# POPULATION GENETICS IMPLICATIONS FOR THE CONSERVATION OF THE PHILIPPINE CROCODILE *CROCODYLUS MINDORENSIS* SCHMIDT, 1935 (CROCODYLIA: CROCODYLIDAE)

Ma. Rheyda P. Hinlo<sup>1</sup>, John A.G. Tabora<sup>2</sup>, Carolyn A. Bailey<sup>3</sup>, Steve Trewick<sup>4</sup>, Glenn Rebong<sup>5</sup>, Merlijn van Weerd<sup>6</sup>, Cayetano C. Pomares<sup>7</sup>, Shannon E. Engberg<sup>8</sup>, Rick A. Brenneman<sup>9</sup> & Edward E. Louis, Jr.<sup>10</sup>

<sup>1</sup>Institute for Applied Ecology, University of Canberra, ACT, 2601, Australia

<sup>2,7</sup> Department of Biological Sciences, University of Southern Mindanao, Kabacan, North Cotabato, 9407 Philippines <sup>3,8,9,10</sup> Grewcock Center for Conservation and Research, Omaha's Henry Doorly Zoo and Aquarium, 3701 South 10<sup>th</sup> Street, Omaha, NE 68107, USA

<sup>4</sup> Phoenix Group Evolutionary Ecology and Genetics, Massey University, Palmerston North, 4442 New Zealand.

<sup>5</sup> Palawan Wildlife Rescue and Conservation Center, National Road, Barangay Irawan, Puerto Princessa City, Philippines.

<sup>6</sup>Institute of Environmental Sciences, Leiden University, PO Box 9518, 2300 RA Leiden, the Netherlands; Mabuwaya

Foundation, Isabela State University Garita, Cabagan 3328, Isabela, Philippines. <sup>1</sup>rei\_vet@yahoo.com, <sup>2</sup>johnariestabora@yahoo.com; <sup>4</sup>s.trewick@massey.ac.nz, <sup>5</sup>pwrcc.denr@gmail.com,

<sup>6</sup>merlijnvanweerd@yahoo.com, <sup>7</sup>cayetanop@gmail.com, <sup>8</sup>genetics@omahazoo.com; <sup>9</sup>brenne3@yahoo.com;

<sup>10</sup>edlo@omahazoo.com (corresponding author)

**Abstract:** Limited information is available on the Philippine Crocodile, *Crocodylus mindorensis*, concerning levels of genetic diversity either relative to other crocodilian species or among populations of the species itself. With only two known extant populations of *C. mindorensis* remaining, potentially low levels of genetic diversity are a conservation concern. Here, we evaluated 619 putative Philippine Crocodiles using a suite of 11 microsatellite markers, and compared them to four other crocodilian species sample sets. The two remaining populations from the island of Luzon and the island of Mindanao, representing the extremes of the former species' distribution, appear to be differentiated as a result of genetic drift rather than selection. Both extant populations demonstrate lower genetic diversity and effective population sizes relative to other studied crocodilian species. The 57 *C. mindorensis* and *C. porosus*, Saltwater Crocodile, hybrids identified earlier from the Palawan Wildlife Rescue and Conservation Center were revalidated with a suite of 20 microsatellite loci; however, the timing of the event and the prevalence of hybridization in the species had yet to be fully determined. We defined the hybrids as one first cross from a *C. porosus* female and a *C. mindorensis* male and 56 *C. mindorensis* backcross individuals. This hybridization event appears to be confined to the PWRCC collection.

Keywords: Crocodylus, hybrid detection, microsatellites, Philippine crocodile, population genetics.

DOI: http://dx.doi.org/10.11609/JoTT.o3384.5513-33 | ZooBank: urn:lsid:zoobank.org:pub:4D679084-A885-4205-9C23-F1F6900B0904

Editor: Llewellyn D. Densmore, Texas Tech University, Lubbock, USA.
Date of publication: 26 March 2014 (online & print)

Manuscript details: Ms # 03384 | Received 11 October 2012 | Final received 28 September 2013 | Finally accepted 15 February 2014

Citation: Hinlo, M.R.P., J.A.G. Tabora, C.A. Bailey, S. Trewick, G. Rebong, M. van Weerd, C.C. Pomares, S.E. Engberg, R.A. Brenneman & E.E. Louis, Jr. (2014). Population genetics implications for the conservation of the Philippine Crocodylus mindorensis Schmidt, 1935 (Crocodylia: Crocodylidae). Journal of Threatened Taxa 6(3): 5513–5533; http://dx.doi.org/10.11609/JoTT.o3384.5513-33

Copyright: © Hinlo et al. 2014. Creative Commons Attribution 3.0 Unported License. JOTT allows unrestricted use of this article in any medium, reproduction and distribution by providing adequate credit to the authors and the source of publication.

Funding: Omaha's Henry Doorly Zoo and Aquarium, the Crocodile Specialist Group (CSG) Student Research Fund, New Zealand Agency for International Development postgraduate research fund, and Curt Harbsmeier, Law Offices of Harbsmeier DeZayas, LLP.

Competing Interest: The authors declare no competing interests.
For Author Contribution, Author Details, Acknowledgements and Filipino Abstract: See end of the article.

For Author Contribution, Author Details, Acknowledgements and Filipino Abstract: See end of the article.
Image: Im



ARTICLE

ISSN Online 0974–7907 Print 0974–7893

**OPEN ACCESS** 

## INTRODUCTION

The application of genetics in conservation efforts has increased dramatically over the past decades. Molecular genetic methodology has been used to address taxonomic issues, assess genetic variability and inbreeding, track gene flow and detect hybridization, all in an effort to conserve genetically healthy populations and aid in the identification of ecologically significant units (Fleischer 1998). The use of nuclear DNA (nucDNA) and mitochondrial DNA (mtDNA) sequence data in crocodilian research has increased our understanding of genetic variability (Flint et al. 2000; Ray et al. 2004; Russello et al. 2007), hybridization (FitzSimmons et al. 2002; Ray et al. 2004; Cedeño-Vásquez et al. 2008), differences between individuals (Farias et al. 2004), populations (Vasconcelos et al. 2006, 2008) and species (Li et al. 2007; Gatesy & Amato 2008; Meganathan & Dubey 2009; Meganathan et al. 2010). Microsatellites have been used to investigate population structure and gene flow in wild populations of Morelet's Crocodile Crocodylus moreletii Duméril & Bibron, 1851 (Dever & Densmore 2001; Dever et al. 2002), American Alligator Alligator mississippiensis Daudin, 1802 (Glenn et al. 1998; Davis et al. 2002) and Black Caiman Melanosuchus niger Spix, 1825 (de Thoisy et al. 2006). Microsatellites have also been useful in parentage analysis in Saltwater Crocodiles C. porosus Schneider, 1801 (Isberg et al. 2004), in determining and maintaining genetic variability in crocodiles bred for the leather trade (Flint et al. 2000; FitzSimmons et al. 2002) and to build the scaffolding for a genetic linkage map (Miles et al. 2009a).

Limited information exists concerning the Philippine Crocodile, *C. mindorensis*, and its comparative status with other crocodilian species. The Philippine Crocodile is a species of special concern and has already been the focus of a breeding program for many years (Banks 2005). A combination of hunting for commercial exploitation, extirpation because of fear, overfishing of prey, habitat loss and habitat fragmentation have severely diminished the range of this species and reduced the remaining populations to critical levels (van Weerd & van der Ploeg 2003). Fifteen years ago, the wild populations were estimated to contain less than 100 mature individuals (Ross 1998). The most recent Crocodile Specialist Group (CSG) status update assesses the populations of *C. mindorensis* in the wild to consist of less than 250 adults (van Weerd 2010). As a result, the Philippine Crocodile is currently listed as Critically Endangered A1c, C2a in the IUCN Red List (Crocodile Specialist Group 1996).

Silliman University in Dumaguete City, Philippines, in 1980, initiated the first captive breeding of the Philippine Crocodile for conservation purposes. In 1987, the Department of Environment and Natural Resources (DENR), in a collaboration substantially funded by the Japanese International Cooperation Agency, established the Crocodile Farming Institute (CFI). The CFI is now known as the Palawan Wildlife Rescue and Conservation Center (PWRCC) in Puerto Princessa City, Philippines, and operates under the Protected Areas and Wildlife Bureau (PAWB). The purpose of the facility was to conserve the two species of crocodiles found in the Philippines, the Saltwater Crocodile and the Philippine Crocodile (Sumiller 2000; Banks 2005). Both Silliman University and PWRCC succeeded in breeding C. mindorensis, and many of the resulting captive-bred stock have been sent to zoos in the Philippines and other countries via breeding loan agreements (Banks 2005). However, PWRCC temporarily discontinued captive breeding in 2001 due to financial constraints, limited space and ambiguities in the captive stock pedigrees (Rebong & Sumiller 2003; Banks 2005).

Philippine Crocodile reintroductions into suitable habitats have been planned by the Philippine Crocodile National Recovery Team (PCNRT; Banks 2005). A successful in situ Philippine Crocodile conservation program is in progress in the San Mariano municipality in Isabela Province (van Weerd & van der Ploeg 2003; van der Ploeg et al. 2011a,b,c). The Mabuwaya Foundation began a headstart program in 2005 where wild-born Philippine Crocodiles were captured, captive raised (i.e., headstarted) then released after two years

**Abbreviations:** ABI - Applied Biosystems, Inc.; bp - base pairs; CFI - Crocodile Farming Institute; CI - confidence interval; CSG - IUCN/SSC Crocodile Specialist Group; DENR - Department of Environment and Natural Resources; DNA - deoxyribonucleic acid; *F*<sub>15</sub> - within population fixation index; *F*<sub>57</sub> - between population fixation index; *He* - expected heterozygosity; *Ho* - observed heterozygosity; *I* - Shannon Information index; IUCN - International Union for the Conservation of Nature; LD - linkage disequilibrium; MSA - Microsatellite Analyzer; mtDNA - mitochondrial DNA; N - census size; *N* - average number of individuals genotyped per locus; *Na* - mean number of alleles; *Ne* - effective population size; *Nea* - effective number of alleles; *Neb* - number of effective breeders; nucDNA - nuclear DNA; PAWB - Protected Areas and Wildlife Bureau; PCA - Principal Coordinates Analysis; PCNRT - Philippine Crocodile National Recovery Team; PCR - polymerase chain reaction; PWRCC - Palawan Wildlife Rescue and Conservation Center; SSC - Species Survival Commission; *tI* - transformed Shannon entropy index; *tHe* - transformed expected heterozygosity index; tUHe - transformed unbiased expected heterozygosity index; tUHe - transformed unbiased expected heterozygosity index; tUHe - unbiased expected heterozygosity; WGA - whole genome amplification

thus increasing juvenile survival rates (van de Ven et al. 2009). In 2010, 50 PWRCC captive-bred Philippine Crocodiles were released into a lake in the Divilacan municipality, geographically separated from the wild Isabela crocodile population. This release served as a pilot project to assess the adaptability of captive-bred Philippine Crocodiles under wild conditions (van Weerd & General 2003; van Weerd et al. 2010).

Recent systematics studies identified hybrids between C. mindorensis and C. porosus at PWRCC from the analyses of both mtDNA (D-loop and ND4) and nucDNA (C-mos) gene sequences (Louis & Brenneman 2008; Tabora et al. 2012). These studies validated previous concerns regarding reintroduction candidate purity, thus warranting forensic diagnoses prior to release. Using data generated from microsatellite loci derived from crocodilian genomes by Miles et al. (2009b,c) and this study, we address three questions regarding the Philippine Crocodile: (1) how does the genetic diversity in C. mindorensis compare to other crocodilian species, (2) what are the population genetic inferences of the two populations in the current range distribution, and (3) to what extent has hybridization occurred between C. mindorensis and C. porosus.

### MATERIALS AND METHODS

#### Sample collection

Tissue samples were collected from a total of 619 Philippine Crocodiles from 1999–2009. Once crocodiles were safely restrained, scute samples were obtained by cleaning the area with 70% isopropyl alcohol and cutting with a scalpel/razor blade. The samples were stored in 1.8ml NUNC® tubes containing a room temperature tissue preservative (Seutin et al. 1991). The majority of the Philippine Crocodile samples were collected from the captive population maintained at the PWRCC; the rest from Davao City Crocodile Park on Mindanao, Calauit Game Refuge and Wildlife Sanctuary on Palawan, Valera Square Mini Zoo in the Abra Province, Silliman University in Dumaguete City and individuals exported to the Gladys Porter Zoo in Brownsville, TX. Tissue samples from wild C. mindorensis were collected from the two extant populations in the Philippines: the San Mariano region in Isabela Province on Luzon and from the Liguasan (Ligawasan, Liguwasan) Marsh on Mindanao. These are two regions of the Philippine archipelago where indigenous cultural traditions offered some degree of protection to the Philippine Crocodile (van der Ploeg & van Weerd 2004; Mangansakan 2008; Pimentel et al. 2008). A single wild sample was collected on Dalupiri Island in the province of Cagayan north of Luzon. A list of the study areas, site descriptions and number of crocodiles sampled from each location are described in Tabora et al. (2012). Samples from C. niloticus Laurenti, 1768 (n = 12), C. acutus Cuvier, 1807 (n = 11), C. siamensis Schneider, 1801 (n = 12) and C. porosus (n = 37) were obtained from the Yale Peabody Museum of Natural History collection and from the St. Augustine Crocodile Farm for comparison to C. mindorensis.

#### **DNA extraction**

Genomic DNA from the great majority of the tissue samples was extracted and amplified using a whole genome amplification kit (WGA; Illustra TempliPhi<sup>®</sup>, GE Healthcare, Piscataway, NJ). The WGA yielded an average of 500ng of DNA per  $\mu$ L and all products were diluted to 50ng/ $\mu$ L. DNA from the remaining *C. mindorensis* tissue samples were extracted using a standard phenol/chloroform/isoamyl alcohol extraction method as described in Sambrook et al. (1989).

#### Microsatellite amplification

A subset of the sampled species was screened with an initial 31 microsatellite loci (Miles et al. 2009b,c) discovered in the *C. porosus* genome. A locus was eliminated from the comparative study if it failed to amplify in any one species or was monomorphic in at

Table 1. Primer sequences (5' to 3') with dye label, optimized annealing temperatures and microsatellite locus information including observed number of alleles detected (k), and size range in 527 *C. mindorensis.* 

| Locus   | Primer Sequence                                             | Repeat motif                           | Annealing Temp<br>(ºC) | k | Size range | Gen Bank accession No. |
|---------|-------------------------------------------------------------|----------------------------------------|------------------------|---|------------|------------------------|
| 4HDZ27  | F: HEXGCACACATTCTCTGAGTAAAAAACC<br>R: GGCACTGGTAGGCTTTGAAAT | (CA) <sub>17</sub>                     | 64                     | 6 | 147–163    | GU812903               |
| 4HDZ35  | F: FAMGACAGTGTGGIGGGTGC<br>R:TGCTGGCTGCTTGGGAC              | (CA) <sub>8</sub> CG(CA) <sub>14</sub> | 62                     | 3 | 193–199    | GU812904               |
| 4HDZ391 | F: FAMATGAGTCAGGTGGCAGGTTC<br>R: CATAAATACACTTTTGAGCAGCAG   | (GT) <sub>12</sub>                     | 60                     | 4 | 133–143    | GU812905               |

least two species. Microsatellite loci 4HDZ27, 4HDZ35 and 4HDZ391 were discovered in the *C. mindorensis* genome following the general protocol of Moraga-Amador et al. (2001) at Omaha's Henry Doorly Zoo and Aquarium's Center for Conservation and Research (Table 1).

