanum	Arunachal Pradesh	Gacham village, Rupa, Tenga valley	Herbarium data	Present
P. fairreanum	Arunachal Pradesh	Jameri village	Herbarium data	Absent
P. villosum	Mizoram	Sairep, Theiriat, Lunglei	Herbarium data, ENM depiction	Present
P. hirsutissimum	Manipur	Maram	Herbarium data	Not found

Table 6. Comparison between historical occurrence data and actual presence data.

in the hilly terrains (Image 1). They also grew in the space between tree roots and rock layers of the habitat substratum. The prolonged filling of the conjoining rock fissures between the rock crevices and tree roots by the dry leaves and soil organic matter of the forests provide an excellent growth medium for these orchids in the otherwise soil-deprived cliff sides (Phillips 2017).

CONCLUSION

In this study, the present status of Paphiopedilum in northeastern India has been determined using ENMbased surveys combined with historical data. The herbarium data provided location history from 1857 onwards (Table 2), while the field data helped in the present assessment of the genus. There was a significant reduction in the EOO and AOO in the actual model as compared with the historical model. The results of the model reveal that temperature and precipitation are the highest contributing factors determining its availability. We were unable to locate the plants in many locations that were earlier mentioned by previous workers. Therefore, it can be inferred that change in the temperature and precipitation patterns in many locations have led to its scarcity. However, this inference needs to be further corroborated with detailed records of the climate parameter.

These orchids are becoming increasingly rare mainly due to over collection from the wild, rising urbanization causing habitat destruction and also global warming (Swarts & Dixon 2009; Seaton et al. 2010;

Barman & Devadas 2013; Ye et al. 2021). Favorable climatic conditions, access to wild habitat sites, and a conducive environment are important for the survival of plants (Hulme 2005; Ballantyne & Pickering 2015; Wraith & Pickering 2018; Li et al. 2020; Ye et al. 2021). The comparison of environmental requirements of the distribution of Paphiopedilum over the years imparts an understanding of the adaptability of these orchids with changing environmental conditions. The dwindling population size of the various species under the genus is increasing the risk of extinction of the already sparse populations in the study area. The over-collection of the Paphiopedilum flowers from the wild for its high market demand results in further habitat loss. Forest road constructions and urbanization also cause further degradation of the Paphiopedilum habitats in different areas of Northeast India. Such reasons have caused the Paphiopedilum orchids to become increasingly rare with time.

Ex situ conservation techniques for mass production of the species with higher market demand could reduce collection pressure on already dwindling wild populations in northeastern India. *Paphiopedilum* orchids are being propagated elsewhere in the world using various techniques (Huang 1988; Hong et al. 2008; Ng & Saleh 2011). Various individuals have been reintroduced into other suitable habitats by various workers in China (Yang et al. 2020; Gao et al. 2020). Since, in situ conservation is not a viable approach in many locations due to their habitat degradation and other developmental pressures, reintroduction into potential habitats will aid in conservation of the species. We recommend that reintroduction of *Paphiopedilum* orchids should be conducted on a large scale by both government and non-governmental agencies in northeastern India. We recommend the conservation of *Paphiopedilum* orchids using an integrative conservation approach of ecological niche modeling to search for additional locations, ex situ propagation techniques, and possible reintroduction in selected areas. Such schemes can be helpful to meet the market demands of *Paphiopedilum* orchids and boost the conservation of wild populations in northeastern India.