PCR amplifications were performed in MBA Satellite 0.2G thermal cyclers (Thermo Fisher Scientific, Inc., Waltham, MA) in final reaction volumes of 25µL and containing 20–50 ng of DNA template. Final amplification conditions consisted of 12.5 pmol unlabeled reverse primer, 12.5 pmol fluorescently labeled forward primer, 1.5 mM MgCl<sub>2</sub>, 200 µM each dNTP, and 0.5 units of Taq DNA polymerase (Promega; Madison, WI). One of two PCR thermal cycling methods were used depending on the microsatellite locus amplified. Stratified touchdown programs were used for three loci: TD55 for CpP4116 and TD65 for CpP302 and CpP2516 as described in Miles et al. (2009b). Standard PCR profile parameters for all other markers used in this study were: 34 cycles of 95°C for 30s, a primer-specific annealing temperature for 45s, and 72°C for 45s, and a final extension step of 72°C for 10 min. Optimum annealing temperatures were determined as follows: 58°C for CpP305, CpP801 and CpP4004; 60°C for CpP1708, CpP3008 and 4HDZ391; 62°C for 4HDZ35; and 64°C for 4HDZ27. PCR products were visualized to verify amplification on 2% agarose gels stained with ethidium bromide. For the comparison between C. mindorensis and C. porosus and hybridization analysis CpP305, CpP1708, CpP2516, CpP3008, CpP4004 and CpP4116 were amplified with the above standard conditions. An additional 12 loci were found to be informative for these analyses. The stratified touchdown programs TD55 for CpP3313 and CpP4301 and TD65 for CpP4311 were used as described in Miles et al. (2009b). The following loci were amplified with standard PCR as described above at the following annealing temperatures: 56°C for CpP208 and CpP1610; 58°C for CpP80 and CpP3601; 60°C for CpP405, CpP1002 and CpP3220; and 62°C for CpP203 and CpP610. Allele sizes were determined by separation of the PCR products via POP 4 capillary buffer electrophoresed on ABI 3100/ ABI 3130x/ Genetic Analyzers (Applied Biosystems, Inc., Foster City, CA). Fragment length genotypes were assigned by GeneScan using GeneScan<sup>™</sup> 500XL ROX<sup>™</sup> size standard in the GeneMapper software version 4.0.

#### Data analysis

MICRO-CHECKER (Van Oosterhaut et al. 2004) and Microsatellite Analyzer (MSA; Dieringer & Schlötterer 2003) were used to analyze the data set for genotyping and typographical errors. Null allele frequencies were estimated using CERVUS 2.0 (Marshall et al. 1998; Slate et al. 2000). Excessive frequencies of null alleles can bias the data interpretation by either overestimating homozygosity or underestimating heterozygosity (Callen et al. 1993; Hoffman & Amos 2005). Loci with high null allele frequency estimates (nf>0.2) were removed from further analysis (Chapuis & Estoup 2007). The population genetic parameters: observed (Ho), expected (He), and unbiased expected heterozygosity (UHe), mean number of alleles (Na), effective number of alleles (Ne), Shannon Information index (I; Shannon 1948), and the within population fixation index ( $F_{is}$ ) were estimated using GenAlEx 6.41 (Peakall & Smouse 2006). The Shannon entropy index was transformed by Diversity of Order 1 = exponential of / (Jost 2009). Heterozygosity estimates were transformed by Diversity of Order 2 = 1/ (1-He) (Jost 2008). The between population fixation index  $(F_{s\tau})$  with significance was estimated with FSTAT 4.3 (Goudet 1995, 2001). For intraspecific diversity study, we neglected the captive populations because (1) the collections do not represent true populations; (2) the sample sizes for most were too small; and (3) hybrids had been previously discovered in PWRCC and thus we expect that C. porosus alleles would be present in the population inflating estimates reflecting intraspecific genetic diversity.

Effective population sizes were estimated with the linkage disequilibrium (LD) method using LDNe 1.31 (Waples & Do 2008) that corrects for small sample sizes bias (Waples 2006), an advantage over NeEstimator (Peel et al. 2004). The LD method is grounded on the principal that the loss of genetic variation is intensified by an increase in linkage disequilibrium. Testing allelic associations among multiple loci allows inbreeding estimation in the effective population size. Waples & Do (2008) determined that estimates of effective population size may become slightly less accurate but more precise as alleles with lower allele frequencies are included in the estimation. LDNe estimates effective population sizes excluding allele frequencies below the critical values of 0.05, 0.02, and 0.01 to assess the effects of rare alleles in the data. The ratio of the effective population size to the census size (Ne/N) can be used to predict inbreeding and genetic variation loss in wildlife populations (Frankham 1995).

Since it is possible that the two extant *C. mindorensis* populations, being from the northern and southern extremes of the distribution, might exhibit detectable selection, we tested for selection using both Lositran (Beaumont & Nichols 1996; Antao et al. 2008)

and BayeScan 2.0 (Foll & Gaggiotti 2008). Lositran implements an  $F_{s\tau}$  outlier method to identify loci likely under selection whereas BayeScan employs a maximum likelihood posterior probability. Relevance of the BayeScan posterior probabilities were interpreted with Jeffreys' scale of evidence (Jeffreys 1961). Considering that the extant populations are small, all within-population dyads were tested for relatedness (Queller & Goodnight 1989) using SPAGeDi (Hardy & Vekemans 2002) and compared to a simulation of 10,000 individuals of known pedigree relationships (Queller & Goodnight 1989).

Crocodylus porosus x C. mindorensis hybridization was identified in Tabora et al. (2012) where 57 captive crocodiles expected to be C. mindorensis by breeding records had inherited mtDNA haplotypes and nucDNA C-mos diagnostic sites found in C. porosus. We examined the microsatellite loci screened for the species diversity comparison to identify markers that would be informative in comparing the two species of crocodiles found in the Philippines. Eight additional loci found to be monomorphic in C. mindorensis and polymorphic in C. porosus for diagnostic alleles not present in the genotype data of C. mindorensis populations and collections exclusive of PWRCC (CpP2516, CpP208, CpP405, CpP610, CpP1002, CpP3601, CpP4301, and CpP4311) were included to test for evidence of hybridization. We generated multilocus data on 619 C. mindorensis from both wild populations and the captive collections comprising a great majority of the freshwater crocodiles in the Philippines and 37 C. porosus from samples collected in Republic of Palau (RP) by Russello et al. (2007).

Population structure was inferred using STRUCTURE v2.1 (Pritchard et al. 2000; Falush et al. 2003) to determine the differentiation between the northern and southern C. mindorensis populations and to test for potential hybridization in the populations with C. porosus. The program uses a Bayesian clustering based method to determine whether the two extant populations could be identified by genetic clustering and to determine if populations harboring allelic structure demonstrated genetic admixture of the parental species clusters. STRUCTURE attempts to identify population subsets that maximize Hardy Weinberg expectations and minimize LD from multilocus genotypes (Pritchard et al. 2000). We chose the ancestry model, correlated allele frequencies, different  $F_{s\tau}$  values assumed for each subpopulation, a uniform prior for alpha (max: 10, SD for updating: 0.025), constant lambda value of 1, prior  $F_{s_T}$  mean (0.01) and standard deviation (0.05). We set the range to consider 1–11 genetic clusters as Evanno et al. (2005) suggests estimating over a range of at least three clusters more than sampling locations. The burnin period was set at  $10^5$  repetitions followed by  $10^6$  MCMC repetitions for 20 iterations of the Gibbs sampler for each K value. Occasionally STRUCTURE overestimates the optimal K value; hence, Evanno et al. (2005) developed an *ad hoc* test statistic  $\Delta K$  to evaluate the output files in addition to approximating the asymptote of the posterior probability curve. At K-max, we applied a conservative threshold of  $q \ge 0.05$  to the membership coefficient (q-value) of the cluster attributed to the introgressing species to identify hybrids (Hapke et al. 2011).

In addition, we used the Principal Coordinates Analysis (PCoA) in GenAlEx v6.41 to detect shifts in multilocus genotype groupings that might indicate individual affinity drifting away from expected parental groups. We charted the first two axes of inertia using genetic distance as the criteria with the covariance standardized method of calculation.

### RESULTS

Eleven informative microsatellite loci amplified and were used to generate the data set from the two wildsampled C. mindorensis populations and the samples of C. acutus, C. niloticus, C. porosus and C. siamensis. The average number of alleles ranged from 3.7 in the C. mindorensis samples from the population of Liguasan Marsh to six in C. niloticus. The number of effective alleles ranged from 2.159 in the C. mindorensis of Isabela to 3.847 in C. niloticus. The observed heterozygosity ranged from 0.408 in samples from the Isabela population to 0.630 in C. porosus and expected heterozygosity ranged from 0.423 in the Isabela population to 0.663 in C. niloticus (Table 2). Regardless of the estimate or index, the two extant C. mindorensis populations ranked lowest in genetic diversity compared to the sample collections of C. acutus, C. niloticus, C. porosus and C. siamensis. F-statistics measuring within population fixation or inbreeding ( $F_{IS}$ ) ranged from -0.149 to 0.160 but were not significant. Population fixation indices  $(F_{s_T})$  and their significances are presented in Table 3.

Twenty loci were found to be informative for intraspecific evaluation and to compare *C. mindorensis* with *C. porosus*. Analysis of the estimated effective population sizes of the Isabela and Liguasan Marsh populations showed that those populations have much lower effective population sizes than the population of

Table 2. Average number of individuals genotyped per locus (*N*), average number of alleles per locus (*Na*), number of effective alleles (*Nea*), Shannon entropy index (*I*), observed heterozygosity (*Ho*), expected heterozygosity (*He*), unbiased expected heterozygosities (*UHE*), within population fixation index ( $F_{LS}$ ), the transformed Shannon entropy index, observed heterozygosity, expected and unbiased expected heterozygosities into an index of genetic diversity (t*I*, t*Ho*, t*He* and t*UHe*, respectively) for the two extant populations of *C. mindorensis* (Isabela and Liguasan), *C. niloticus*, *C. siamensis*, *C. acutus*, and *C. porosus* derived from genotype data generated from a suite of 11 microsatellite loci.

| Population   |      | N      | Na    | Nea   | I     | Но    | He    | U <i>H</i> e | F <sub>is</sub> | t/    | t <i>H</i> o | t <i>H</i> e | tU <i>H</i> e |
|--------------|------|--------|-------|-------|-------|-------|-------|--------------|-----------------|-------|--------------|--------------|---------------|
| Isabela      | Mean | 84.000 | 3.900 | 2.159 | 0.751 | 0.408 | 0.423 | 0.425        | 0.055           | 2.119 | 1.689        | 1.739        | 1.739         |
|              | SE   | 0.558  | 0.900 | 0.384 | 0.170 | 0.101 | 0.082 | 0.083        | 0.129           |       |              |              |               |
| Liguasan     | Mean | 14.000 | 3.700 | 2.317 | 0.841 | 0.457 | 0.446 | 0.462        | -0.004          | 2.319 | 1.842        | 1.805        | 1.859         |
|              | SE   | 0.000  | 0.920 | 0.499 | 0.181 | 0.085 | 0.070 | 0.073        | 0.088           |       |              |              |               |
| C. niloticus | Mean | 12.000 | 6.000 | 3.847 | 1.407 | 0.583 | 0.663 | 0.691        | 0.198           | 4.084 | 2.398        | 2.967        | 3.236         |
|              | SE   | 0.000  | 0.856 | 0.616 | 0.170 | 0.104 | 0.064 | 0.066        | 0.108           |       |              |              |               |
| C. siamensis | Mean | 11.000 | 4.700 | 2.982 | 1.101 | 0.609 | 0.539 | 0.565        | -0.149          | 3.007 | 2.558        | 2.169        | 2.299         |
|              | SE   | 0.000  | 0.803 | 0.529 | 0.202 | 0.095 | 0.086 | 0.090        | 0.048           |       |              |              |               |
| C. acutus    | Mean | 10.800 | 4.600 | 3.428 | 1.104 | 0.473 | 0.543 | 0.569        | 0.160           | 3.020 | 1.808        | 2.188        | 2.320         |
|              | SE   | 0.133  | 1.147 | 0.955 | 0.231 | 0.109 | 0.097 | 0.101        | 0.094           |       |              |              |               |
| C. porosus   | Mean | 36.700 | 5.300 | 3.388 | 1.229 | 0.630 | 0.635 | 0.644        | 0.000           | 3.418 | 2.703        | 2.740        | 2.809         |
|              | SE   | 0.213  | 1.342 | 0.721 | 0.155 | 0.055 | 0.044 | 0.044        | 0.069           |       |              |              |               |

Table 3 Fixation indices between populations ( $F_{s\tau}$ ) below the diagonal (blue cells) with significance (after Bonferroni correction) above (orange cells).

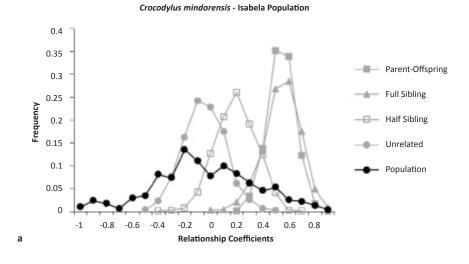
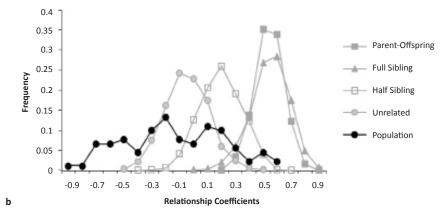

|              | Isabela | Liguasan | C. niloticus | C. siamensis | C. acutus | C. porosus |
|--------------|---------|----------|--------------|--------------|-----------|------------|
| Isabela      |         | 0.001    | 0.001        | 0.001        | 0.001     | 0.001      |
| Liguasan     | 0.408   |          | 0.001        | 0.001        | 0.001     | 0.001      |
| C. niloticus | 0.449   | 0.363    |              | 0.001        | 0.001     | 0.001      |
| C. siamensis | 0.512   | 0.451    | 0.339        |              | 0.001     | 0.001      |
| C. acutus    | 0.482   | 0.447    | 0.279        | 0.402        |           | 0.001      |
| C. porosus   | 0.425   | 0.382    | 0.297        | 0.362        | 0.351     |            |

Table 4 Effective population sizes estimated with LDNe (Waples & Do 2008) considering three thresholds for lowest allele frequency used in estimation and the corresponding harmonic mean of the sample size, the number of effective breeders (*Neb*) in the population and 95% confidence intervals (CI) for those estimations.


| Lowest Allele Frequency Used    | 0.05         | 0.02      | 0.01      |
|---------------------------------|--------------|-----------|-----------|
| Isabela (C. mindorensis)        |              |           |           |
| Harmonic Mean Sample Size       | 100.5        | 100.3     | 100.3     |
| Estimated Neb^                  | 2.2          | 2.7       | 4.8       |
| 95% CIs for Neb^                | 1.7-2.8      | 2.1-3.3   | 3.5-7.3   |
| Liguasan Marsh (C. mindorensis) |              |           |           |
| Harmonic Mean Sample Size       | 14           | 14        | 14        |
| Estimated Neb^                  | 21.3         | 7.9       | 7.9       |
| 95% CIs for Neb^                | 6.5–Infinite | 3-20.2    | 3-20.2    |
| RP (C. porosus)                 |              |           |           |
| Harmonic Mean Sample Size       | 36.7         | 36.7      | 36.7      |
| Estimated Neb^                  | 13.2         | 16.1      | 22.6      |
| 95% Cls for Neb^                | 10.8-16.2    | 13.4-19.4 | 18.8-27.6 |

*C. porosus* from Republic of Palau using the more precise 0.01 rare allele threshold (Table 4). The SPAGeDi dyad analysis revealed overall relatedness within the Isabela Philippine Crocodile population to be slightly more than what might be expected from matings of unrelated individuals (Fig. 1A). This trend was not detected, though, in the Liguasan Marsh population (Fig. 1B). The population of Saltwater Crocodiles showed little relatedness differing from the simulation of unrelated individuals (Fig. 2).

Both Lositran and BayeScan identified two outlier loci as potentially linked to genes that might be under some degree of selection. However, the two approaches agreed on only one locus (CpP801). Lositran found CpP801 to be a significant  $F_{s\tau}$  outlier whereas BayeScan found it "barely worth mentioning" using the Jeffreys' scale of evidence (data not shown). The sequences flanking the CpP801 repeat motif were submitted to the



Crocodylus mindorensis - Liguasan Marsh Populaion





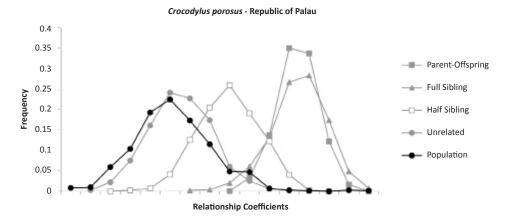



Figure 2. Relationship coefficient distirubtions of the *Crocodylus porosus* population from the Republic of Palau overlayed on a simulation of 10,000 individuals of known relationships by pedigree verification (Queller & Goodnight 1989).




Figure 3. Evanno et al.'s (2005)  $\Delta K$  and chart of the average logarithm of the probablity of the data for *K*-max, *K* = 3, for seven populations of *C. mindorensis* and one population of *C. porosus*.

BLASTn algorithm (http://blast.ncbi.nlm.nih.gov/Blast. cgi?PROGRAM=blastn&BLAST\_SPEC=WGS&BLAST\_ PROGRAMS=megaBlast&PAGE\_TYPE=BlastSearch) to search for potential candidate genes that might be under selection. Minimal sequence fragments ranging 25–50 bp in length were found in other species but no long sequence homologies and none of the queries returned candidates common to both flanking regions. Two short sequences were found in multiple species although corresponding to different genes. They were also found on multiple chromosomes in a single species indicating that these two sequences were both conserved and duplicated in the genome.

From the STRUCTURE analysis, K=3 was found to be the optimal number of clusters represented in the data by Evanno et al.'s (2005)  $\Delta K$  (Fig. 3). These clusters represent the Isabela *C. mindorensis* population, the Liguasan Marsh *C. mindorensis* population and the Republic of Palau *C. porosus* population. At *K*-max, a total of 59 putative *C. mindorensis* individuals had *q*-values above the noise threshold of 0.05 in the cluster represented by *C. porosus* (Fig. 4, see also Appendix 1). The PCoA suggested the same *C. mindorensis* individuals as previously identified with affinity to the *C. porosus* sample set (Fig. 5). The PCoA also identified individuals in the Isabela population that appear to group with the southern populations; a phenomenon which cannot be verified with records or observations. The PWRCC bred crocodiles reintroduced in Isabela were not included as Isabela members in this study.

# DISCUSSION AND CONCLUSIONS

Previous studies have estimated genetic diversity in crocodilian species but making direct comparisons was difficult since the same marker systems were not applied across each study. Here, we used the same microsatellite loci to compare the genetic diversity of C. mindorensis to C. acutus, C. niloticus, C. porosus and C. siamensis. The heterozygosity estimates from our data for C. acutus, C. niloticus, C. porosus and C. siamensis fall within the ranges of estimates previously reported for captive purebred C. siamensis, Ho = 0.42±0.17 (FitzSimmons et al. 2002), farmed C. porosus, Ho = 0.59 (Isberg et al. 2004) and in wild populations of C. niloticus, He = 0.27-0.61 (Hekkala et al. 2010) and Ho = 0.51 (Bishop et al. 2009), C. moreletti, Ho = 0.49 (Dever et al. 2002) and Melanosuchus niger, Ho = 0.47-0.70 (de Thoisy et al. 2006). We found that genetic diversity measures for C. mindorensis were lower compared to C. acutus, C. niloticus, C. porosus and C. siamensis, whether using traditional  $F_{sr}$  and heterozygosity measures or by transforming such measures into diversity indices.

The LDNe analysis of the effective population sizes allows the interpretation at three levels dictated by thresholds for rare alleles in the data. Considering the lowest accepted frequency for rare alleles to be 0.01, the estimates of effective breeders were 4.8 (95% CI: 3.5–7.3) in Isabela, 7.9 (95% CI: 3.0–20.2) in Liguasan Marsh and 22.6 (95% CI: 18.8–27.6) in the collection of *C. porosus* 

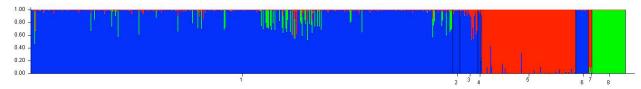



Figure 4. STRUCTURE bar graph of seven *C. mindorensis* populations and one *C. porosus* population at *K*-max, *K* = 3 clusters. 1 PWRCC, 2 Davao City Crocodile Park, 3 Silliman University, 4 Calauit Game Preserve and Wildlife Sanctuary, 5 Isabela Province, 6 Liguasan Marsh, 7 Valera Square Mini Zoo in Abra Province, 8 Republic of Palau (*C. porosus*).

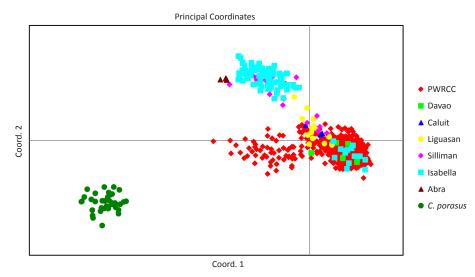



Figure 5. Principal Coordinate Analysis (PCoA) of the *Crocodylus mindorensis* populations sampled in the Philippines and the *C. porosus* population in Republic of Palau indicating the southern populations, the group of PWRCC *C. mindorensis* individuals with *C. porosus* introgression (red diamond cluster towards the *C. porosus* cluster) and the northern populations including individuals sampled in Isabela that were introduced from PWRCC (blue squares over the red diamond background).

from RP. In 2008, the minimum census of the Isabela population was 86 individual crocodiles comprised of 10 adults, 41 sub-adults/juveniles and 35 hatchlings with six nests in four distinct localities (van Weerd 2010 and van Weerd unpublished data). The Philippine Crocodile population in Liguasan Marsh remains poorly known but was estimated in 2008 to include at least 258 individuals in all age classes (Pomares et al. 2008). This estimate is based on interviews with the local inhabitants of the marsh, which in all likelihood contain multiple sightings of individual animals. The ratios of effective breeders to the estimated population sizes were determined to be 0.06 in Isabela and 0.03 in Liguasan Marsh. These estimates hover about the 0.05 ratio threshold which Frankham (1995) considers quite low, and is, when compared to recent studies in Steelhead Trout (Oncorhynchus mykiss, Araki et al. 2007) and the European Common Frog (Rana temporaria, Schmeller & Merila 2007), 0.10–0.40 and 0.23–1.67, respectively. We did find evidence for increasing relatedness in the small isolated Isabela population. This estimate would be expected as hatchlings were sampled from the nests. We did not find excessive  $F_{IS}$  values, but could expect those to rise in future generations if mating among related individuals becomes commonplace due to the small effective population sizes.

With only two extant populations of *C. mindorensis* known to remain today, it is imperative to evaluate the similarity or differences between the two. Biogeographic differences might exist since the Isabela population exists

in the northern extreme of the distribution whereas the Liguasan Marsh population is found in the southern extreme. One might expect that if the populations were highly differentiated, molecular testing could detect a genetic selection signature associated with some of the neutral markers. We did find positive results using two testing methods, but for only one of the 11 loci. We searched the repeat motif flanking sequences against sequences stored in the BLASTn database, but we did not identify a potential candidate gene. In fact, in both flanking regions, small fragments (25-50 bp) were highly conserved among species and duplicated within genomes. With one method identifying this locus as a significant  $F_{s_T}$  outlier and the other as marginal, we suggest that this locus is not under selection but a false positive in both tests. False positives can be the result of hierarchical structure perhaps created from the pooling of samples from four distinct breeding areas in the San Mariano area of the Isabela region (Excoffier et al. 2009). Likewise, the data set or the number of remaining Philippine Crocodiles in the wild may simply be too small to detect selection (Hohenlohe et al. 2010). Regardless, we cannot suggest that evidence was found to support selection that might be differentiating the populations. If the two populations differed greatly, then the populations might require separate management. However, the populations differ only slightly, which we assume may simply be caused by genetic drift thus mixing may reestablish or maximize genetic diversity supporting positive genetic health of the species.

Tabora et al. (2012) identified a total of 57 putative hybrids in that study. From the STRUCTURE analysis of the same set of samples, we identified 59 individuals with genotypic proportions exceeding a background noise level (q>0.05) in the cluster generated by the C. porosus samples (Appendix 1). The PCoA analysis also identified the same individuals to be closer to the C. porosus grouping than C. mindorensis below the nominal q-value threshold. Only two individuals approached the q = 0.50 genotypic proportions expected of an F1 individual (PWc005, q = 0.512; PWb097, q = 0.409). The former, PWc005, possesses both a C. porosus D-loop haplotype and the C. porosus C-mos diagnostic characters. We consider this individual to be an F1 from a C. mindorensis male and a C. porosus female. The latter, PWb097, possesses the C. porosus D-loop haplotype yet is homozygous for the C. mindorensis C-mos diagnostic sites. We consider this individual to be a C. mindorensis backcross falling in the upper tail of the backcross q-distribution. Two individuals from Abra (K7895 and K7897) exceeded the conservative 0.05 q-threshold for background noise though did not possess C. porosus D-loop or C-mos markers. We accept these to be C. mindorensis with slightly higher background noise than the conservative threshold we imposed in our criteria. The remaining 55 fell in a q-distribution around 0.25 (avg  $q = 0.253 \pm 0.067$ ) which approximates the proportion of introgressed genes expected to be retained in the first backcross generation. Thus, we suggest one first generation hybrid cross and 56 backcross individuals only in the PWRCC-sampled group.

The morphological identification of hybrids, and particularly among the hybrids in this study, proves to be problematic. Hybrid detection through morphological characteristics is not always effective because hybrids can express mosaics of phenotypes (Campton 1987) due to incomplete penetrance or partial dominance of the diagnostic character. Hybrids in the PWRCC population were undetected since all express the post occipital scutes indicative of C. mindorensis (Image 1A). This suggests a single gene effect where the allele conferring the diagnostic scutes expressed in C. mindorensis is dominant over the allele fixed in C. porosus that suppresses the expression of that phenotype (Image 1B). Had F1 inter se mating occurred, one would expect that one fourth of the offspring should have inherited both C. porosus C-mos alleles and one fourth should express the absence of post occipital scutes. Neither scenario was detected in the data. Considering the multilocus allele frequency distributions, there is no indication that F1 inter se mating has occurred since the average of

Hinlo et al.

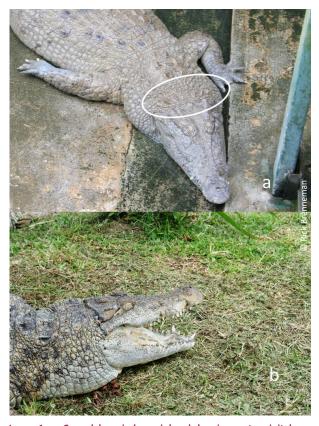



Image 1. a - Crocodylus mindorensis head showing post occipital scutes (encircled); b - C. porosus head showing lack of post occipital scutes.

the *q*-distribution of an F2 generation would be higher (closer to 0.50). Backcrossing to *C. mindorensis* would ensure at least one *C. mindorensis* allele at all loci which is exactly what the data shows. This comprehensive genetic testing identifies hybrids in the collection that can be separated out of the gene pool before a hybrid swarm is created that could have a detrimental effect on the conservation management of the species (Allendorf et al. 2001). The removal of suspected hybrids could protect the genetic integrity of the species, especially if used as reintroduction candidates or to augment the genetic diversity of the wild populations (Rhymer & Simberloff 1996).

The two distantly isolated extant populations of *C. mindorensis*, Isabela and Liguasan Marsh, present several concerns for long-term conservation management. Both show less genetic diversity than what has been detected in other crocodilian species in this and previous studies. Both populations have low effective population sizes and low effective population size to census ratios. The recent systematics study (Tabora et al. 2012) did not indicate branch lengths that would suggest more than population level differentiation. There is no

Т

Appendix 1. Inferred ancestry of individuals: *K* 1 corresponds to northern *C. mindorensis* population ancestry, *K* 2 corresponds to *C. porosus*, *K* 3 corresponds to southern *C. mindorensis* population ancestry. Bold font indicates individuals exceeding the background noise threshold (0.05) in column *K* 2 inferring hybridization. Merging with information from Appendix 1 (Tabora et al. 2012), *italicized font* indicates individuals with *C. porosus* D-loop haplotypes and those with asterisks\* were heterozygous for *C. porosus* diagnostic sites in the C-*mos* gene. Populations: 1) PWRCC, 2) Davao City Crocodile Park, 3) Silliman University, 4) Calauit Game Preserve and Wildlife Sanctuary, 5) Isabela Province, 6) Liguasan Marsh, 7) Valera Square Mini Zoo in Abra Province, 8) Republic of Palau *C. porosus*.

-

Т

| Sample No. | ID      | Population | К1    | К 2   | К 3   |   | Sample No. |
|------------|---------|------------|-------|-------|-------|---|------------|
| 1          | PwW001  | 1          | 0.006 | 0.001 | 0.992 | 1 | 41         |
| 2          | PWc002  | 1          | 0.004 | 0.001 | 0.995 |   | 42         |
| 3          | PWc003  | 1          | 0.007 | 0.001 | 0.992 |   | 43         |
| 4          | PWc004  | 1          | 0.004 | 0.001 | 0.995 |   | 44         |
| 5          | PWc005* | 1          | 0.022 | 0.512 | 0.466 |   | 45         |
| 6          | PWc006  | 1          | 0.328 | 0.002 | 0.669 |   | 46         |
| 7          | PWc007  | 1          | 0.004 | 0.001 | 0.995 |   | 47         |
| 8          | PWc008  | 1          | 0.003 | 0.001 | 0.996 |   | 48         |
| 9          | PWc009  | 1          | 0.018 | 0.001 | 0.981 |   | 49         |
| 10         | PWc010  | 1          | 0.011 | 0.001 | 0.988 |   | 50         |
| 11         | PWc011  | 1          | 0.003 | 0.013 | 0.983 |   | 51         |
| 12         | PWc012  | 1          | 0.003 | 0.001 | 0.996 |   | 52         |
| 13         | PWc013  | 1          | 0.004 | 0.001 | 0.995 |   | 53         |
| 14         | PWx014  | 1          | 0.004 | 0.001 | 0.995 |   | 54         |
| 15         | PWc015  | 1          | 0.030 | 0.016 | 0.954 |   | 55         |
| 16         | PWc016  | 1          | 0.003 | 0.008 | 0.988 |   | 56         |
| 17         | PWc017  | 1          | 0.003 | 0.001 | 0.996 |   | 57         |
| 18         | PWc018  | 1          | 0.003 | 0.001 | 0.996 |   | 58         |
| 19         | PWc019  | 1          | 0.003 | 0.001 | 0.996 |   | 59         |
| 20         | PWb028  | 1          | 0.003 | 0.009 | 0.988 |   | 60         |
| 21         | PWc021  | 1          | 0.003 | 0.001 | 0.996 |   | 61         |
| 22         | PWc022  | 1          | 0.011 | 0.001 | 0.988 |   | 62         |
| 23         | PWc023  | 1          | 0.003 | 0.001 | 0.996 |   | 63         |
| 24         | PWc024  | 1          | 0.004 | 0.001 | 0.995 |   | 64         |
| 25         | PWc025  | 1          | 0.005 | 0.001 | 0.994 |   | 65         |
| 26         | PWc026  | 1          | 0.054 | 0.002 | 0.944 |   | 66         |
| 27         | PWb027  | 1          | 0.004 | 0.001 | 0.995 |   | 67         |
| 28         | PWc020  | 1          | 0.003 | 0.001 | 0.996 |   | 68         |
| 29         | PWb029  | 1          | 0.004 | 0.001 | 0.995 |   | 69         |
| 30         | PWb030  | 1          | 0.004 | 0.001 | 0.995 |   | 70         |
| 31         | PWb031  | 1          | 0.003 | 0.001 | 0.996 |   | 71         |
| 32         | PWb032  | 1          | 0.004 | 0.001 | 0.995 |   | 72         |
| 33         | PWb033  | 1          | 0.004 | 0.001 | 0.995 |   | 73         |
| 34         | PWb034  | 1          | 0.004 | 0.001 | 0.995 |   | 74         |
| 35         | PWb035  | 1          | 0.005 | 0.007 | 0.988 |   | 75         |
| 36         | PWb036  | 1          | 0.009 | 0.001 | 0.99  |   | 76         |
| 37         | PWb037  | 1          | 0.005 | 0.001 | 0.994 |   | 77         |
| 38         | PWb038  | 1          | 0.003 | 0.001 | 0.996 |   | 78         |
| 39         | PWb039  | 1          | 0.004 | 0.001 | 0.995 |   | 79         |
| 40         | PWb040  | 1          | 0.003 | 0.001 | 0.996 |   | 80         |