REFERENCES

- Averyanov, L.V. (2007). Variation of *Paphiopedilum Villosum* in Vietnam. *Orchid Digest* 71: 102–106.
- Averyanov, L.V., V.T. Pham, L.P. Ke, H.N. Tien, C.C. Xuan, V.N. Tien & H.N. Quan (2014). Field Survey of *Paphiopedilum canhii*: From Discovery to Extinction. Available from: http://www.slipperorchid. org. Accessed on: January 2022
- Ballantyne, M. & C.M. Pickering (2015). The impacts of trail infrastructure on vegetation and soils: Current literature and future directions. Journal of Environmental Management 164: 53–64. https://doi.org/10.1016/j.jenvman.2015.08.032
- Barman, D. & R. Devadas (2013). Climate change on orchid population and conservation strategies: a review. *Journal of Crop and Weed* 9(2): 1–12.
- Bhattacharjee, B., B.K. Dutta & P.K. Hajra (2018). Orchid flora of Southern Assam (Barak Valley) BSMPS publishers, 206 pp.
- Bose, T.K., S.K. Bhattacharjee, P. Das & U.C. Basak (eds.) (1999). Orchids of India, 2nd edition. Naya Prokash, Calcutta, 487 pp.
- Chaudhary, A., M.S. Sarkar, B.S. Adhikari & G.S. Rawat (2021). Ageratina adenophora and Lantana camara in Kailash Sacred Landscape, India: Current distribution and future climatic scenarios through modeling. *Plos One* 16(5): e0239690. https://doi. org/10.1371/journal.pone.0239690
- Chowdhery, H.J. (Eds.) (2015). Lady's Slipper Orchids of India. Bishen Singh Mahendra Pal Singh, Dehra Dun, India, 164 pp.
- **CITES (2022).** The CITES appendices. *Version-2022*. CITES. Accessed on: May 2022.
- Cribb, P.J. (1998). The Genus Paphiopedilum. Natural History Publication, Kota Kinabalu, Borneo, 222 pp.
- De Siqueira, M.F., G. Durigan, P. de M. Júnior & A.T. Peterson (2009). Something from nothing: using landscape similarity and ecological niche modeling to find rare plant species. *Journal for Nature Conservation* 17(1): 25–32. https://doi.org/10.1016/j. jnc.2008.11.001
- Deka, K., S.K. Borthakur & B. Tanti (2018). Habitat mapping, population size, and preventing extinction through improving the conservation status of *Calamus nambariensis* Becc. an endemic and threatened cane of Assam, India. *Acta Ecologica Sinica* 38: 412–421. https://doi.org/10.1016/j.chnaes.2018.03.005
- Gao, J., X. Fan & W. Yang (2020). Reintroduction and Assisted Colonization of Paphiopedilum spicerianum: An Orchid with Extremely Small Populations in China. In Conservation and Reintroduction of Rare and Endangered Plants in China. Springer Singapore 199–204 pp. https://doi.org/10.1007/978-981-15-5301-1_18
- **GBIF (2022).** The Global Biodiversity Information Facility. *Version-2.5.8.* Available from: https://www.gbif.org/. Accessed on 18 July 2022.
- Guisan, A. & N.E. Zimmermann (2000). Predictive habitat distribution models in ecology. *Ecological Modelling* 135: 147–186. https://doi. org/10.1016/S0304-3800(00)00354-9