-

| Sample No. | ID      | Population | <i>K</i> 1 | K 2   | КЗ    |
|------------|---------|------------|------------|-------|-------|
| 41         | PWb041  | 1          | 0.007      | 0.001 | 0.992 |
| 42         | PWb042  | 1          | 0.008      | 0.001 | 0.991 |
| 43         | PWb043  | 1          | 0.004      | 0.001 | 0.995 |
| 44         | PWb044  | 1          | 0.005      | 0.001 | 0.994 |
| 45         | PWb045  | 1          | 0.004      | 0.001 | 0.995 |
| 46         | PWb046  | 1          | 0.006      | 0.001 | 0.993 |
| 47         | PWb047  | 1          | 0.005      | 0.001 | 0.994 |
| 48         | PWb048  | 1          | 0.003      | 0.001 | 0.996 |
| 49         | PWb049  | 1          | 0.006      | 0.001 | 0.993 |
| 50         | PWb050  | 1          | 0.003      | 0.001 | 0.996 |
| 51         | PWb051  | 1          | 0.008      | 0.001 | 0.991 |
| 52         | PWb052  | 1          | 0.009      | 0.001 | 0.99  |
| 53         | PWb053  | 1          | 0.003      | 0.001 | 0.996 |
| 54         | PWb054  | 1          | 0.048      | 0.002 | 0.951 |
| 55         | PWb055  | 1          | 0.003      | 0.001 | 0.996 |
| 56         | PWb056  | 1          | 0.005      | 0.001 | 0.994 |
| 57         | PWb057  | 1          | 0.003      | 0.001 | 0.996 |
| 58         | PWb058  | 1          | 0.004      | 0.001 | 0.995 |
| 59         | PWb059  | 1          | 0.010      | 0.001 | 0.989 |
| 60         | PWb060  | 1          | 0.004      | 0.001 | 0.995 |
| 61         | PWb061  | 1          | 0.004      | 0.001 | 0.995 |
| 62         | PWb062  | 1          | 0.003      | 0.001 | 0.996 |
| 63         | PWb063  | 1          | 0.004      | 0.001 | 0.995 |
| 64         | PWb064  | 1          | 0.006      | 0.001 | 0.993 |
| 65         | PWb065  | 1          | 0.003      | 0.001 | 0.996 |
| 66         | PWb066  | 1          | 0.006      | 0.001 | 0.993 |
| 67         | PWb067* | 1          | 0.053      | 0.277 | 0.669 |
| 68         | PWb068  | 1          | 0.007      | 0.001 | 0.992 |
| 69         | PWb069  | 1          | 0.003      | 0.001 | 0.996 |
| 70         | PWb070  | 1          | 0.005      | 0.001 | 0.993 |
| 71         | PWb071* | 1          | 0.005      | 0.147 | 0.848 |
| 72         | PWb072  | 1          | 0.004      | 0.001 | 0.995 |
| 73         | PWb073  | 1          | 0.004      | 0.001 | 0.995 |
| 74         | PWb074  | 1          | 0.003      | 0.001 | 0.995 |
| 75         | PWb075  | 1          | 0.019      | 0.001 | 0.979 |
| 76         | PWb076  | 1          | 0.005      | 0.001 | 0.994 |
| 77         | PWb077  | 1          | 0.008      | 0.001 | 0.991 |
| 78         | PWb078  | 1          | 0.005      | 0.001 | 0.994 |
| 79         | PWb079  | 1          | 0.004      | 0.002 | 0.995 |
| 80         | PWb080  | 1          | 0.005      | 0.001 | 0.994 |

| Sample No. | ID      | Population | К1    | К 2   | К З   |   | Sample No. | ID     | Population | К1    | К 2   | К 3   |
|------------|---------|------------|-------|-------|-------|---|------------|--------|------------|-------|-------|-------|
| 81         | PWb081  | 1          | 0.004 | 0.001 | 0.995 |   | 126        | PWb126 | 1          | 0.005 | 0.001 | 0.994 |
| 82         | PWb082  | 1          | 0.056 | 0.002 | 0.942 |   | 127        | PWb127 | 1          | 0.003 | 0.001 | 0.996 |
| 83         | PWb083  | 1          | 0.009 | 0.001 | 0.990 |   | 128        | PWb128 | 1          | 0.006 | 0.002 | 0.992 |
| 84         | PWb084  | 1          | 0.009 | 0.001 | 0.990 |   | 129        | PWb129 | 1          | 0.006 | 0.001 | 0.993 |
| 85         | PWb085  | 1          | 0.008 | 0.001 | 0.991 |   | 130        | PWb130 | 1          | 0.003 | 0.002 | 0.995 |
| 86         | PWb086  | 1          | 0.004 | 0.001 | 0.995 |   | 131        | PWb131 | 1          | 0.024 | 0.003 | 0.973 |
| 87         | PWb087  | 1          | 0.004 | 0.001 | 0.995 |   | 132        | PWb132 | 1          | 0.004 | 0.001 | 0.995 |
| 88         | PWb088  | 1          | 0.006 | 0.002 | 0.993 |   | 133        | PWb133 | 1          | 0.004 | 0.001 | 0.995 |
| 89         | PWb089  | 1          | 0.006 | 0.002 | 0.993 | 1 | 134        | PWb134 | 1          | 0.009 | 0.001 | 0.990 |
| 90         | PWb090  | 1          | 0.011 | 0.248 | 0.741 |   | 135        | PWb135 | 1          | 0.011 | 0.001 | 0.988 |
| 91         | PWb091  | 1          | 0.006 | 0.017 | 0.977 |   | 136        | PWb136 | 1          | 0.007 | 0.002 | 0.992 |
| 92         | PWb092  | 1          | 0.013 | 0.001 | 0.986 |   | 137        | PWb137 | 1          | 0.011 | 0.001 | 0.988 |
| 93         | PWb093  | 1          | 0.023 | 0.001 | 0.976 |   | 138        | PWb138 | 1          | 0.009 | 0.001 | 0.990 |
| 94         | PWb094  | 1          | 0.003 | 0.096 | 0.901 | ĺ | 139        | PWb139 | 1          | 0.012 | 0.114 | 0.874 |
| 95         | PWb095  | 1          | 0.007 | 0.018 | 0.976 |   | 140        | PWb140 | 1          | 0.033 | 0.002 | 0.965 |
| 96         | PWb096  | 1          | 0.006 | 0.001 | 0.993 |   | 141        | PWb141 | 1          | 0.003 | 0.001 | 0.995 |
| 97         | PWb097  | 1          | 0.018 | 0.409 | 0.572 |   | 142        | PWb142 | 1          | 0.004 | 0.001 | 0.995 |
| 98         | PWb098  | 1          | 0.004 | 0.001 | 0.995 |   | 143        | PWb143 | 1          | 0.007 | 0.001 | 0.992 |
| 99         | PWb099  | 1          | 0.005 | 0.001 | 0.994 |   | 144        | PWb144 | 1          | 0.004 | 0.001 | 0.995 |
| 100        | PWb100  | 1          | 0.005 | 0.001 | 0.994 |   | 145        | PWb145 | 1          | 0.037 | 0.001 | 0.962 |
| 101        | PWb101  | 1          | 0.012 | 0.001 | 0.987 |   | 146        | PWb146 | 1          | 0.003 | 0.001 | 0.996 |
| 102        | PWb102  | 1          | 0.003 | 0.001 | 0.996 |   | 147        | PWb147 | 1          | 0.003 | 0.001 | 0.996 |
| 103        | PWb103  | 1          | 0.006 | 0.001 | 0.993 |   | 148        | PWb148 | 1          | 0.008 | 0.001 | 0.991 |
| 104        | PWb104  | 1          | 0.011 | 0.001 | 0.988 |   | 149        | PWb149 | 1          | 0.005 | 0.001 | 0.994 |
| 105        | PWb105  | 1          | 0.003 | 0.001 | 0.995 |   | 150        | PWb150 | 1          | 0.004 | 0.001 | 0.995 |
| 106        | PWb106  | 1          | 0.006 | 0.001 | 0.993 |   | 151        | PWb151 | 1          | 0.004 | 0.001 | 0.995 |
| 107        | PWb107  | 1          | 0.008 | 0.001 | 0.991 |   | 152        | PWb152 | 1          | 0.003 | 0.001 | 0.996 |
| 108        | PWb108  | 1          | 0.003 | 0.001 | 0.996 |   | 153        | PWb153 | 1          | 0.003 | 0.001 | 0.996 |
| 109        | PWb109  | 1          | 0.018 | 0.001 | 0.981 |   | 154        | PWb154 | 1          | 0.005 | 0.001 | 0.994 |
| 110        | PWb110  | 1          | 0.014 | 0.003 | 0.983 |   | 155        | PWb155 | 1          | 0.004 | 0.001 | 0.995 |
| 111        | PWb111  | 1          | 0.004 | 0.001 | 0.995 |   | 156        | PWb156 | 1          | 0.007 | 0.001 | 0.992 |
| 112        | PWb112  | 1          | 0.072 | 0.002 | 0.926 |   | 157        | PWb157 | 1          | 0.006 | 0.001 | 0.992 |
| 113        | PWb113  | 1          | 0.003 | 0.001 | 0.996 |   | 158        | PWb158 | 1          | 0.005 | 0.001 | 0.994 |
| 114        | PWb114  | 1          | 0.003 | 0.001 | 0.996 |   | 159        | PWb159 | 1          | 0.004 | 0.001 | 0.995 |
| 115        | PWb115  | 1          | 0.004 | 0.001 | 0.995 |   | 160        | PWb160 | 1          | 0.007 | 0.001 | 0.992 |
| 116        | PWb116  | 1          | 0.003 | 0.001 | 0.996 |   | 161        | PWb161 | 1          | 0.009 | 0.001 | 0.990 |
| 117        | PWb117  | 1          | 0.004 | 0.001 | 0.995 |   | 162        | PWb162 | 1          | 0.015 | 0.001 | 0.984 |
| 118        | PWb118  | 1          | 0.008 | 0.002 | 0.990 |   | 163        | PWb163 | 1          | 0.100 | 0.239 | 0.660 |
| 119        | PWb119  | 1          | 0.008 | 0.001 | 0.991 |   | 164        | PWb164 | 1          | 0.004 | 0.001 | 0.995 |
| 120        | PWb120* | 1          | 0.016 | 0.372 | 0.612 |   | 165        | PWb165 | 1          | 0.003 | 0.001 | 0.996 |
| 121        | PWb121  | 1          | 0.023 | 0.001 | 0.976 |   | 166        | PWb166 | 1          | 0.031 | 0.002 | 0.967 |
| 122        | PWb122  | 1          | 0.005 | 0.002 | 0.993 |   | 167        | PWb167 | 1          | 0.003 | 0.001 | 0.996 |
| 123        | PWb123  | 1          | 0.007 | 0.001 | 0.992 |   | 168        | PWb168 | 1          | 0.004 | 0.001 | 0.995 |
| 124        | PWb124  | 1          | 0.054 | 0.002 | 0.944 |   | 169        | PWb169 | 1          | 0.026 | 0.002 | 0.973 |
| 125        | PWb125  | 1          | 0.069 | 0.002 | 0.930 |   | 170        | PWb170 | 1          | 0.009 | 0.001 | 0.990 |

| Sample No. | ID      | Population | К 1   | К 2   | К З   | ] | Sample No. | ID        | Population | К1    | К 2   | К З   |
|------------|---------|------------|-------|-------|-------|---|------------|-----------|------------|-------|-------|-------|
| 171        | PWb171  | 1          | 0.020 | 0.003 | 0.977 | ] | 216        | PWb216    | 1          | 0.004 | 0.001 | 0.995 |
| 172        | PWb172  | 1          | 0.006 | 0.002 | 0.992 |   | 217        | PWb217    | 1          | 0.003 | 0.001 | 0.996 |
| 173        | PWb173  | 1          | 0.004 | 0.001 | 0.995 |   | 218        | PWb218    | 1          | 0.004 | 0.001 | 0.995 |
| 174        | PWb174  | 1          | 0.004 | 0.001 | 0.995 |   | 219        | PWb219    | 1          | 0.006 | 0.001 | 0.993 |
| 175        | PWb175  | 1          | 0.004 | 0.001 | 0.995 |   | 220        | PWb220    | 1          | 0.015 | 0.001 | 0.984 |
| 176        | PWb176  | 1          | 0.003 | 0.001 | 0.996 |   | 221        | PWb221    | 1          | 0.005 | 0.010 | 0.985 |
| 177        | PWb177  | 1          | 0.007 | 0.001 | 0.992 |   | 222        | PWb222    | 1          | 0.022 | 0.002 | 0.976 |
| 178        | PWb178  | 1          | 0.005 | 0.001 | 0.994 |   | 223        | PWb223    | 1          | 0.016 | 0.001 | 0.983 |
| 179        | PWb179  | 1          | 0.004 | 0.207 | 0.789 |   | 224        | PWb224    | 1          | 0.004 | 0.001 | 0.995 |
| 180        | PWb180  | 1          | 0.006 | 0.001 | 0.992 |   | 225        | PWb225    | 1          | 0.007 | 0.001 | 0.992 |
| 181        | PWb181  | 1          | 0.004 | 0.001 | 0.994 |   | 226        | PWb226    | 1          | 0.004 | 0.001 | 0.995 |
| 182        | PWb182  | 1          | 0.006 | 0.001 | 0.993 |   | 227        | PWb227    | 1          | 0.003 | 0.001 | 0.996 |
| 183        | PWb183  | 1          | 0.003 | 0.002 | 0.995 |   | 228        | PWb228    | 1          | 0.003 | 0.001 | 0.996 |
| 184        | PWb184  | 1          | 0.014 | 0.001 | 0.984 |   | 229        | PWb229    | 1          | 0.004 | 0.001 | 0.995 |
| 185        | PWb185* | 1          | 0.011 | 0.277 | 0.712 |   | 230        | PWb230    | 1          | 0.003 | 0.001 | 0.995 |
| 186        | PWb186  | 1          | 0.021 | 0.001 | 0.978 |   | 231        | PWb231    | 1          | 0.004 | 0.001 | 0.995 |
| 187        | PWb187  | 1          | 0.102 | 0.002 | 0.897 |   | 232        | PWb232    | 1          | 0.003 | 0.001 | 0.996 |
| 188        | PWb188  | 1          | 0.025 | 0.001 | 0.974 |   | 233        | PWb233    | 1          | 0.004 | 0.001 | 0.995 |
| 189        | PWb189  | 1          | 0.003 | 0.290 | 0.707 |   | 234        | PWb234    | 1          | 0.004 | 0.001 | 0.995 |
| 190        | PWb190  | 1          | 0.005 | 0.001 | 0.993 |   | 235        | PWb235    | 1          | 0.011 | 0.001 | 0.988 |
| 191        | PWb191  | 1          | 0.143 | 0.002 | 0.855 |   | 236        | PWb236    | 1          | 0.011 | 0.001 | 0.988 |
| 192        | PWb192  | 1          | 0.003 | 0.001 | 0.996 |   | 237        | PWb237    | 1          | 0.007 | 0.001 | 0.992 |
| 193        | PWb193  | 1          | 0.042 | 0.002 | 0.956 |   | 238        | PWb238    | 1          | 0.003 | 0.001 | 0.996 |
| 194        | PWb194  | 1          | 0.006 | 0.001 | 0.993 |   | 239        | PWb239    | 1          | 0.003 | 0.001 | 0.996 |
| 195        | PWb195  | 1          | 0.006 | 0.001 | 0.993 |   | 240        | PWb240    | 1          | 0.004 | 0.001 | 0.995 |
| 196        | PWb196  | 1          | 0.004 | 0.001 | 0.995 |   | 241        | PWb241    | 1          | 0.005 | 0.001 | 0.994 |
| 197        | PWb197  | 1          | 0.004 | 0.001 | 0.995 |   | 242        | PWb242    | 1          | 0.003 | 0.001 | 0.996 |
| 198        | PWb198  | 1          | 0.007 | 0.001 | 0.992 |   | 243        | PWb243    | 1          | 0.004 | 0.001 | 0.995 |
| 199        | PWb199  | 1          | 0.003 | 0.001 | 0.996 |   | 244        | PWb244    | 1          | 0.006 | 0.001 | 0.993 |
| 200        | PWb200  | 1          | 0.004 | 0.001 | 0.995 |   | 245        | PWb245    | 1          | 0.003 | 0.001 | 0.996 |
| 201        | PWb201  | 1          | 0.006 | 0.001 | 0.993 |   | 246        | PWb246    | 1          | 0.005 | 0.001 | 0.994 |
| 202        | PWb202  | 1          | 0.007 | 0.001 | 0.992 |   | 247        | PWc247    | 1          | 0.009 | 0.001 | 0.99  |
| 203        | PWb203  | 1          | 0.007 | 0.001 | 0.992 |   | 248        | PWc248    | 1          | 0.003 | 0.001 | 0.996 |
| 204        | PWb204  | 1          | 0.015 | 0.001 | 0.984 |   | 249        | PWc249    | 1          | 0.004 | 0.001 | 0.995 |
| 205        | PWb205  | 1          | 0.004 | 0.001 | 0.995 |   | 250        | PWc250    | 1          | 0.044 | 0.002 | 0.954 |
| 206        | PWb206  | 1          | 0.003 | 0.001 | 0.996 |   | 251        | PWc251    | 1          | 0.003 | 0.001 | 0.996 |
| 207        | PWb207  | 1          | 0.009 | 0.001 | 0.990 |   | 252        | PWc252    | 1          | 0.009 | 0.001 | 0.99  |
| 208        | PWb208  | 1          | 0.003 | 0.001 | 0.996 |   | 253        | PWc253    | 1          | 0.003 | 0.006 | 0.991 |
| 209        | PWb209  | 1          | 0.003 | 0.001 | 0.996 |   | 254        | PWx254    | 1          | 0.003 | 0.017 | 0.98  |
| 210        | PWb210  | 1          | 0.004 | 0.001 | 0.995 |   | 255        | PW255     | 1          | 0.005 | 0.246 | 0.75  |
| 211        | PWb211  | 1          | 0.014 | 0.001 | 0.985 |   | 256        | PWc256    | 1          | 0.003 | 0.001 | 0.996 |
| 212        | PWb212  | 1          | 0.003 | 0.001 | 0.996 |   | 257        | PWb257*   | 1          | 0.008 | 0.296 | 0.697 |
| 213        | PWb213  | 1          | 0.003 | 0.001 | 0.996 |   | 258        | PWc258    | 1          | 0.003 | 0.001 | 0.996 |
| 213        | PWb214* | 1          | 0.005 | 0.310 | 0.686 |   | 259        | PWb259    | 1          | 0.005 | 0.001 | 0.994 |
| 215        | PWb215* | 1          | 0.004 | 0.279 | 0.717 |   | 260        | PWb260    | 1          | 0.005 | 0.196 | 0.798 |
| 215        | F WW213 | 1          | 0.004 | 0.279 | 0.717 | J | 200        | F VV 0200 | 1          | 0.005 | 0.130 | 0.798 |

| Sample No. | ID      | Population | К 1   | К 2   | КЗ    | Sample No. | ID             | Population | К 1   | К 2   | К 3   |
|------------|---------|------------|-------|-------|-------|------------|----------------|------------|-------|-------|-------|
| 261        | PWb261* | 1          | 0.008 | 0.275 | 0.717 | 306        | PWb306         | 1          | 0.182 | 0.291 | 0.526 |
| 262        | PWb262* | 1          | 0.007 | 0.271 | 0.723 | 307        | PWb308         | 1          | 0.006 | 0.002 | 0.992 |
| 263        | PWb263  | 1          | 0.008 | 0.285 | 0.707 | 308        | PWb309*        | 1          | 0.006 | 0.211 | 0.783 |
| 264        | PWx264  | 1          | 0.004 | 0.001 | 0.995 | 309        | PWb310         | 1          | 0.003 | 0.001 | 0.996 |
| 265        | PWb265* | 1          | 0.003 | 0.254 | 0.743 | 310        | PWb311         | 1          | 0.004 | 0.237 | 0.759 |
| 266        | PWb266  | 1          | 0.006 | 0.315 | 0.679 | 311        | PWb312         | 1          | 0.165 | 0.195 | 0.640 |
| 267        | PWc267  | 1          | 0.003 | 0.001 | 0.996 | 312        | PWb313         | 1          | 0.022 | 0.033 | 0.945 |
| 268        | PWb268* | 1          | 0.010 | 0.199 | 0.791 | 313        | PWb314         | 1          | 0.003 | 0.002 | 0.995 |
| 269        | PWx269  | 1          | 0.006 | 0.001 | 0.993 | 314        | PWb315*        | 1          | 0.016 | 0.248 | 0.735 |
| 270        | PWb270  | 1          | 0.012 | 0.304 | 0.683 | 315        | PWb316         | 1          | 0.006 | 0.001 | 0.993 |
| 271        | PWb271  | 1          | 0.003 | 0.001 | 0.996 | 316        | PWc317         | 1          | 0.003 | 0.001 | 0.996 |
| 272        | PWc272  | 1          | 0.007 | 0.001 | 0.991 | 317        | P <b>Wb318</b> | 1          | 0.004 | 0.256 | 0.740 |
| 273        | PWb273  | 1          | 0.004 | 0.001 | 0.995 | 318        | PWc319         | 1          | 0.029 | 0.001 | 0.970 |
| 274        | PWb274  | 1          | 0.002 | 0.001 | 0.997 | 319        | PWb320*        | 1          | 0.007 | 0.256 | 0.737 |
| 275        | PWb275* | 1          | 0.006 | 0.166 | 0.828 | 320        | PWc321         | 1          | 0.004 | 0.001 | 0.995 |
| 276        | PWb276  | 1          | 0.003 | 0.001 | 0.996 | 321        | PWb322*        | 1          | 0.010 | 0.301 | 0.689 |
| 277        | PWc277  | 1          | 0.004 | 0.001 | 0.995 | 322        | PWb323         | 1          | 0.010 | 0.001 | 0.989 |
| 278        | PWb278* | 1          | 0.008 | 0.274 | 0.718 | 323        | PWb324         | 1          | 0.003 | 0.001 | 0.996 |
| 279        | PWb279  | 1          | 0.088 | 0.272 | 0.640 | 324        | PWb325         | 1          | 0.003 | 0.001 | 0.996 |
| 280        | PWb280  | 1          | 0.004 | 0.001 | 0.995 | 325        | PWb326         | 1          | 0.003 | 0.001 | 0.996 |
| 281        | PWb281  | 1          | 0.007 | 0.002 | 0.991 | 326        | PWc327         | 1          | 0.003 | 0.001 | 0.996 |
| 282        | PWb282* | 1          | 0.003 | 0.292 | 0.705 | 327        | PWb328         | 1          | 0.003 | 0.001 | 0.996 |
| 283        | PWb283* | 1          | 0.005 | 0.344 | 0.651 | 328        | PWb329         | 1          | 0.029 | 0.001 | 0.970 |
| 284        | PWb284  | 1          | 0.005 | 0.155 | 0.839 | 329        | PWb330         | 1          | 0.038 | 0.002 | 0.961 |
| 285        | PWc285  | 1          | 0.004 | 0.001 | 0.995 | 330        | PWb331         | 1          | 0.003 | 0.001 | 0.996 |
| 286        | PWc286  | 1          | 0.003 | 0.001 | 0.996 | 331        | PWb332         | 1          | 0.006 | 0.001 | 0.993 |
| 287        | PWb287* | 1          | 0.020 | 0.328 | 0.652 | 332        | PWb333         | 1          | 0.004 | 0.001 | 0.995 |
| 288        | PWb288  | 1          | 0.003 | 0.001 | 0.996 | 333        | PWb334         | 1          | 0.003 | 0.001 | 0.996 |
| 289        | PWb289* | 1          | 0.010 | 0.386 | 0.604 | 334        | PWb335         | 1          | 0.003 | 0.001 | 0.996 |
| 290        | PWb290  | 1          | 0.007 | 0.001 | 0.992 | 335        | PWb336         | 1          | 0.005 | 0.001 | 0.994 |
| 291        | PWb291  | 1          | 0.441 | 0.001 | 0.558 | 336        | PWb337         | 1          | 0.007 | 0.001 | 0.992 |
| 292        | PWb292  | 1          | 0.142 | 0.321 | 0.537 | 337        | PWb338         | 1          | 0.026 | 0.001 | 0.972 |
| 293        | PWc293  | 1          | 0.020 | 0.002 | 0.979 | 338        | PWb339         | 1          | 0.006 | 0.001 | 0.993 |
| 294        | PWb294  | 1          | 0.382 | 0.002 | 0.616 | 339        | PWb340         | 1          | 0.004 | 0.001 | 0.995 |
| 295        | PWb295  | 1          | 0.012 | 0.002 | 0.987 | 340        | PWb341         | 1          | 0.011 | 0.001 | 0.988 |
| 296        | PWb296  | 1          | 0.003 | 0.001 | 0.996 | 341        | PWb342         | 1          | 0.003 | 0.001 | 0.996 |
| 297        | PWb297  | 1          | 0.003 | 0.002 | 0.995 | 342        | PWb343         | 1          | 0.005 | 0.001 | 0.994 |
| 298        | PWb298* | 1          | 0.003 | 0.177 | 0.819 | 343        | PWb344         | 1          | 0.005 | 0.001 | 0.993 |
| 299        | PWb299  | 1          | 0.005 | 0.211 | 0.783 | 344        | PWb345         | 1          | 0.003 | 0.001 | 0.996 |
| 300        | PWb300  | 1          | 0.113 | 0.298 | 0.589 | 345        | PWb346         | 1          | 0.004 | 0.001 | 0.995 |
| 301        | PWc301  | 1          | 0.044 | 0.001 | 0.955 | 346        | PWb347         | 1          | 0.004 | 0.001 | 0.995 |
| 302        | PWx302  | 1          | 0.012 | 0.001 | 0.987 | 347        | PWb348         | 1          | 0.030 | 0.002 | 0.969 |
| 303        | PWb303* | 1          | 0.004 | 0.160 | 0.836 | 348        | PWb349         | 1          | 0.010 | 0.001 | 0.989 |
| 304        | PWb304* | 1          | 0.004 | 0.224 | 0.773 | 349        | PWb350         | 1          | 0.006 | 0.001 | 0.993 |
| 305        | PWb305  | 1          | 0.010 | 0.001 | 0.989 | 350        | PWb351         | 1          | 0.004 | 0.001 | 0.995 |

| ample No. | ID      | Population | К1    | К 2   | К 3   |
|-----------|---------|------------|-------|-------|-------|
| 351       | PWb352  | 1          | 0.003 | 0.001 | 0.996 |
| 352       | PWb353  | 1          | 0.034 | 0.001 | 0.965 |
| 353       | PWb354* | 1          | 0.004 | 0.202 | 0.793 |
| 354       | PWb355* | 1          | 0.014 | 0.167 | 0.819 |
| 355       | PWb356  | 1          | 0.017 | 0.001 | 0.982 |
| 356       | PWb357  | 1          | 0.005 | 0.001 | 0.994 |
| 357       | PWb358  | 1          | 0.015 | 0.001 | 0.984 |
| 358       | PWb359  | 1          | 0.002 | 0.002 | 0.996 |
| 359       | PWb360  | 1          | 0.003 | 0.001 | 0.996 |
| 360       | PWb361  | 1          | 0.009 | 0.001 | 0.990 |
| 361       | PWb362  | 1          | 0.003 | 0.001 | 0.996 |
| 362       | PWb363  | 1          | 0.003 | 0.009 | 0.988 |
| 363       | PWb364  | 1          | 0.065 | 0.001 | 0.934 |
| 364       | PWb365  | 1          | 0.006 | 0.001 | 0.993 |
| 365       | PWb366  | 1          | 0.004 | 0.001 | 0.995 |
| 366       | PWb367  | 1          | 0.007 | 0.350 | 0.642 |
| 367       | PWb368  | 1          | 0.005 | 0.001 | 0.994 |
| 368       | PWb369  | 1          | 0.004 | 0.001 | 0.995 |
| 369       | PWb370  | 1          | 0.004 | 0.001 | 0.995 |
| 370       | PWb371  | 1          | 0.005 | 0.001 | 0.994 |
| 371       | PWb372  | 1          | 0.003 | 0.001 | 0.996 |
| 372       | PWb373  | 1          | 0.005 | 0.001 | 0.994 |
| 373       | PWb374  | 1          | 0.012 | 0.001 | 0.987 |
| 374       | PWb375  | 1          | 0.004 | 0.001 | 0.995 |
| 375       | PWb376  | 1          | 0.041 | 0.002 | 0.957 |
| 376       | PWb377  | 1          | 0.004 | 0.001 | 0.995 |
| 377       | PWb378  | 1          | 0.007 | 0.001 | 0.992 |
| 378       | PWb379  | 1          | 0.005 | 0.001 | 0.994 |
| 379       | PWb380  | 1          | 0.003 | 0.001 | 0.996 |
| 380       | PWb381  | 1          | 0.004 | 0.001 | 0.995 |
| 381       | PWb382  | 1          | 0.008 | 0.001 | 0.991 |
| 382       | PWc383  | 1          | 0.003 | 0.001 | 0.996 |
| 383       | PWc384  | 1          | 0.020 | 0.001 | 0.979 |
| 384       | PWc385  | 1          | 0.003 | 0.009 | 0.989 |
| 385       | PWc386  | 1          | 0.002 | 0.001 | 0.997 |
| 386       | PWc387  | 1          | 0.003 | 0.001 | 0.996 |
| 387       | PWc388  | 1          | 0.003 | 0.001 | 0.996 |
| 388       | PWc389  | 1          | 0.016 | 0.001 | 0.983 |
| 389       | PWc390  | 1          | 0.003 | 0.001 | 0.996 |
| 390       | PWc391  | 1          | 0.003 | 0.001 | 0.996 |
| 391       | PWc392  | 1          | 0.004 | 0.001 | 0.995 |
| 392       | PWc393  | 1          | 0.004 | 0.001 | 0.995 |
| 393       | PWc394  | 1          | 0.003 | 0.001 | 0.996 |
| 394       | PWc395  | 1          | 0.003 | 0.001 | 0.996 |
| 395       | PWc396  | 1          | 0.003 | 0.001 | 0.996 |

| Sample No. | ID     | Population | К1    | К 2   | К З   |
|------------|--------|------------|-------|-------|-------|
| 396        | PWc397 | 1          | 0.003 | 0.001 | 0.996 |
| 397        | PWc398 | 1          | 0.003 | 0.001 | 0.996 |
| 398        | PWc399 | 1          | 0.003 | 0.001 | 0.996 |
| 399        | PWc400 | 1          | 0.003 | 0.001 | 0.996 |
| 400        | PWc401 | 1          | 0.004 | 0.001 | 0.995 |
| 401        | PWc402 | 1          | 0.003 | 0.001 | 0.996 |
| 402        | PWc403 | 1          | 0.003 | 0.001 | 0.996 |
| 403        | PWc404 | 1          | 0.008 | 0.001 | 0.99  |
| 404        | PWc405 | 1          | 0.004 | 0.010 | 0.985 |
| 405        | PWc406 | 1          | 0.004 | 0.001 | 0.994 |
| 406        | PWw407 | 1          | 0.005 | 0.001 | 0.994 |
| 407        | PWx408 | 1          | 0.004 | 0.001 | 0.995 |
| 408        | PWc409 | 1          | 0.015 | 0.001 | 0.984 |
| 409        | PWc410 | 1          | 0.005 | 0.001 | 0.994 |
| 410        | PWc411 | 1          | 0.014 | 0.001 | 0.984 |
| 411        | PWc412 | 1          | 0.004 | 0.001 | 0.995 |
| 412        | PWc413 | 1          | 0.004 | 0.001 | 0.995 |
| 413        | PWc414 | 1          | 0.013 | 0.002 | 0.985 |
| 414        | PWc415 | 1          | 0.003 | 0.001 | 0.996 |
| 415        | PWc416 | 1          | 0.008 | 0.001 | 0.991 |
| 416        | PWc417 | 1          | 0.005 | 0.002 | 0.994 |
| 417        | PWc418 | 1          | 0.003 | 0.001 | 0.996 |
| 418        | PWc419 | 1          | 0.010 | 0.001 | 0.989 |
| 419        | PWc420 | 1          | 0.004 | 0.001 | 0.995 |
| 420        | PWc421 | 1          | 0.005 | 0.002 | 0.993 |
| 421        | PWc422 | 1          | 0.003 | 0.001 | 0.996 |
| 422        | PWc423 | 1          | 0.033 | 0.003 | 0.964 |
| 423        | PWw424 | 1          | 0.003 | 0.001 | 0.996 |
| 424        | PWc425 | 1          | 0.003 | 0.001 | 0.995 |
| 425        | PWc426 | 1          | 0.003 | 0.001 | 0.996 |
| 426        | PWc427 | 1          | 0.011 | 0.001 | 0.988 |
| 427        | PWc428 | 1          | 0.009 | 0.001 | 0.990 |
| 428        | PWc429 | 1          | 0.003 | 0.001 | 0.996 |
| 429        | PWc430 | 1          | 0.003 | 0.001 | 0.996 |
| 430        | PWc431 | 1          | 0.003 | 0.001 | 0.996 |
| 431        | PWc432 | 1          | 0.003 | 0.001 | 0.996 |
| 432        | PWc433 | 1          | 0.004 | 0.001 | 0.995 |
| 433        | PWc434 | 1          | 0.011 | 0.002 | 0.987 |
| 434        | PWc435 | 1          | 0.007 | 0.002 | 0.991 |
| 435        | PWc436 | 1          | 0.003 | 0.001 | 0.995 |
| 436        | PWc437 | 1          | 0.007 | 0.002 | 0.992 |
| 437        | PWc438 | 1          | 0.009 | 0.002 | 0.990 |
| 438        | PWc439 | 1          | 0.018 | 0.025 | 0.957 |
| 439        | PWc440 | 1          | 0.003 | 0.001 | 0.995 |
| 440        | PWc441 | 1          | 0.011 | 0.001 | 0.987 |