- Gurung, D.B., N. Gyeltshen, K. Tobgay, S. Dalstra, J. Wangdi, B.B. Ghalley, L. Chaida, P. Phuntsho, N. Gyeltshen, K. Dawa, T. Wangchuk, R. Pradhan, T.A.I. Hoijer & C. Gyeltshen (2019). Distribution and habitats of *Paphiopedilum* Pfitzer (Orchidaceae) known to occur in Bhutan. *Journal of Threatened Taxa* 11(9): 14101–14111. https://doi.org/10.11609/jott.3431.11.9.14101-14111
- Hajra, P.K. & A. De (2009). Lady's slipper orchids of India. Journal of Orchid Society of India 23(1–2): 93–98.
- Huang, L.C. (1988). A procedure for asexual multiplication of Paphiopedilum in vitro. American Orchid Society Bulletin 57: 274– 278.
- Hong, P.I., J.T. Chen & W.C. Chang (2008). Plant regeneration via protocorm like body formation and shoot multiplication from seed derived callus of a Maudiae type slipper orchid. Acta Physiologica Plantarum 30: 755–759. https://doi.org/10.1007/s11738-008-0158-2
- Hulme, P.E. (2005). Adapting to climate change: is there scope for ecological management in the face of a global threat? *Journal of Applied Ecology* 42(5): 784–794. https://doi.org/10.1111/j.1365-2664.2005.01082.x
- IUCN (2021). IUCN Red List of threatened species; version 2021–3. IUCN. Available from: https://www.iucnredlist.org/. Accessed on: May 2022.
- Johnson, T.P. (2014). Snowball sampling: introduction. Wiley StatsRef: Statistics Reference Online. 1-3. https://doi. org/10.1002/9781118445112.stat05720
- Kataki, S.K., S.K. Jain & A.R.K. Sastry (1984). Distribution of orchids of Sikkim and north eastern India. *Plant Conservation Bulletin* 5: 1–38.
- Kew Herbarium Catalogue (2022). Royal Botanic Gardens, Kew. Available from: http://apps.kew.org/herbcat/navigator.do. Accessed on: April 2022 .
- Kolanowska, M. & A.J. Busse (2020). Is the lady's-slipper orchid (Cypripedium calceolus) likely to shortly become extinct in Europe?—Insights based on ecological niche modelling. *Plos One* 15(1): 1–21. https://doi.org/10.1371/journal.pone.0228420
- Kolanowska, M. & K. Konowalik (2014). Niche conservatism and future changes in the potential area coverage of *Arundina graminifolia*, an invasive orchid species from Southeast Asia. *Biotropica* 46(2): 157–165. https://doi.org/10.1111/btp.12089
- Li, Z., J. Li & M. Li (2020). Effect of Human Disturbance on Genetic Structure of Rare and Endangered Paphiopedilum micranthum Implied the Habitat Status. *Tropical Conservation Science* 13: 1. https://doi.org/10.1177/1940082920942012
- Long, B., A.X. Niemiera, Z.Y. Cheng & C. Long (2010). In vitro propagation of four threatened *Paphiopedilum* species (Orchidaceae). *Plant Cell, Tissue and Organ Culture* 101(2): 151–162. https://doi.org/10.1007/s11240-010-9672-1
- Lucksom, S.Z. (2007). The Orchids of Sikkim and North East Himalaya: Development Area. Jiwan Thing Marg, Gangtok, East Sikkim, 984 pp.
- Mao, A. A. (2010). Paphiopedilum in northeast India: Assessing the threats to their wild populations. The Orchid Review 118(1290): 88–95.
- Milagros, E.G., & V.A. Funk (2010). Improving the use of information from museum specimens: Using Google Earth© to georeference Guiana Shield specimens in the US National Herbarium. Frontiers of biogeography 2: 71–77. https://doi.org/10.21425/F5FBG12348
- Misra, S. (2007). Orchids of India, a glimpse. Bishen Singh Mahendra Pal Singh, 402 pp.
- Misra, S. (2019). Orchids of India- A handbook. Bishen Singh Mahendra Pal Singh, 652 pp.
- Museum National D'Histoire Naturelle (2022). Available from: https://science.mnhn.fr/institution/mnhn/collection/p/item/ search/form?lang=en_US. Accessed on: July 2022.
- Natural History Museum (2022). Available from:https://www. nhm.ac.uk/our-science/collections/botany-collections/generalherbarium.html. Accessed on: July 2022.
- Nóbrega, C.C. & P. De Marco Jr (2011). Unprotecting the rare species: a niche based gap analysis for odonates in a core Cerrado area.

Comparative analysis of some Paphiopedilum species in northeastern India

Diversity and Distributions 17(3): 491–505. https://doi.org/10.1111/j.1472-4642.2011.00749.x

- Ng, C.Y. & N.M. Saleh (2011). In vitro propagation of Paphiopedilum orchid through formation of protocorm-like bodies. Plant Cell, Tissue and Organ Culture 105(2): 193–202. https://doi.org/10.1007/ s11240-010-9851-0
- Olivier, H., K. Verheyen, J. Butaye, H. Jacquemyn, B. Bossuyt & M. Hermy (2002). Possible effects of habitat fragmentation and climate change on the range of forest plant species. *Ecology Letters* 5(4): 525–530. https://doi.org/10.1046/j.1461-0248.2002.00346.x
- Paul, O. & D. Wascher (2004). Climate change meets habitat fragmentation: linking landscape and biogeographical scale levels in research and conservation. *Biological Conservation* 117(3): 285–297. https://doi.org/10.1016/j.biocon.2003.12.008
- Phillips, M. (2017). Mycorrhizal planet: how symbiotic fungi work with roots to support plant health and build soil fertility. Chelsea Green Publishing, 244 pp.
- Phillips, S.J., R.P. Anderson & R.E. Schapire (2006). Maximum entropy modelling of species geographic distributions. *Ecological Modelling* 190(3): 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
- Pradhan, U.C. (1971). Paphiopedilum spiceranum, beautiful orchid species-2, American orchid society bulletin 40: 9–11.
- Pradhan, G.M. (1975). Paphiopedilum spicerianum, American orchid society bulletin 44: 9877–9879.
- Pradhan, U.C. (1976). Indian orchids: guide to identification & culture, Vol.1. Pradhan. Bharat Lithographing Co., Calcutta.
- Pradhan, U.C. (1979). Indian Orchids: Guide to Identification and Culture, Vol.2. Kalimpong, 557 pp.
- Reed, D.H. (2005). Relationship between population size and fitness. Conservation Biology 19: 563–568. https://doi.org/10.1111/j.1523-1739.2005.00444.x
- Reed, D.H. (2008). The effects of population size on population viability: From mutation to environmental catastrophes, pp. 16–35. In: Carroll, S.P. & C.W. Fox (eds.). *Conservation Biology: Evolution in Action*. Oxford University Press, New York.
- Reed, D.H., & R. Frankham (2003). Correlation between fitness and genetic diversity. *Conservation Biology* 17: 230–237. https://doi. org/10.1046/j.1523-1739.2003.01236.x
- Rodrigo, J. & M. Herrero (2002). Effects of pre-blossom temperatures on flower development and fruit set in apricot. *Scientia Horticulturae* 92: 125–135. https://doi.org/10.1016/S0304-4238(01)00289-8
- Russel, G. (2008a). Story of Paphiopedilum spicerianum, the Mc Allen international orchid society journal 9(1): 12–16.
- Russel, G. (2008b). Unraveling some of the mystery. *The Mc Allen* International Orchid Society Journal 9: 11–12.
- Schuiteman, A., B.R. Kailash & U.B. Shreshtha (2022). A checklist of the Orchidaceae of India. Monographs in Systematic Botany, Vol.139. Missouri Botanical Garden Press, 264 pp.
- Seaton, P.T., Hong Hu, H. Perner & H.W. Pritchard (2010). Ex situ conservation of orchids in a warming world. *The Botanical Review* 76(2): 193–203. https://doi.org/10.1007/s12229-010-9048-6