| Sample No. | ID      | Population | К1    | К 2   | К 3   |   | Sample No. | ID     | Population | К1    | К 2   | К 3   |
|------------|---------|------------|-------|-------|-------|---|------------|--------|------------|-------|-------|-------|
| 441        | PWb442  | 1          | 0.007 | 0.001 | 0.992 |   | 486        | SU015  | 3          | 0.108 | 0.001 | 0.891 |
| 442        | PWb443  | 1          | 0.013 | 0.001 | 0.986 |   | 487        | SU016  | 3          | 0.464 | 0.001 | 0.534 |
| 443        | PWb444  | 1          | 0.003 | 0.001 | 0.996 |   | 488        | K7903  | 3          | 0.283 | 0.002 | 0.715 |
| 444        | PWb445  | 1          | 0.140 | 0.294 | 0.566 |   | 489        | K7904  | 3          | 0.462 | 0.001 | 0.537 |
| 445        | PWb446  | 1          | 0.006 | 0.237 | 0.757 |   | 490        | K7905  | 3          | 0.096 | 0.001 | 0.903 |
| 446        | PWb447  | 1          | 0.020 | 0.165 | 0.816 |   | 491        | K7906  | 3          | 0.037 | 0.002 | 0.961 |
| 447        | PWb448  | 1          | 0.003 | 0.001 | 0.996 | 1 | 492        | K7907  | 3          | 0.388 | 0.002 | 0.610 |
| 448        | PWb449  | 1          | 0.003 | 0.001 | 0.996 |   | 493        | K7908  | 3          | 0.330 | 0.002 | 0.668 |
| 449        | PWb450  | 1          | 0.003 | 0.001 | 0.996 |   | 494        | K7909  | 4          | 0.017 | 0.001 | 0.982 |
| 450        | PWb451  | 1          | 0.038 | 0.002 | 0.960 |   | 495        | K7910  | 4          | 0.017 | 0.001 | 0.982 |
| 451        | PWb452  | 1          | 0.005 | 0.001 | 0.994 |   | 496        | K7911  | 4          | 0.050 | 0.001 | 0.949 |
| 452        | PWb453  | 1          | 0.003 | 0.001 | 0.996 |   | 497        | K7912  | 5          | 0.786 | 0.011 | 0.203 |
| 453        | PWb454  | 1          | 0.003 | 0.001 | 0.995 |   | 498        | IS001  | 5          | 0.074 | 0.002 | 0.924 |
| 454        | PWb456  | 1          | 0.022 | 0.231 | 0.747 |   | 499        | IS1232 | 5          | 0.996 | 0.001 | 0.003 |
| 455        | PWb455  | 1          | 0.023 | 0.142 | 0.836 |   | 500        | IS1234 | 5          | 0.995 | 0.001 | 0.004 |
| 456        | PWb457  | 1          | 0.004 | 0.001 | 0.995 |   | 501        | IS1235 | 5          | 0.995 | 0.001 | 0.004 |
| 457        | PWb458  | 1          | 0.011 | 0.001 | 0.988 |   | 502        | IS1236 | 5          | 0.995 | 0.001 | 0.003 |
| 458        | PWb459  | 1          | 0.004 | 0.001 | 0.995 |   | 503        | IS1237 | 5          | 0.995 | 0.001 | 0.004 |
| 459        | PWb460* | 1          | 0.047 | 0.359 | 0.594 |   | 504        | IS1238 | 5          | 0.906 | 0.001 | 0.092 |
| 460        | PWb461  | 1          | 0.005 | 0.001 | 0.994 |   | 505        | IS1239 | 5          | 0.996 | 0.001 | 0.003 |
| 461        | K7898   | 1          | 0.004 | 0.001 | 0.995 |   | 506        | IS1240 | 5          | 0.996 | 0.001 | 0.003 |
| 462        | K7899   | 1          | 0.026 | 0.001 | 0.973 |   | 507        | IS1241 | 5          | 0.995 | 0.001 | 0.004 |
| 463        | K7900*  | 1          | 0.007 | 0.343 | 0.649 |   | 508        | IS1242 | 5          | 0.569 | 0.002 | 0.429 |
| 464        | K7901*  | 1          | 0.023 | 0.294 | 0.683 |   | 509        | IS1244 | 5          | 0.890 | 0.001 | 0.109 |
| 465        | K7902*  | 1          | 0.006 | 0.297 | 0.697 |   | 510        | IS1245 | 5          | 0.993 | 0.001 | 0.006 |
| 466        | DCc001  | 2          | 0.004 | 0.001 | 0.995 |   | 511        | IS1246 | 5          | 0.995 | 0.001 | 0.004 |
| 467        | DCc002  | 2          | 0.054 | 0.004 | 0.942 |   | 512        | IS1247 | 5          | 0.993 | 0.001 | 0.006 |
| 468        | DCc003  | 2          | 0.007 | 0.007 | 0.986 |   | 513        | IS1248 | 5          | 0.995 | 0.001 | 0.004 |
| 469        | DCc004  | 2          | 0.013 | 0.001 | 0.986 |   | 514        | IS1249 | 5          | 0.995 | 0.001 | 0.004 |
| 470        | DCc005  | 2          | 0.003 | 0.001 | 0.996 |   | 515        | IS1250 | 5          | 0.995 | 0.001 | 0.003 |
| 471        | DCc006  | 2          | 0.012 | 0.005 | 0.983 |   | 516        | IS1251 | 5          | 0.995 | 0.001 | 0.004 |
| 472        | DCc007  | 2          | 0.003 | 0.001 | 0.996 |   | 517        | IS1252 | 5          | 0.995 | 0.001 | 0.004 |
| 473        | DCc008  | 2          | 0.003 | 0.001 | 0.996 |   | 518        | IS1253 | 5          | 0.996 | 0.001 | 0.003 |
| 474        | SU001   | 3          | 0.086 | 0.001 | 0.912 |   | 519        | IS1254 | 5          | 0.995 | 0.001 | 0.004 |
| 475        | SU002   | 3          | 0.014 | 0.001 | 0.985 |   | 520        | IS1255 | 5          | 0.994 | 0.001 | 0.005 |
| 476        | SU003   | 3          | 0.013 | 0.001 | 0.985 |   | 521        | IS1256 | 5          | 0.848 | 0.001 | 0.151 |
| 477        | SU004   | 3          | 0.013 | 0.001 | 0.986 |   | 522        | IS1257 | 5          | 0.996 | 0.001 | 0.003 |
| 478        | SU005   | 3          | 0.006 | 0.001 | 0.993 |   | 523        | IS1258 | 5          | 0.996 | 0.001 | 0.003 |
| 479        | SU006   | 3          | 0.092 | 0.001 | 0.907 |   | 524        | IS1259 | 5          | 0.924 | 0.001 | 0.075 |
| 480        | SU007   | 3          | 0.026 | 0.001 | 0.973 |   | 525        | IS1260 | 5          | 0.996 | 0.001 | 0.003 |
| 481        | SU008   | 3          | 0.008 | 0.001 | 0.991 |   | 526        | IS1272 | 5          | 0.991 | 0.001 | 0.007 |
| 482        | SU009   | 3          | 0.087 | 0.001 | 0.911 |   | 527        | IS1273 | 5          | 0.995 | 0.001 | 0.004 |
| 483        | SU012   | 3          | 0.005 | 0.001 | 0.994 |   | 528        | IS1274 | 5          | 0.995 | 0.001 | 0.004 |
| 484        | SU013   | 3          | 0.052 | 0.001 | 0.947 |   | 529        | IS1275 | 5          | 0.996 | 0.001 | 0.003 |
| 485        | SU014   | 3          | 0.081 | 0.001 | 0.918 |   | 530        | IS1276 | 5          | 0.993 | 0.001 | 0.006 |

#### Hinlo et al.

КЗ

0.003

0.005

0.011

0.005

0.027

0.004

0.003

0.004

0.069

0.004

0.005

0.004

0.004

0.004

0.004

0.026

0.003

0.007

0.026

0.005

0.004

0.079

0.003

0.003

0.029

0.993

0.990

0.996

0.996

0.996

0.996

0.992

0.996

0.996

0.992

0.988

0.983

0.995

0.988

0.010

0.004

0.014

0.001

К1

0.995

0.994

0.988

0.994

0.972

0.995

0.996

0.995

0.929

0.995

0.994

0.995

0.995 0.995

0.995

0.971

0.996

0.992

0.971

0.994

0.995

0.920

0.996

0.996

0.995

0.962

0.006

0.008

0.003

0.003

0.003

0.003

0.007

0.003

0.003

0.007

0.010

0.015

0.004

0.011

0.993

0.905

0.968

0.904

0.002

К2

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.003

0.001

0.001

0.003

0.001

0.001

0.001

0.001

0.001

0.001

0.009

0.001

0.002

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.002

0.002

0.001

0.002

0.003

0.086

0.028

0.082

0.997

| Sample No. | ID     | Population | К 1   | К 2   | КЗ    | ] | Sample No. | ID       | Population |
|------------|--------|------------|-------|-------|-------|---|------------|----------|------------|
| 531        | IS1277 | 5          | 0.993 | 0.001 | 0.006 |   | 576        | IS1324   | 5          |
| 532        | IS1278 | 5          | 0.996 | 0.001 | 0.003 |   | 577        | IS1326   | 5          |
| 533        | IS1279 | 5          | 0.995 | 0.001 | 0.004 |   | 578        | IS1327   | 5          |
| 534        | IS1280 | 5          | 0.996 | 0.001 | 0.003 |   | 579        | IS1328   | 5          |
| 535        | IS1281 | 5          | 0.995 | 0.001 | 0.004 |   | 580        | IS1329   | 5          |
| 536        | IS1282 | 5          | 0.995 | 0.001 | 0.004 |   | 581        | IS1330   | 5          |
| 537        | IS1283 | 5          | 0.995 | 0.001 | 0.004 |   | 582        | IS1331   | 5          |
| 538        | IS1284 | 5          | 0.996 | 0.001 | 0.003 |   | 583        | IS1332   | 5          |
| 539        | IS1285 | 5          | 0.996 | 0.001 | 0.003 |   | 584        | IS1337   | 5          |
| 540        | IS1286 | 5          | 0.996 | 0.001 | 0.003 |   | 585        | K7876    | 5          |
| 541        | IS1287 | 5          | 0.995 | 0.001 | 0.004 |   | 586        | K7878    | 5          |
| 542        | IS1288 | 5          | 0.672 | 0.001 | 0.327 |   | 587        | K7879    | 5          |
| 543        | IS1289 | 5          | 0.995 | 0.001 | 0.004 |   | 588        | K7880    | 5          |
| 544        | IS1290 | 5          | 0.995 | 0.001 | 0.004 |   | 589        | K7881    | 5          |
| 545        | IS1291 | 5          | 0.995 | 0.001 | 0.004 |   | 590        | K7882    | 5          |
| 546        | IS1292 | 5          | 0.995 | 0.001 | 0.004 |   | 591        | K7883    | 5          |
| 547        | IS1293 | 5          | 0.995 | 0.001 | 0.004 |   | 592        | K7884    | 5          |
| 548        | IS1294 | 5          | 0.995 | 0.001 | 0.004 |   | 593        | K7885    | 5          |
| 549        | IS1295 | 5          | 0.996 | 0.001 | 0.003 |   | 594        | K7886    | 5          |
| 550        | IS1296 | 5          | 0.995 | 0.001 | 0.004 |   | 595        | K7887    | 5          |
| 551        | IS1297 | 5          | 0.994 | 0.001 | 0.005 |   | 596        | K7888    | 5          |
| 552        | IS1298 | 5          | 0.996 | 0.001 | 0.003 |   | 597        | K7889    | 5          |
| 553        | IS1299 | 5          | 0.992 | 0.001 | 0.007 |   | 598        | K7890    | 5          |
| 554        | IS1300 | 5          | 0.995 | 0.001 | 0.004 |   | 599        | K7891    | 5          |
| 555        | IS1301 | 5          | 0.996 | 0.001 | 0.003 |   | 600        | K7892    | 5          |
| 556        | IS1302 | 5          | 0.953 | 0.002 | 0.045 |   | 601        | K7893    | 5          |
| 557        | IS1303 | 5          | 0.996 | 0.001 | 0.003 |   | 602        | BU001    | 6          |
| 558        | IS1304 | 5          | 0.995 | 0.001 | 0.004 |   | 603        | LM001    | 6          |
| 559        | IS1305 | 5          | 0.994 | 0.001 | 0.005 |   | 604        | LM002    | 6          |
| 560        | IS1306 | 5          | 0.995 | 0.001 | 0.004 |   | 605        | LM003    | 6          |
| 561        | IS1307 | 5          | 0.996 | 0.001 | 0.003 |   | 606        | LM004    | 6          |
| 562        | IS1308 | 5          | 0.994 | 0.001 | 0.005 |   | 607        | LM005    | 6          |
| 563        | IS1309 | 5          | 0.893 | 0.001 | 0.106 |   | 608        | LM006    | 6          |
| 564        | IS1311 | 5          | 0.995 | 0.001 | 0.004 |   | 609        | LM007    | 6          |
| 565        | IS1312 | 5          | 0.996 | 0.001 | 0.003 |   | 610        | LM008    | 6          |
| 566        | IS1314 | 5          | 0.986 | 0.010 | 0.003 |   | 611        | LM009    | 6          |
| 567        | IS1315 | 5          | 0.989 | 0.001 | 0.009 |   | 612        | LM010    | 6          |
| 568        | IS1316 | 5          | 0.994 | 0.001 | 0.005 |   | 613        | LM011    | 6          |
| 569        | IS1317 | 5          | 0.995 | 0.001 | 0.004 |   | 614        | LM012    | 6          |
| 570        | IS1318 | 5          | 0.995 | 0.001 | 0.004 |   | 615        | LM013    | 6          |
| 571        | IS1319 | 5          | 0.994 | 0.001 | 0.005 |   | 616        | K7894    | 7          |
| 572        | IS1320 | 5          | 0.991 | 0.001 | 0.008 |   | 617        | K7895    | 7          |
| 573        | IS1321 | 5          | 0.995 | 0.001 | 0.004 |   | 618        | K7896    | 7          |
| 574        | IS1322 | 5          | 0.995 | 0.001 | 0.003 |   | 619        | K7897    | 7          |
| 575        | IS1323 | 5          | 0.995 | 0.001 | 0.004 |   | 620        | YPM14723 | 8          |
| L          |        | 1          | 1     | 1     | 1     |   |            | 1        |            |

| Sample No. | ID       | Population | <i>K</i> 1 | К 2   | К З   |
|------------|----------|------------|------------|-------|-------|
| 621        | YPM14724 | 8          | 0.001      | 0.998 | 0.001 |
| 622        | YPM14725 | 8          | 0.001      | 0.997 | 0.001 |
| 623        | YPM14726 | 8          | 0.002      | 0.996 | 0.002 |
| 624        | YPM14727 | 8          | 0.002      | 0.995 | 0.002 |
| 625        | YPM14728 | 8          | 0.001      | 0.998 | 0.001 |
| 626        | YPM14729 | 8          | 0.001      | 0.998 | 0.001 |
| 627        | YPM14730 | 8          | 0.001      | 0.998 | 0.001 |
| 628        | YPM14731 | 8          | 0.004      | 0.994 | 0.002 |
| 629        | YPM14732 | 8          | 0.001      | 0.998 | 0.001 |
| 630        | YPM14733 | 8          | 0.004      | 0.993 | 0.004 |
| 631        | YPM14734 | 8          | 0.001      | 0.997 | 0.001 |
| 632        | YPM14736 | 8          | 0.001      | 0.994 | 0.005 |
| 633        | YPM14737 | 8          | 0.001      | 0.998 | 0.001 |
| 634        | YPM14738 | 8          | 0.001      | 0.997 | 0.001 |
| 635        | YPM14739 | 8          | 0.001      | 0.998 | 0.001 |
| 636        | YPM14740 | 8          | 0.002      | 0.997 | 0.001 |
| 637        | YPM14742 | 8          | 0.001      | 0.998 | 0.001 |
| 638        | YPM14743 | 8          | 0.002      | 0.997 | 0.001 |
| 639        | YPM14744 | 8          | 0.002      | 0.997 | 0.001 |
| 640        | YPM14745 | 8          | 0.001      | 0.998 | 0.001 |
| 641        | YPM14746 | 8          | 0.002      | 0.997 | 0.001 |
| 642        | YPM14747 | 8          | 0.001      | 0.997 | 0.001 |
| 643        | YPM14748 | 8          | 0.001      | 0.998 | 0.001 |
| 644        | YPM14749 | 8          | 0.001      | 0.998 | 0.001 |
| 645        | YPM14750 | 8          | 0.002      | 0.997 | 0.001 |
| 646        | YPM14751 | 8          | 0.002      | 0.997 | 0.001 |
| 647        | YPM14752 | 8          | 0.001      | 0.997 | 0.001 |
| 648        | YPM14753 | 8          | 0.001      | 0.998 | 0.001 |
| 649        | YPM14754 | 8          | 0.002      | 0.997 | 0.001 |
| 650        | YPM14755 | 8          | 0.001      | 0.998 | 0.001 |
| 651        | YPM14756 | 8          | 0.002      | 0.997 | 0.001 |
| 652        | YPM14719 | 8          | 0.001      | 0.997 | 0.001 |
| 653        | YPM14720 | 8          | 0.001      | 0.997 | 0.001 |
| 654        | YPM14721 | 8          | 0.001      | 0.997 | 0.001 |
| 655        | YPM14722 | 8          | 0.001      | 0.998 | 0.001 |
| 656        | YPM14757 | 8          | 0.002      | 0.996 | 0.002 |

indication of selection being a differentiating factor but the distance and isolation would be expected to drive genetic drift. Slightly elevated relatedness estimates suggest that future generations within both populations could face unavoidable mating of related individuals and the potential consequences of inbreeding. Genetic augmentation should be considered to offset these potential problems, whether by reintroduction from captive populations or by translocation between the populations. The most difficult constraint for successful conservation is securing the necessary funding to engage and monitor the programs. Whether genetic mixing between the two extant populations, augmentation from captive collections, or reintroduction of headstarted or captive born candidates is decided upon, funding will be crucial to monitor the success of the effort and protect remaining habitats for the future of the species.

### REFERENCES

- Allendorf, F.W., R.F. Leary, P. Spruell & J.K. Wenburg (2001). The problems with hybrids: setting conservation guidelines. *Trends in Ecology & Evolution* 16(11): 613–619; http://dx.doi.org/10.1016/ S0169-5347(01)02290-X
- Antao, T., A. Lopez, R.J. Lopez, A. Beja-Pereira & G. Luikart (2008). LOSITAN: A workbench to detect molecular adaptations on a Fst-outlier method. *BMC Bioinformatics* 9: 323; http://dx.doi. org/10.1186/1471-2105-9-323
- Araki, H., R.S. Waples, W.R. Ardren, B. Cooper & M.S. Blouin (2007). Effective population size of steelhead trout: influence of variance in reproductive success, hatchery programs, and genetic compensation between life-history forms. *Molecular Ecology* 16: 953–966; http:// dx.doi.org/10.1111/j.1365-294X.2006.03206.x
- Banks, C. (2005). National recovery plan for the Philippine Crocodile, Crocodylus mindorensis, 2<sup>nd</sup> Edition. 2005–2008. Department of Environment and Natural Resources - Protected Areas and Wildlife Bureau (DENR-PAWB), Diliman, Quezon City, Philippines, and the Royal Melbourne Zoological Gardens, Parkville, Melbourne, Australia, 58pp.
- Beaumont, M.A. & R.A. Nichols (1996). Evaluating loci for use in the genetic analysis of population structure. *Proceedings of the Royal Society of London B* 263: 1619–1626; http://dx.doi.org/10.1098/ rspb.1996.0237
- Bishop, J.M., A.J. Leslie, S.L. Bourquin & C O'Ryan (2009). Reduced effective population of the Nile Crocodile (*Crocodylus niloticus*). *Biological Conservation* 142: 2335–2341; http://dx.doi. org/10.1016/j.biocon.2009.05.016
- Callen, D.F., A.D. Thompson, Y. Shen, H.A. Phillips, R.I. Richards, J.C. Mulley & G.R. Sutherland (1993). Incidence and origin of "null" alleles in the (AC)<sub>n</sub> microsatellite markers. *American Journal of Human Genetics* 52: 922–927.
- Campton, D.E. (1987). Natural hybridization and introgression in fishes: methods of detection and genetic interpretations, pp. 161– 192. In: Ryman, N. & F. Utter (eds.). *Population Genetics and Fishery Management*. Blackburn Press, Caldwell, New Jersey, 488pp.
- Cedeño-Vásquez, J.R., D. Rodriguez, S. Calmé, J.P. Ross, L.D. Densmore, III & J.B. Thorbjarnarson (2008). Hybridization between *Crocodylus acutus* and *Crocodylus moreletii* in the Yucatan Peninsula: I. evidence from Mitochondrial DNA and morphology. *Journal of Experimental Zoology* 309A: 661–673; http://dx.doi.org/10.1002/jez.473

- Chapuis, M.-P. & A. Estoup (2007). Microsatellite null alleles and estimation of population differentiation. *Molecular Biology and Evolution* 24(3): 621–631; http://dx.doi.org/10.1093/molbev/ msl191
- Crocodile Specialist Group (1996). Crocodylus mindorensis. In: IUCN 2013. IUCN Red List of Threatened Species. Version 2013.2. <www. iucnredlist.org>. Downloaded on 12 February 2014.
- Davis, L., T. Glenn, D. Strickland, L. Guillette, R. Elsey, W. Rhodes, H.C. Dessauer & R.H. Sawyer (2002). Microsatellite DNA analyses support an east-west phylogeographic split of American alligator populations. *Journal of Experimental Zoology* 294: 352–372; http:// dx.doi.org/10.1002/jez.10189
- de Thoisy, B., T. Hrbek, I.P. Farias, W.R. Vasconcelos & A. Lavergne (2006). Genetic structure, population dynamics and conservation of black caiman (*Melanosuchus niger*). *Biological Conservation* 133: 474–482; http://dx.doi.org/10.1016/j.biocon.2006.07.009
- Dever, J. & L. Densmore (2001). Microsatellites in Morelet's Crocodile (Crocodylus moreletii) and their utility in addressing crocodilian population genetics questions. Journal of Herpetology 35(3): 541–544.
- Dever, J., R. Strauss, T. Rainwater, S. McMurry & L. Densmore (2002). Genetic diversity, population subdivision, and gene flow in Morelet's Crocodile (*Crocodylus moreletii*) from Belize, Central America. *Copeia* 4: 1078–1091.
- Dieringer, D. & C. Schlötterer (2003). MICROSATELLITE ANALYSER (MSA): A platform independent analysis tool for large microsatellite data sets. *Molecular Ecology Notes* 3: 167–169; http://dx.doi. org/10.1046/j.1471-8286.2003.00351.x
- Evanno, G., S. Regnaut & J. Goudet (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. *Molecular Ecology* 14: 2611–2620; http://dx.doi. org/10.1111/j.1365-294X.2005.02553.x
- Excoffier, L., T. Hofer & M. Foll (2009). Detecting loci under selection in a hierarchically structured population. *Heredity* 103: 286–298; http://dx.doi.org/10.1038/hdy.2009.74
- Falush, D., M. Stephens & J.K. Pritchard (2003). Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. *Genetics* 164: 1567–1587.
- Farias, I.P., R. Da Silveira, B. de Thoisy, L.A. Monjelo, J. Thorbjarnarson & T. Hrbek (2004). Genetic diversity and population structure of Amazonian crocodilians. *Animal Conservation* 7: 265–272; http:// dx.doi.org/10.1017/S136794300400143X
- FitzSimmons, N., J. Buchan, P. Lam, G. Polet, T. Hung, N. Thang & J. Gratten (2002). Identification of pure bred *Crocodylus siamensis* for reintroduction in Vietnam. *Journal of Experimental Zoology* 294: 373–381; http://dx.doi.org/10.1002/jez.10201
- Fleischer, R. (1998). Genetics and avian conservation, pp. 29–47. In: Marzluff, J.M. & R. Sallabanks (eds.). Avian Conservation: Research and Management. Island Press, Covelo, CA, 512pp.
- Flint, N., F. van der Bank & J Grobler (2000). A lack of genetic variation in commercially-bred Nile Crocodiles (*Crocodylus niloticus*) in the north-west province of South Africa. *Water SA* 26: 105–110.
- Foll, M. & O.E. Gaggiotti (2008). A genome scan method to identify selected loci appropriate for both dominant and codominant markers: A Bayesian perspective. *Genetics* 180: 977–993; http:// dx.doi.org/10.1534/genetics.108.092221
- Frankham, R. (1995). Effective population size / adult population size ratios in wildlife: a review. *Genetical Research* 66: 95–107; http://dx.doi.org/10.1017/S0016672300034455
- Gatesy, J. & G. Amato (2008). The rapid accumulation of consistent molecular support for intergeneric crocodilian relationships. *Molecular Phylogenetics and Evolution* 48: 1232–1237; http:// dx.doi.org/10.1016/j.ympev.2008.02.009
- Glenn, T., H. Dessauer & M. Braun (1998). Characterization of microsatellite DNA loci in American alligators. *Copeia* 1998: 591–602.
- Goudet, J. (1995). FSTAT (Version 1.2): A computer program to calculate F-statistics. J *Heredity* 86: 485–486.
- Goudet, J. (2001). FSTAT, a program to estimate and test gene diversities

and fixation indices, version 2.9.3. Available at <a href="http://www2.unil.ch/popgen/softwares/fstat.htm">http://www2.unil.ch/popgen/softwares/fstat.htm</a>. Accessed on 12 February 2014.

- Hapke, A., M. Gligor, S.J. Rakotondranary, D. Rosenkranz & O. Zupke (2011). Hybridization of mouse lemurs: different patterns under different conditions. *BMC Evolutionary Biology 2011* 11: 297; http:// dx.doi.org/10.1186/1471-2148-11-297
- Hardy, O.J. & X. Vekemans (2002). SPAGeDi: A versatile computer program to analyse spatial genetic structure at the individual or population levels. *Molecular Ecology Notes* 2: 618–620; http:// dx.doi.org/10.1046/j.1471-8286.2002.00305.x
- Hekkala, E.R., G. Amato, R. DeSalle & M.J. Blum (2010). Molecular assessment of population differentiation and individual assignment potential of Nile Crocodile (*Crocodylus niloticus*) populations. *Conservation Genetics* 11: 1435–1443; http://dx.doi.org/10.1007/ s10592-009-9970-5
- Hoffman, J.I. & W. Amos (2005). Microsatellite genotyping errors: detection approaches, common sources and consequences for parental exclusion. *Molecular Ecology* 14: 599–612; http://dx.doi. org/10.1111/j.1365-294X.2004.02419.x
- Hohenlohe, P.A., P.C. Phillips & W.A. Cresko (2010). Using population genomics to detect selection in natural populations: key concepts and methodological considerations. *International Journal of Plant Science* 171: 1059–1071; http://dx.doi.org/10.1086/656306
- Isberg, S., Y. Chen, S. Barker, C. & Moran (2004). Analysis of microsatellites and parentage testing in Saltwater Crocodiles. *Journal of Heredity* 95(5): 445–449; http://dx.doi.org/10.1093/ jhered/esh067
- Jeffreys, H. (1961). The Theory of Probability (3<sup>rd</sup> Edition). Oxford, 432pp.
- Jost, L. (2008). Gst and its relatives do not measure differentiation. Molecular Ecology 17: 4015–4026; http://dx.di.org/10.1111/j.1365-294X.2008.03887.x
- Jost, L. (2009). Mismeasuring biological diversity: Response to Hoffman and Hoffman (2008). *Ecological Economics* 68: 925–928. http://dx.doi.org/10.1016/j.ecolecon.2008.10.015
- Li, Y., X. Wu, P. Yan, & G. Amato (2007). The complete mitochondrial genome of Saltwater Crocodiles (*Crocodylus porosus*) and phylogeny of crocodilians. *Journal of Genetics and Genomics* 34(2): 119–128. http://dx.doi.org/10.1016/S1673-8527(07)60013-7
- Louis, E.E., Jr. & R.A. Brenneman (2008). Philippine Crocodile systematics and population genetics: a preliminary report, pp. 123–127. In: Alba, E.D.V., M.L. Lagartija & C.A. Ross (eds.). National Museum Papers Vol. 14 - 2007 Edition, Special Issue: Proceedings of the Forum on Crocodiles in the Philippines. National Museum of the Philippines, Manila, Philippines, iv+244pp.
- Mangansakan, D.G., II. (2008). Crocodile symbolism in Maguindanaon culture, pp. 133–139. In: Alba, E.D.V., M.L. Lagartija & C.A. Ross (eds.). National Museum Papers Vol. 14 - 2007 Edition, Special Issue: Proceedings of the Forum on Crocodiles in the Philippines. National Museum of the Philippines, Manila, Philippines, iv+244pp.
- Marshall, T.C., J. Slate, L.E.B. Kruuk & J. Pemberton (1998). Statistical confidence, for likelihood-based paternity inference in natural populations. *Molecular Ecology* 7: 639–655; http://dx.doi. org/10.1046/j.1365-294x.1998.00374.x
- Meganathan, P.R. & B. Dubey (2009). Molecular identification of crocodile species using novel primers for forensic analysis. *Conservation Genetics* 10: 767–770; http://dx.doi.org/10.1007/ s10592-008-9658-2
- Meganathan, P.R., B. Dubey, M.A. Blatzer, D.A. Ray & I. Haque (2010). Molecular phylogenetic analysis of the genus Crocodylus (Eusuchis, Crocodilia, Crocodylidae) and the taxonomic position of Crocodylus porosus. *Molecular Phylogenetics and Evolution* 57: 393–402; http://dx.doi.org/10.1016/j.ympev.2010.06.011
- Miles, L.G., S.R. Isberg, T.C. Glenn, S.L. Lance, P. Dalzell, P.C. Thompson & C. Moran (2009a). A genetic linkage map for the Saltwater Crocodile (*Crocodylus porosus*). *BMC Genomics* 10: 339; http:// dx.doi.org/10.1186/1471-2164-10-339
- Miles, L.G., S.R. Isberg, C. Moran, C. Hagen & T.C. Glenn (2009b). 253 Novel polymorphic microsatellites for the Saltwater Crocodile

(Crocodylus porosus). Conservation Genetics 10: 963–980; http://dx.doi.org/10.1007/s10592-008-9600-7