- Serra, B.D.V., P. De Marco Jr., C.C. No brega & L.A.O. Campos (2012). Modeling potential geographical distribution of the wild nests of *Melipona capixaba* Moure & Camargo, 1994 (Hymenoptera, Apidae): conserving isolated populations in mountain habitats. *Nature Conservation* 10: 199–206. https://doi.org/10.4322/ NATCON.2012.027
- Silva, D.P., A.J.C. Aguiar, G.A.R Melo, E.J.A-Silva & P. De Marco (2013). Amazonian species within the Cerrado savanna: new records and potential distribution for *Aglae caerulea*(Apidae:Euglossini). *Apidologie* 44(6): 673–683. https://doi.org/10.1007/s13592-013-0216-7
- Silva, D.P., V.H. Gonzalez, G.A. Melo, M. Lucia, L.J. Alvarez & P. De Marco Jr (2014). Seeking the flowers for the bees: integrating biotic interactions into niche models to assess the distribution of the exotic bee species *Lithurgus huberi* in South America. *Ecological Modelling* 273: 200–209. https://doi.org/10.1016/j.ecolmodel.2013.11.016
- Singh, S.K., D.K. Agrawala, J.S. Jalal, S.S. Dash, A.A. Mao & P. Singh (2019). Orchids of India-A pictorial guide. Botanical Survey of India, Kolkata, 548 pp.
- Spreen, M. (1992). Rare Populations, Hidden Populations, and Link- Tracing Designs: What and Why? Bulletin de Méthodologie Sociologique 36(1): 34–58. https://doi. org/10.1177/075910639203600103
- Swarts, N.D. & K.W. Dixon (2009). Terrestrial orchid conservation in the age of extinction. Annals of Botany 104(3): 543–556. https:// doi.org/10.1093/aob/mcp025
- Wilkie, J.D., M. Sedgley & T. Olesen (2008). Regulation of floral initiation in horticultural trees. *Journal of Experimental Botany* 59 (12): 3215–3228. https://doi.org/10.1093/jxb/ern188
- Wraith, J. & C. Pickering (2018). Quantifying anthropogenic threats to orchids using the IUCN Red List. *Ambio* 47(3): 307–317. https://doi. org/10.1007/s13280-017-0964-0
- Yadava, P.S. (1990). Savannas of North-East India. Savanna Ecology and Management: Australian Perspectives and Intercontinental Comparisons. *Journal of Biogeography*. 17: 385–394. https://www. jstor.org/stable/i331178
- Yang, W.K., T.Q. Li, S.M. Wu, P.M. Finnegan & J.Y. Gao (2020). Ex situ seed baiting to isolate germination-enhancing fungi for assisted colonization in *Paphiopedilum spicerianum*, a critically endangered orchid in China. *Global Ecology and Conservation* 23: 1–12. https:// doi.org/10.1016/j.gecco.2020.e01147
- Ye, P., J. Wu, M. An, H. Chen, X. Zhao, X. Jin & Q. Si (2021). Geographical distribution and relationship with environmental factors of *Paphiopedilum* subgenus: *Brachypetalum Hallier* (Orchidaceae) taxa in Southwest China. *Diversity* 13(12): 634. https://doi.org/10.3390/d13120634
- Zhen, W., C. Li & L. Yan (2006). A Review of *Paphiopedilum* Research. Scientia Silvae Sinicae 2(7): 113–119. https://doi.org/10.11707 /j.1001-7488.20060720

Dutta & De

Dr. George Mathew, Kerala Forest Research Institute, Peechi, India

- Dr. John Noyes, Natural History Museum, London, UK Dr. Albert G. Orr, Griffith University, Nathan, Australia
- Dr. Sameer Padhye, Katholieke Universiteit Leuven, Belgium
- Dr. Nancy van der Poorten, Toronto, Canada Dr. Kareen Schnabel, NIWA, Wellington, New Zealand
- Dr. R.M. Sharma, (Retd.) Scientist, Zoological Survey of India, Pune, India
- Dr. Manju Siliwal, WILD, Coimbatore, Tamil Nadu, India
- Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India Dr. K.A. Subramanian, Zoological Survey of India, New Alipore, Kolkata, India
- Dr. P.M. Sureshan, Zoological Survey of India, Kozhikode, Kerala, India
- Dr. R. Varatharajan, Manipur University, Imphal, Manipur, India Dr. Eduard Vives, Museu de Ciències Naturals de Barcelona, Terrassa, Spain
- Dr. James Young, Hong Kong Lepidopterists' Society, Hong Kong
- Dr. R. Sundararaj, Institute of Wood Science & Technology, Bengaluru, India
- Dr. M. Nithyanandan, Environmental Department, La Ala Al Kuwait Real Estate. Co. K.S.C.,
- Kuwait
- Dr. Himender Bharti, Punjabi University, Punjab, India
- Mr. Purnendu Roy, London, UK
- Dr. Saito Motoki, The Butterfly Society of Japan, Tokyo, Japan Dr. Sanjay Sondhi, TITLI TRUST, Kalpavriksh, Dehradun, India
- Dr. Nguyen Thi Phuong Lien, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Dr. Nitin Kulkarni, Tropical Research Institute, Jabalpur, India
- Dr. Robin Wen Jiang Ngiam, National Parks Board, Singapore
- Dr. Lional Monod, Natural History Museum of Geneva, Genève, Switzerland.
- Dr. Asheesh Shivam, Nehru Gram Bharti University, Allahabad, India Dr. Rosana Moreira da Rocha, Universidade Federal do Paraná, Curitiba, Brasil
- Dr. Kurt R. Arnold, North Dakota State University, Saxony, Germany
- Dr. James M. Carpenter, American Museum of Natural History, New York, USA
- Dr. David M. Claborn, Missouri State University, Springfield, USA
- Dr. Kareen Schnabel, Marine Biologist, Wellington, New Zealand
- Dr. Amazonas Chagas Júnior, Universidade Federal de Mato Grosso, Cuiabá, Brasil
- Mr. Monsoon Jyoti Gogoi, Assam University, Silchar, Assam, India
- Dr. Heo Chong Chin, Universiti Teknologi MARA (UITM), Selangor, Malaysia
- Dr. R.J. Shiel, University of Adelaide, SA 5005, Australia
- Dr. Siddharth Kulkarni, The George Washington University, Washington, USA
- Dr. Priyadarsanan Dharma Rajan, ATREE, Bengaluru, India
- Dr. Phil Alderslade, CSIRO Marine And Atmospheric Research, Hobart, Australia
- Dr. John E.N. Veron, Coral Reef Research, Townsville, Australia
- Dr. Daniel Whitmore, State Museum of Natural History Stuttgart, Rosenstein, Germany. Dr. Yu-Feng Hsu, National Taiwan Normal University, Taipei City, Taiwan
- Dr. Keith V. Wolfe, Antioch, California, USA
- Dr. Siddharth Kulkarni, The Hormiga Lab, The George Washington University, Washington, D.C., USA
- Dr. Tomas Ditrich, Faculty of Education, University of South Bohemia in Ceske Budeiovice, Czech Republic
- Dr. Mihaly Foldvari, Natural History Museum, University of Oslo, Norway
- Dr. V.P. Uniyal, Wildlife Institute of India, Dehradun, Uttarakhand 248001, India
- Dr. John T.D. Caleb, Zoological Survey of India, Kolkata, West Bengal, India
- Dr. Priyadarsanan Dharma Rajan, Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Bangalore, Karnataka, India