- Miles, L.G., S.L. Lance, S.R. Isberg, C. Moran & T.C. Glenn (2009c). Cross-species amplification of microsatellites in crocodilians: assessment and applications for the future. *Conservation Genetics* 10: 935–954; http://dx.doi.org/10.1007/s10592-008-9601-6
- Moraga-Amador, D., B.A. Farmerie, D. Brazeau & G. Clark (2001). Tools for Developing Molecular Marker: Interdisciplinary Center for Biotechnology Research Laboratory Manual. The University of Florida, Gainesville, 71pp.
- Peakall, R. & P.E. Smouse (2006). GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. *Molecular Ecology Notes* 6: 288–295. http://dx.doi.org/10.1111/j.1471-8286.2005.01155.x
- Peel, D., J.R. Ovenden, & S.L. Peel (2004). Ne Estimator: software for estimating effective population size. Version 1.3. Queensland Government, Department of Primary Industries and Fisheries, Brisbane.
- Pimentel, J.L., C.C. Pomares & J.A.G. Tabora (2008). Local attitudes and sightings of crocodiles in Ligawasan Marsh and its tributaries: a survey, pp. 190–196. In: Alba, E.D.V., M.L. Lagartija & C.A. Ross (eds.). National Museum Papers Vol. 14 - 2007 Edition, Special Issue: Proceedings of the Forum on Crocodiles in the Philippines. National Museum of the Philippines, Manila, Philippines, iv+244pp.
- Pomares, C.C., J.A.G. Tabora, C.B. Sanchez, J.L. Pimentel, M.P. Pomares & C.M. Escalera (2008). Ligawasan Marsh wild crocodile: Status of *Crocodylus mindorensis*, pp. 203–218. In: *Crocodiles. Proceedings of the 19th Working Meeting of the Crocodile Specialist Group*, IUCN - The World Conservation Union, Gland, Switzerland and Cambridge UK, xxiv+490pp.
- Pritchard, J.K., M. Stephens & P. Donnelly (2000). Inference of population structure using multilocus genotype data. *Genetics* 155: 945–959.
- Queller, D.C. & K.F. Goodnight (1989). Estimating relatedness using genetic markers. *Evolution* 43(2): 258–275.
- Ray, D.A., J.A. Dever, S.G. Platt, T.R. Rainwater, A.G. Finger, S.T. McMurry, M.A. Batzer, B. Barr, P.J. Stafford, J. McKnight & L.D. Densmore (2004). Low levels of nucleotide diversity in *Crocodylus moreletii* and evidence of hybridization with *C. acutus. Conservation Genetics* 5: 449–462. http://dx.doi.org/10.1023/ B:COGE.0000041024.96928.fe
- Rebong, G.G. & R.Q. Sumiller (2003). Captive breeding of C. mindorensis at PWRCC. In: Lazaro, R.C. (ed.). Proceedings of the Philippine Crocodile Crocodylus mindorensis conservation workshop. Northern Sierra Madre Natural Park Conservation Project, Cabagan, Philippines.
- Rhymer, J.M. & D. Simberloff (1996). Extinction by hybridization. Annual Review of Ecology and Systematics 27: 83–109; http:// dx.doi.org/10.1146/annurev.ecolsys.27.1.83
- Ross, J.P. (1998). Philippine Crocodile (*Crocodylus mindorensis*), pp. 49–50. In: Thorbjarnarson, J., H. Messel, F.W. King & J.P. Ross (eds.) *Crocodiles: An Action Plan for their Conservation*. IUCN/SSC Crocodile Specialist Group, Gainesville, FL, vii+136pp.
- Russello, M.A., P. Brazalaitis, J. Gratten, G.J. Watkins-Colwell, A. Caccone (2007). Molecular assessment of the genetic integrity, distinctiveness and phylogeographic context of the Saltwater Crocodile (*Crocodylus porosus*) on Palau. *Conservation Genetics* 8: 777–787; http://dx.doi.org/10.1007/s10592-006-9225-7
- Sambrook, J., E. Fritch & T. Maniatus (eds.) (1989). Extraction with phenol:chloroform, pp. E.3–E.4. In: *Molecular Cloning: A Laboratory Manual Vol. 3 (2nd edition)*. Cold Spring Harbor Press, New York, xxxii+380pp.
- Schmeller, D.S. & J. Merila (2007). Demographic and genetic estimates of effective population and breeding size in the amphibian *Rana temporaria*. *Conservation Biology* 21: 142–151; http://dx.doi. org/10.1111/j.1523-1739.2006.00554.x
- Seutin, G., B.N. White & P.T. Boag (1991). Preservation of avian blood and tissue samples for DNA analyses. *Canadian Journal of Zoology* 69: 82–90; http://dx.doi.org/10.1139/z91-013

- Shannon, C.E. (1948). A mathematical theory of communication. The Bell System Technical Journal 27: 379–423, 623–656; http://dx.doi. org/10.1002/j.1538-7305.1948.tb01338.x
- Slate, J., T. Marshall & J. Pemberton (2000). A retrospective assessment of the accuracy of the paternity inference program CERVUS. *Molecular Ecology* 9: 801–808; http://dx.doi.org/10.1046/ j.1365-294x.2000.00930.x
- Sumiller, R. (2000). Captive breeding of Crocodylus mindorensis and Crocodylus porosus at the Crocodile Farming Institute. CFI Research Bulletin 1: 3–8.
- Tabora, J.A., M.R. Hinlo, R. Lei, C. Pomares, G. Rebong, M. van Weerd, S. Engberg, R.A. Brenneman & E.E. Louis, Jr. (2012). Detection of *Crocodylus mindorensis x Crocodylus porosus* (Crocodylidae) hybrids in a Philippine Crocodile systematics analysis. *Zootaxa* 3560: 1-31.
- van Oosterhaut, C., W.F. Hutchinson & D.P. Willis (2004). MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. *Molecular Ecology Notes* 4: 535–538; http:// dx.doi.org/10.1111/j.1471-8286.2004.00684.x
- van de Ven, W.A.C., J.P. Guerrero, D.G. Rodriguez, S.P. Telan, M.G. Balbas, B.A. Tarun, M. van Weerd, J. van der Ploeg, Z. Wijtten, F.E. Lindeyer & H.H. de longh (2009). Effectiveness of head-starting to bolster Philippine Crocodile *Crocodylus mindorensis* populations in San Mariano municipality, Luzon, Philippines. *Conservation Evidence* 6: 111–116.
- van der Ploeg, J. & M. van Weerd (2004). Devolution of natural resource management and Philippine Crocodile conservation: The case of San Mariano, Isabela. *Philippine Studies* 52(3): 345–382.
- van der Ploeg, J., R. Arano & M. van Weerd (2011a). What local people think about crocodiles: Challenging environmental policy narratives in the Philippines. *The Journal of Environment & Development* 20 (3): 303–328; http://dx.doi.org/10.1177/1070496511416743
- van der Ploeg, J., M. Cauilan-Cureg, M. van Weerd & W. de Groot (2011b). Assessing the effectiveness of environmental education: mobilizing public support for Philippine Crocodile conservation. *Conservation Letters* 4(4): 313–323; http://dx.doi.org/10.1111/ j.1755-263X.2011.00181.x
- van der Ploeg, J., M. Cauilan-Cureg, M. van Weerd & G.A. Persoon (2011c). 'Why must we protect crocodiles?' Explaining the value of the Philippine Crocodile to rural communities. *Journal of Integrative Environmental Sciences* 8 (4): 1–12; http://dx.doi.org/10.1080/194 3815X.2011.610804
- van Weerd, M. & J. van der Ploeg (2003). A new future for the Philippine Crocodile, Crocodylus mindorensis. Sylvatrop 13(1&2): 31–50.
- van Weerd, M. & A. General (2003). Conserving the Philippine Crocodile in the Northern Sierra Madre: the results of three years of research and conservation action, pp. 17–33. In: van der Ploeg, J., E.C. Bernado & A.B. Masipiquena (eds.) The Sierra Madre Mountain Range: global relevance, local realities. Papers presented the 4<sup>th</sup> regional conference on environment and development. Cagayan Valley Program on Environment & Development, ISU, Cabagan, Isabela, Philippines.
- van Weerd, M. (2010). Philippine Crocodile Crocodylus mindorensis, pp. 71–78. In: Manolis, C. & C. Stevenson (eds.). Crocodiles. Status Survey and Conservation Action Plan. IUCN SSC Crocodile Specialist Group, Darwin, Australia, 143pp.
- van Weerd, M., J. Guerrero, M.G. Balbas, S. Telan, W. van de Ven, D. Rodriquez, A.B. Masipiqueña, J. van der Ploeg, R. Antolin, G. Rebong & H.H. de longh (2010). Reintroduction of captive-bred Philippine Crocodiles. *Oryx* 44 (1): 13; http://dx.doi.org/10.1017/ S0030605309990974
- Waples, R.S. (2006). A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. *Conservation Genetics* 7: 167–184; http://dx.doi.org/10.1007/s10592-005-9100-y
- Vasconcelos, W.R., T. Hrbek, R. Da Silveira, B. de Thoisy, B. Marioni & I.P. Farias (2006). Population genetic analysis of *Caiman crocodilus* (Linaeus, 1758) from South America. *Genetics and Molecular Biology* 2: 220–230; http://dx.doi.org/10.1590/S1415-47572006000200006

- Vasconcelos, W.R., T. Hrbek, R. Da Silveira, B. de Thoisy, L.A.A.D.S. Ruffeil & I.P. Farias (2008). Phylogeographic and conservation genetic analysis of the Black Caiman (*Melanosuchus niger*). Journal of Experimental Zoology 309A: 600–613; http://dx.doi.org/10.1002/ iez.452
- Waples, R.S. & C. Do (2008). LDNE: A program for estimating effective population size from data on linkage disequilibrium. *Molecular Ecology Resources* 8: 753–756; http://dx.doi.org/10.1111/j.1755-0998.2007.02061.x



Filipino Abstract: Limitado lamang ang kaalaman na mayroon ukol sa Philippine Crocodile (*Crocodylus mindorensis*), lalo na sa antas o lebel ng genetic diversity na mayroon ito kumpara sa iba pang uri ng buwaya o kahit mismo sa iba't-ibang populasyon ng Philippine crocodile sa bansa. Sa kasalukuyan, dalawang likas na populasyon na lamang ng Philippine crocodile ang matatagpuan sa ilang, at ang potensyal ng mababang antas ng genetic diversity na maaring matagpuan sa mga natitirang populasyon nito ay nagdudulot ng pangamba sa kanilang pangmatagalang kabutihan. Sa artikulong ito, aming sinuri ang 619 na Philippine Crocodile gamit ang labing-isang microsatellite markers at inihambing ang mga ito sa apat na pangkat na impormasyon mula sa ibang uri o species ng buwaya. Ang pagkakaibang genetiko ng dalawang natitirang populasyon ng buwayang ito sa Pilipinas, ay waring dulot ng genetic diversity at effective population sizes kumpara sa ibang uri ng buwaya. Ang 57 hybrid na buwaya na natagpuan sa isang naunang pag-aaral ay muling napatotohanan na hybrid nga sa pag-aaral na ito gamit ang dalawampung microsatellite loci. Ganoon pa man, ang panahon na nangyari ang hybridization at kung gaano ito kalawak sa populasyon ng Philippine crocodile ay kailangan pa ng pagsisiyasat. Sa artikulong ito, aming minumungkahi na ang 57 hybrids na natagpuan ay binubuo ng isang unang henerasyon na supling ng lalaking C. mindorensis at babaeng C. porosus, at ang natitirang 56 na hybrid ay mga backcross na buwaya. Ang hybridization na natagpuan ay waring limitado lamang sa koleksyon ng Palawan Wildlife Rescue & Conservation Centre (PWRCC).

Author Contribution: Ma. Rheyda Hinlo was involved with the data generation and sample collection in the Philippines and was involved in every step. John A. G. Tabora was also involved with data generation especially the sequence data. Carolyn A. Bailey was involved with the sample acquisition from the outgroup crocodile samples, and generated the data on these samples. Steve Trewick, Glenn Rebong, Merlijn van Weerd, and Cayetano Pomares, provided overall project expertise of the Philippines and direction and academic rigour to the overall project for the participating student authors, and participated significantly in the final drafts of the manuscript. Shannon Engberg provided supervision and direction to the overall data generation and of the study. Dr. Brenneman was responsible for developing the collaborations with the Republic of the Philippines Department of Natural Resources' Protected Areas and Wildlife Bureau, the Palawan Wildlife Rescue and Conservation Center, corporate and private owners of the Crocodylus mindorensis individuals and archived samples, and for the collection of the *C. porosus* samples on Mindanao. He selected and performed the genetic analyses of the microsatellite data, the interpretations of the results, and wrote the majority of the manuscript. Edward Louis organized the collection of the majority of the outgroup crocodile samples, and was primary supervisor in the project overall design and the overall organization of the revisions.

Author Details: MA. RHEYDA P. HINLO is a Filipino veterinarian who holds a MSc Degree in Conservation Biology from Massey University, New Zealand, is a member of the IUCN Crocodile Specialist Group. Hinlo is the National Project Coordinator for Protected Areas & Wildlife Bureau, Philippines and is currently a PhD candidate in Applied Ecology at the University of Canberra, Australia. JOHN A. G. TABORA is an assistant professor in the Department of Biological Sciences at the University of Southern Mindanao. CAROLYN A. BALEY is a laboratory technician for the Conservation Genetics Department of Omaha's Henry Doorly Zoo and Aquarium. STEVE TREWICK is an evolutionist with a special interest in speciation and the way biotas assemble. He teaches and researches in evolutionary ecology, biogeography and systematics and is co-leader of the Phoen is groups at Massey University evolves.massey.ac.nz. GLENN REBONG is the Director of the Palawan Wildlife Rescue and Conservation Center. MERLUN VAN WEERD is a Wildlife Biologist from the Netherlands who has been working in the Philippines since 1999. He is connected to the Institute of Environmental Sciences of Leiden University where he conducts research on patterns of biodiversity distributions in the Philippines, and on the ecology and conservation of the Philippine crocodile. In 2003 he co-founded the Mabuwaya Foundation, of which he currently is the director. Mabuwaya implements a community-based conservation program for the Philippine crocodile. In 2003 he co-founded the University of Southern Mindanao. SHANNON E. ENGBERG is the Conservation Genetics Research and Administration Manager for the Conservation Genetics Department of Omaha's Henry Doorly Zoo and Aquarium (2002–2013) during the time of this study. His population genetic, field and taxonomic studies included not only the Philippine crocodile but also seven of the nine graffe subspecies in Africa and 29 endangered lemur species and two tortoise species in Madagascar. He is now a Research Associate with the Giraffe

Acknowledgements: We would like to thank Rainier Manalo, the late Charles Ross of Silliman University, and Sonny Dizon of Davao Crocodile Park who contributed captive Philippine Crocodile tissue samples that were used in this study. We thank Medel Silvosa, Renato Cornel, Ernesto Conate, Amado Mulig, Salvador Guion, Ronnie Sumiller, Fernando Paliza, William Tabinas, Alberto Guinto and Renato Sumiller who assisted with the sample collection at PWRCC. We thank Willem van de Ven, Bernard Tarun, Sammy Telan, Dominic Rodriguez and Jessie Guerrero of Mabuwaya Foundation who assisted in procurement of samples from Isabela. Funding for tissue collection and whole genome amplification kits were provided by grants from the Crocodile Specialist Group (CSG) Student Research Fund, New Zealand Agency for International Development postgraduate research fund, and Curt Harbsmeier, Law Offices of Harbsmeier DeZayas, LLP. Assistance with the necessary prior informed consents, gratuities, transport and CITES permits and letters of support were provided by the Natural Resources Development Corporation, Restituta Antolin and DENR Region II, Director Theresa Mundita Lim, Josefina de Leon and staff of the DENR-PAWB Wildlife Management Office, along with the United States Fish & Wildlife Service. Chris Banks and Tom Dacey of the CSG provided contacts and information on Philippine crocodiles and funding opportunities. We would like to thank PWRCC, Silliman University, Davao City Crocodile Park, Calauit Game Reserve, the Valera Square Mini Zoo in Abra, Omaha's Henry Doorly Zoo and Aquarium, and Colette Adams and the Gladys Porter Zoo in Brownsville, Texas, for the collection of *Crocodylus mindorensis* samples. We appreciate the field work by Moamar, collecting samples in Liguasan Marsh. We thank the St. Augustine Alligator Farm Zoological Park, St. Augustine, Florida, Peter Brazaitis and Yale Peeabody Museum of Natural History, New Haven, Connecticut for donating samples of the other species for this study. We also like to acknowledge Li