Fishes

- Dr. Neelesh Dahanukar, IISER, Pune, Maharashtra, India
- Dr. Topiltzin Contreras MacBeath, Universidad Autónoma del estado de Morelos, México
- Dr. Heok Hee Ng, National University of Singapore, Science Drive, Singapore
- Dr. Rajeev Raghavan, St. Albert's College, Kochi, Kerala, India
- Dr. Robert D. Sluka, Chiltern Gateway Project, A Rocha UK, Southall, Middlesex, UK
- Dr. E. Vivekanandan, Central Marine Fisheries Research Institute, Chennai, India
- Dr. Davor Zanella, University of Zagreb, Zagreb, Croatia
- Dr. A. Biju Kumar, University of Kerala, Thiruvananthapuram, Kerala, India
- Dr. Akhilesh K.V., ICAR-Central Marine Fisheries Research Institute, Mumbai Research Centre, Mumbai, Maharashtra, India
- Dr. J.A. Johnson, Wildlife Institute of India, Dehradun, Uttarakhand, India
- Dr. R. Ravinesh, Gujarat Institute of Desert Ecology, Gujarat, India

Amphibians

Dr. Sushil K. Dutta, Indian Institute of Science, Bengaluru, Karnataka, India Dr. Annemarie Ohler, Muséum national d'Histoire naturelle, Paris, France

Reptiles

- Dr. Gernot Vogel, Heidelberg, Germany
- Dr. Raju Vyas, Vadodara, Gujarat, India
- Dr. Pritpal S. Soorae, Environment Agency, Abu Dubai, UAE.
- Prof. Dr. Wayne J. Fuller, Near East University, Mersin, Turkey
- Prof. Chandrashekher U. Rivonker, Goa University, Taleigao Plateau, Goa. India Dr. S.R. Ganesh, Chennai Snake Park, Chennai, Tamil Nadu, India
- Dr. Himansu Sekhar Das, Terrestrial & Marine Biodiversity, Abu Dhabi, UAE

Journal of Threatened Taxa is indexed/abstracted in Bibliography of Systematic Mycology, Biological Abstracts, BIOSIS Previews, CAB Abstracts, EBSCO, Google Scholar, Index Copernicus, Index Fungorum, JournalSeek, National Academy of Agricultural Sciences, NewJour, OCLC WorldCat, SCOPUS, Stanford University Libraries, Virtual Library of Biology, Zoological Records.

NAAS rating (India) 5.64

Birds

- Dr. Hem Sagar Baral, Charles Sturt University, NSW Australia
- Mr. H. Byju, Coimbatore, Tamil Nadu, India
- Dr. Chris Bowden, Royal Society for the Protection of Birds, Sandy, UK Dr. Priya Davidar, Pondicherry University, Kalapet, Puducherry, India
- Dr. J.W. Duckworth, IUCN SSC, Bath, UK
- Dr. Rajah Jayapal, SACON, Coimbatore, Tamil Nadu, India Dr. Rajiv S. Kalsi, M.L.N. College, Yamuna Nagar, Haryana, India
- Dr. V. Santharam, Rishi Valley Education Centre, Chittoor Dt., Andhra Pradesh, India
- Dr. S. Balachandran, Bombay Natural History Society, Mumbai, India
- Mr. J. Praveen, Bengaluru, India
- Dr. C. Srinivasulu, Osmania University, Hyderabad, India
- Dr. K.S. Gopi Sundar, International Crane Foundation, Baraboo, USA
- Dr. Gombobaatar Sundev, Professor of Ornithology, Ulaanbaatar, Mongolia
- Prof. Reuven Yosef, International Birding & Research Centre, Eilat, Israel
- Dr. Taej Mundkur, Wetlands International, Wageningen, The Netherlands
- Dr. Carol Inskipp, Bishop Auckland Co., Durham, UK
- Dr. Tim Inskipp, Bishop Auckland Co., Durham, UK Dr. V. Gokula, National College, Tiruchirappalli, Tamil Nadu, India
- Dr. Arkady Lelej, Russian Academy of Sciences, Vladivostok, Russia
- Dr. Simon Dowell, Science Director, Chester Zoo, UK
- Dr. Mário Gabriel Santiago dos Santos, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, Vila Real, Portugal
- Dr. Grant Connette, Smithsonian Institution, Royal, VA, USA
- Dr. M. Zafar-ul Islam, Prince Saud Al Faisal Wildlife Research Center, Taif, Saudi Arabia

Mammals

- Dr. Giovanni Amori, CNR Institute of Ecosystem Studies, Rome, Italy
- Dr. Anwaruddin Chowdhury, Guwahati, India
- Dr. David Mallon, Zoological Society of London, UK
- Dr. Shomita Mukherjee, SACON, Coimbatore, Tamil Nadu, India
- Dr. Angie Appel, Wild Cat Network, Germany

Dr. Lala A.K. Singh, Bhubaneswar, Orissa, India Dr. Mewa Singh, Mysore University, Mysore, India

Dr. Paul Racey, University of Exeter, Devon, UK

Dr. Paul Bates, Harison Institute, Kent, UK

Altobello", Rome, Italy

Other Disciplines

Delhi, India

Reviewers 2019-2021

The Managing Editor, JoTT,

Tamil Nadu 641035, India ravi@threatenedtaxa.org

Dr. Nishith Dharaiya, HNG University, Patan, Gujarat, India

Dr. Dan Challender, University of Kent, Canterbury, UK

- Dr. P.O. Nameer, Kerala Agricultural University, Thrissur, Kerala, India
- Dr. Ian Redmond, UNEP Convention on Migratory Species, Lansdown, UK
- Dr. Heidi S. Riddle, Riddle's Elephant and Wildlife Sanctuary, Arkansas, USA Dr. Karin Schwartz, George Mason University, Fairfax, Virginia.

Dr. Honnavalli N. Kumara, SACON, Anaikatty P.O., Coimbatore, Tamil Nadu, India

Dr. Justus Joshua, Green Future Foundation, Tiruchirapalli, Tamil Nadu, India

Dr. Jim Sanderson, Small Wild Cat Conservation Foundation, Hartford, USA

Dr. Susan Cheyne, Borneo Nature Foundation International, Palangkaraja, Indonesia

Dr. Mandar S. Paingankar, University of Pune, Pune, Maharashtra, India (Molecular) Dr. Jack Tordoff, Critical Ecosystem Partnership Fund, Arlington, USA (Communities)

Dr. Rayanna Hellem Santos Bezerra, Universidade Federal de Sergipe, São Cristóvão, Brazil Dr. Jamie R. Wood, Landcare Research, Canterbury, New Zealand Dr. Wendy Collinson-Jonker, Endangered Wildlife Trust, Gauteng, South Africa

Dr. L.D. Singla, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India

Dr. David Mallon, Manchester Metropolitan University, Derbyshire, UK Dr. Brian L. Cypher, California State University-Stanislaus, Bakersfield, CA

Dr. Hemanta Kafley, Wildlife Sciences, Tarleton State University, Texas, USA

Dr. S.S. Talmale, Zoological Survey of India, Pune, Maharashtra, India Prof. Karan Bahadur Shah, Budhanilakantha Municipality, Kathmandu, Nepal

Dr. Aniruddha Belsare, Columbia MO 65203, USA (Veterinary)

Dr. Ulrike Streicher, University of Oregon, Eugene, USA (Veterinary)

Dr. Hari Balasubramanian, EcoAdvisors, Nova Scotia, Canada (Communities)

Dr. Rajeshkumar G. Jani, Anand Agricultural University, Anand, Gujarat, India Dr. O.N. Tiwari, Senior Scientist, ICAR-Indian Agricultural Research Institute (IARI), New

Dr. Rupika S. Rajakaruna, University of Peradeniya, Peradeniya, Sri Lanka Dr. Bahar Baviskar, Wild-CER, Nagpur, Maharashtra 440013, India

Due to pausity of space, the list of reviewers for 2018-2020 is available online.

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political

boundaries shown in the maps by the authors.

Print copies of the Journal are available at cost. Write to:

c/o Wildlife Information Liaison Development Society,

43/2 Varadarajulu Nagar, 5th Street West, Ganapathy, Coimbatore,

Dr. H. Raghuram, The American College, Madurai, Tamil Nadu, India

Dr. Spartaco Gippoliti, Socio Onorario Società Italiana per la Storia della Fauna "Giuseppe

The Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservation globally by publishing peer-reviewed articles online every month at a reasonably rapid rate at www.threatenedtaxa.org. All articles published in JoTT are registered under Creative Commons Attribution 4.0 International License unless otherwise mentioned. JoTT allows allows unrestricted use, reproduction, and distribution of articles in any medium by providing adequate credit to the author(s) and the source of publication.

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print)

November 2022 | Vol. 14 | No. 11 | Pages: 22039-22206 Date of Publication: 26 November 2022 (Online & Print) DOI: 10.11609/jott.2022.14.11.22039-22206

www.threatenedtaxa.org

Communications

New records of pteridophytes in Mount Matutum Protected Landscape, South Central Mindanao, Philippines with notes on its economic value and conservation status

- Christine Dawn Galope-Obemio, Inocencio E. Buot Jr. & Maria Celeste Banaticla-Hilario, Pp. 22039–22057

 (\mathbf{i})

Some threatened woody plant species recorded from forests over limestone of the Philippines

- Inocencio E. Buot Jr., Marne G. Origenes, Ren Divien R. Obeña, Elaine Loreen C. Villanueva & Marjorie D. delos Angeles, Pp. 22058-22079

Status of mangrove forest in Timaco Mangrove Swamp, Cotabato City, Philippines

 Cherie Cano-Mangaoang, Zandra Caderon Amino & Baingan Brahim Mastur, Pp. 22080-22085

A comparative analysis of the past and present occurrences of some species of Paphiopedilum (Orchidaceae) in northeastern India using MaxEnt and GeoCAT

- Debonina Dutta & Aparajita De, Pp. 22086-22097

Foraging activity and breeding system of Avicennia officinalis L. (Avicenniaceae) in Kerala, India - K. Vinaya & C.F. Binoy, Pp. 22098-22104

Diversity patterns and seasonality of hawkmoths (Lepidoptera: Sphingidae) from northern Western Ghats of Maharashtra, India Aditi Sunil Shere-Kharwar, Sujata M. Magdum, G.D. Khedkar & Supriya Singh Gupta, Pp. 22105-22117

Population trends of Mugger Crocodile and human-crocodile interactions along the Savitri River at Mahad, Maharashtra, India - Utkarsha Manish Chavan & Manoj Ramakant Borkar, Pp. 22118-22132

Paresis as a limiting factor in the reproductive efficiency of a nesting colony of Lepidochelys olivacea (Eschscholtz, 1829) in La Escobilla beach, Oaxaca, Mexico

- Alejandra Buenrostro-Silva, Jesús García-Grajales, Petra Sánchez-Nava & María de Lourdes Ruíz-Gómez, Pp. 22133–22138

Notes on the nesting and foraging behaviours of the Common Coot Fulica atra in the wetlands of Viluppuram District, Tamil Nadu, India – M. Pandian, Pp. 22139–22147

Population abundance and threats to Black-headed Ibis Threskiornis melanocephalus and Red-naped Ibis Pseudibis papillosa at study sites in Jhajjar district, Haryana, India

– Anjali & Sarita Rana, Pp. 22148–22155

Crop raiding and livestock predation by wildlife in Khaptad National Park, Nepal

- Ashish Bashyal, Shyam Sharma, Narayan Koirala, Nischal Shrestha, Nischit Aryal, Bhupendra Prasad Yadav & Sandeep Shrestha, Pp. 22156-22163

Review

An annotated checklist of odonates of Amboli-Chaukul-Parpoli region showing new records for the Maharashtra State, India with updated state checklist - Dattaprasad Sawant, Hemant Ogale & Rakesh Mahadev Deulkar,

Short Communications

Pp. 22164-22178

The new addition of Blue Pimpernel of Primulaceae to the state flora of Assam. India

- Sushmita Kalita, Barnali Das & Namita Nath, Pp. 22179-22183

A new species of genus Neocerura Matsumura, 1929 (Notodontidae: Lepidoptera) from India

- Amritpal Singh Kaleka & Rishi Kumar, Pp. 22184-22189

Rediscovery of an interesting preying mantis Deiphobella laticeps (Mantodea: Rivetinidae) from Maharashtra, India - Gauri Sathaye, Sachin Ranade & Hemant V. Ghate, Pp. 22190-22194

Camera trapping records confirm the presence of the elusive Spotted Linsang Prionodon pardicolor (Mammalia: Carnivora: Prionodontidae) in Murlen National Park (Mizoram, India) - Amit Kumar Bal & Anthony J. Giordano, Pp. 22195-22200

Notes

First sighting record of the Orange-breasted Green-Pigeon Treron bicinctus (Aves: Columbiformes: Columbidae) from Chittaranjan, West Bengal, India

- Shahbaz Ahmed Khan, Nazneen Zehra & Jamal Ahmad Khan, Pp. 22201-22202

Book Reviews

Decoding a group of winged migrants! - Review by Priyanka Iyer, Pp. 22203-22204

First steps of citizen science programs in India

- Review by Aishwarya S. Kumar & Lakshmi Nair, Pp. 22205-22206

Publisher & Host